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This book was born of two desires, one simple and
the other more ambitious, both of which were moti-
vated by my experiences learning and teaching 
population genetics. My first desire was to create a
more up-to-date survey text of the field of popula-
tion genetics. Several of the widely employed and 
respected standard texts were originally conceived 
in the mid-1980s. Although these texts have been
revised over time, aspects of their organization and
content are inherently dated. At the same time, I set
out with the more ambitious goal of offering an altern-
ative body of materials to enrich the manner in
which population genetics is taught and learned.

Much of population genetics during the twentieth
century was hypothesis-rich but data-poor. The theory
developed between about 1920 and 1980 spawned
manifold predictions about basic evolutionary pro-
cesses. However, most of these predictions could not
be tested or tested with only very limited power for
lack of appropriate or sufficient genetic data. In the
last two decades, population genetics has become 
a field that is no longer data-limited. With the col-
lection and open sharing of massive amounts of
genomic data and the technical ability to collect
large amounts of genetic information rapidly from
almost any organism, population genetics has now
become data-rich but relatively hypothesis-poor.
Why? Because mainstream population genetics has
struggled to develop and employ alternative testable
hypotheses in addition to those offered by traditional
null models. Innovation in developing context-
specific and testable alternative population genetic
models is as much a requirement for hypothesis test-
ing as empirical data. Such innovation, of course,
first requires a sound understanding of the tradi-
tional and well-accepted models and hypotheses.

It is often repeated that the major advance in 
population genetics over the last decade or two is 
the availability of huge amounts of genetic data gen-
erated by the ability to collect genetic data and to
sequence entire genomes. It is certainly true that
advances in molecular biology, DNA sequencing

technology, and bioinformatics have provided a
wealth of genetic data, some of it in the form of diver-
gence or polymorphism data that is grist for the mill
of population genetics hypothesis testing.

An equally fundamental advance in population
genetics has been the emergence of new models and
expectations to match the genetic data that are 
now readily available. Coalescent or genealogical
branching theory is primary among these concep-
tual advances. During the past two decades, coales-
cent theory has moved from an esoteric problem
pursued for purely mathematical reasons to an
important conceptual tool used to make testable pre-
dictions. Nonetheless, teaching of coalescent theory
in undergraduate and graduate population genetics
courses has not kept pace with the growing influence
of coalescent theory in hypothesis testing. A major
impediment has been the lack of teaching materials
that make coalescent theory truly accessible to stu-
dents learning population genetics for the first time.
One of my goals was to construct a text that met this
need with a systematic and thorough introduction to
the concepts of coalescent theory and its applications
in hypothesis testing. The chapter sections on coa-
lescent theory are presented along with traditional
theory of identity by descent on the same topics to
help students see the commonality of the two
approaches. However, the coalescence chapter sec-
tions could easily be assigned as a group.

Another of my primary goals for this text was to
offer material to engage the various learning styles
possessed by individuals. Learning conceptual popu-
lation genetics in the language of mathematics is
often relatively easy for abstract and mathematical
learners. However, my aim was to cater to a wide
range of learning styles by building a range of features
into the text. A key pedagogical feature in the book is
formed by boxes set off from the main text that are
designed to engage the various learning styles. These
include Interact boxes that guide students through
structured exercises in computer simulation utiliz-
ing software in the public domain. The simulation

Preface and acknowledgments

··
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problems are active rather than reflective and 
should appeal to trial-and-error or visual learners.
Additionally, simulations uniquely demonstrate the
outcome of stochastic processes where the evalua-
tion of numerous replicates is required before a 
pattern or generalization can be seen. Because
understanding the biological impact of stochastic
processes is a major hurdle for many students, the
Interact boxes should improve learning and reten-
tion. Problem boxes placed in the text rather than at
the end of chapters are designed to provide practice
and to reinforce concepts as they are encountered,
appealing to experiential learners. Math boxes that
fully explain mathematical derivations appeal to
mathematical and logical learners and also provide a
great deal of insight for all readers into the many
mathematical approximations employed in popula-
tion genetics. Finally, the large number of two-color
illustrations in the text were designed to appeal to
and help cultivate visual learning.

The teaching strategy employed in this text to
cope with mathematics proficiency deserves further
explanation. The undergraduate biology curricula
employed at most US institutions has students take
calculus in their first year and usually does not
require the application of much if any mathematics
within biology courses. This leads to students who
have difficulty in or who avoid courses in biological
disciplines that require explicit mathematical rea-
soning. Population genetics is built on basic math-
ematics and, in my experience, students obtain a
much richer and nuanced understanding of the 
subject with some comprehension of these math-
ematical foundations. Therefore, I have attempted to
deconstruct and offer step-by-step explanations the
basic mathematics (mostly probability) required for
a sound understanding of population genetics. For
those readers with more interest or facility in math-
ematics, such as graduate students, the book also
presents more difficult and detailed mathematical
derivations in boxes that are separated from the
main narrative of the text as well as chapter sections
containing more mathematically rigorous content.
These sections can be assigned or skipped depending
on the level and scope of a course using this text. 
The Appendix further provides some very basic
background in statistical concepts that are useful
throughout the book and especially in Chapter 3 on
genetic drift and Chapters 9 and 10 on quantitative
genetics. This approach will hopefully provide 
students with the tools to develop their abilities in
basic mathematics through application, and at the
same time learn population genetics more fully.

Members of my laboratory and the students who
have taken my population genetics course provided
a range of feedback on chapter drafts, figures, and
effective means to explain the concepts herein. This
feedback was absolutely invaluable and helped me
shape the text into a more useful and usable resource
for students. James Crow graciously reviewed each
chapter and offered many insightful comments on
points both nuanced and technical. Rachel Adams,
Genevieve Croft, and Paulo Nuin provided many
useful comments on each of the chapters as I wrote
them. A.W.F. Edwards reviewed the material on 
the fundamental theorem in Chapter 6 and also 
provided the photograph of R.A. Fisher. Sivan
Rottenstreich and Judy Miller patiently helped me
with numerous mathematical points and derivations,
including material included in the Math boxes. John
Braverman supplied me with insights and thought-
provoking discussions that contributed to this book.
Ronda Rolfes and Martha Weiss also provided com-
ments and suggestions. I also thank Paulo Nuin for
his collaboration and hard work on the creation of
PopGene.S2. I also thank the anonymous reviewers
from Aberdeen University, Arkansas State Univer-
sity, Cambridge University, Michigan State University,
University of North Carolina, and University of
Nottingham who provided feedback on some or all 
of the draft chapters.

John Epifanio provided the allozyme gel picture in
Chapter 2. Eric Delwart provided the original data
used to draw a figure in Chapter 6. Michel Veuille
shared information on Drosophila simulans DNA
sequences used in an Interact box in Chapter 8. Peter
Armbruster shared unpublished mosquito pupal
mass data used in Chapter 9. John Dudley and
Stephen Moose generously shared the Illinois Long-
Term Selection experiment data used in Chapter 9.
Robert J. Robbins kindly provided high-resolution
scans from Sewall Wright’s Chapter in an original
copy of the Proceedings of the Sixth International
Congress of Genetics (see www.esp.org).

I am grateful to Nancy Wilton for pushing me at
the right times and for getting this project off the
ground initially. Elizabeth Frank, Haze Humbert,
and Karen Chambers of Wiley-Blackwell helped
bring this book to fruition. I thank Nik Prowse for his
expertise as a copy editor. I owe everyone at the
Mathworks an enormous debt of gratitude since all
of the simulations and many of the figures for this
text were produced using Matlab.

Matthew B. Hamilton
September 2008
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Throughout this book you will encounter Interact boxes. These boxes contain opportunities for 
you to interact directly with the material in the text using computer simulations designed to
demonstrate fundamental concepts of population genetics. Each box will contain step-by-step
instructions for you to follow in order to carry out a simulation. For instructions on how to get
started with the simulations, see Interact box 1.1 on page 7. 

Interact boxes

A companion website is available with interactive computer simulations for each chapter at:
www.wiley.com/go/hamiltongenetics
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All scientific fields possess a body of concepts that
define their domain as well as a specialized vocabu-
lary used to express these concepts precisely. Popula-
tion genetics is no different and the entirety of this
book is designed to introduce, explain, and demon-
strate these concepts and their vocabulary. What
may be unique about population genetics among 
the natural sciences is the way that its practitioners
approach questions about the biological world.
Population genetics is a dialog between predictions
based on principles of Mendelian inheritance and
results obtained from empirical measurement of
genotype and allele frequencies that form the basis 
of hypothesis tests. Idealized predictions stemming
from general principles form the basis of hypo-
theses that can be tested. At the same time, empirical 
patterns observed within and among populations
require explanation through the comparison of vari-
ous processes that might have caused a pattern. This
first chapter will explore some of the ways in which 
population genetics approaches and defines prob-
lems that are relevant to the topics in all chapters.
The chapter is also intended to give some insight into
how to approach the study of population genetics.

1.1 Expectations

• What do we expect to happen?
• Expectations are the basis of understanding

cause and effect.

In our everyday lives there are many things that 
we expect to occur or not to occur based on know-
ledge of our surroundings and past experience. For
example, you probably do not expect to get hit by a
meteorite walking to your next population genetics
class. Why not? Meteorites do impact the surface of
the Earth and on occasion strike something notice-
able to people nearby. A few times in the distant past,
in fact, large meteors have hit the Earth and left evid-
ence like the Barringer Meteor crater in Arizona, USA.

What influences your lack of concern? It is probably
a combination of basic knowledge of the principles 
of physics that apply to meteors as well as your
empirical observations of the frequency and location
of meteor strikes. Basic physics tells us that a small
meteor on a collision course with Earth is unlikely 
to hit the surface since most objects burn up from 
the friction they experience traveling through the
Earth’s atmosphere. You might also reason that
even if the object is big enough to pass through the
atmosphere intact, and there are many fewer of
these, then the Earth is a large place and just by
chance the impact is unlikely to be even remotely
near you. Finally, you have most probably never 
witnessed a large meteorite impact or even heard 
of one occurring during your lifetime. You have
combined your knowledge of the physical world and
your experience to arrive (perhaps unconsciously) at
a prediction or an expectation: meteorite strikes are
possible but are so infrequent that the risk of being
struck on the way to class is minuscule. In this very
same way, you have constructed models of many
events and processes in your physical and social
world and used the resulting predictions to make
comparisons and decisions.

CHAPTER 1

Thinking like a population geneticist

Expectation The expected value of a random
variable, especially the average; a prediction or
forecast.

The study of population genetics similarly revolves
around constructing and testing expectations for
genetic variation in populations of individual organ-
isms. Expectations attempt to predict things like 
how much genetic variation is present in a popula-
tion, how genetic variation in a population changes 
over time, and the pattern of genetic variation that
might be left behind by a given biological process
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that acts over time or through space. Building these
expectations involves the use of first principles or the
set of very basic rules and assumptions that define
how natural systems work at their lowest, most 
basic levels. A first principle in physics is the force of
gravity. In population genetics, first principles are
the very basic mechanisms of Mendelian partic-
ulate inheritance and processes such as mutation,
mating patterns, gene flow, and natural selection 
that increase, decrease, and shape genetic variation.
These foundational rules and processes are used and
combined in population genetics with the ultimate
goal of building a comprehensive set of predictions
that can be applied to any species and any genetic
system.

Empirical study in population genetics also plays 
a central role in constructing and evaluating pre-
dictions. In population genetics as in all sciences,
empirical evidence is not just from informal experi-
ences, but is drawn from intentional observations,
cleverly constructed comparisons, and experiments.
Genetic patterns observed in actual populations are
compared with expected patterns to test models con-
structed using general principles and assumptions.
For example, we could construct a mathematical 
or computer simulation model of random genetic
drift (change in allele frequency due to sampling
from finite populations) based on abstract principles
of sampling from a finite population and biological
reproduction. We could then compare the predic-
tions of such a model to the observed change in allele
frequency through time in a laboratory population
of Drosophila melanogaster (fruit flies). If the change in
allele frequency in the fruit fly population matched
the change in allele frequency predicted using the
model of genetic drift, then we could conclude 
that the model effectively summarizes the biological
sampling processes that take place in fruit fly
populations.

It is also possible to use well-tested and accepted
model expectations as a basis to hypothesize what
processes caused an observed pattern in a biological
population. Again to use a Drosophila population as
an example, we might ask whether an observed
change in allele frequency over some generations in
a wild population could be explained by genetic drift.
If the observed allele frequency change is within the
range of the predicted change in allele frequencies
based on a model of genetic drift, then we have
identified a possible cause of the observed pattern.
Comparing expected and observed genetic patterns
in populations often requires modifications to 

existing models or the construction of novel models
in order to develop appropriate expectations. For
example, a model of genetic drift constructed for
Drosophila might naturally assume that all indi-
viduals in the population are diploid (individuals
possess paired sets of homologous chromosomes). If
we wanted to use that same model to predict genetic
drift in a population of honey bees, we would have 
to account for the fact that in honey bee males are
haploid (individuals possess single copies of each
chromosome) while females are diploid. This change
in reproductive biology could be taken into account
by altering the assumptions of the model of genetic
drift to make the prediction appropriate for honey bee
populations. Note that without some modification, 
a single model of genetic drift would not accurately
predict allele frequencies over time in both fruit flies
and honey bees since their patterns of reproduction
and chromosomal inheritance are different.

Parameters and parameter estimates

While developing the expectations of population
genetics in this book, we will most often be working
with idealized quantities. For example, allele fre-
quency in a population is a fundamental quantity.
For a genetic locus with two alleles, A and a, it is
common to say that p equals the frequency of the 
A allele and q equals the frequency of the a allele. 
In mathematics, parameter is another term for 
an idealized quantity like an allele frequency. It 
is assumed that parameters have an exact value. 
Put another way, parameters are idealized quant-
ities where the messy, real-life details of how to meas-
ure the quantities they represent are completely
ignored.

Empirical population genetics measures quant-
ities such as allele frequencies to give parameter
estimates by sampling and then measuring the 
alleles and genotypes present in actual populations.
All experiments, observations, and even simulations
in population genetics produce parameter estimates
of some sort. There is a subtle notational convention
used to indicate an estimate, the hat or ˆ character
above a variable. Estimates wear hats whereas para-
meters do not. Using allele frequency as an example,
we would say F (pronounced “p hat”) equals the
number of A alleles sampled divided by the total
number of alleles sampled. Intuitively, we can see
from the denominator in the expression for F that the
allele frequency estimate will depend on the sample
we gather to make the estimate.
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In all populations a parameter has one true value.
For the allele frequency p, knowing this true value
would require examining the genotype of every 
individual and counting all A and a alleles to deter-
mine their frequency in the population. This task is
impractical or impossible in most cases. Instead, we
rely on an estimate of allele frequency, F, obtained
from a sample of individuals from the population.
Sampling leads to some uncertainty in parameter
estimates because repeating the sampling and
parameter estimate process would likely lead to a
somewhat different parameter estimate each time.
Quantifying this uncertainty is important to deter-
mine whether repeated sampling might change a
parameter estimate by just a little or change it by a
lot. When dealing with parameters, we might expect
that p + q = 1 exactly if there are only two alleles
with allele frequencies p and q. However, if we are
dealing with estimates we might say the two allele
frequency estimates should sum to approximately
one (F + G ≈ 1) since each allele frequency is estim-
ated with some error. The more uncertain the 
estimates of F and G, the less we should be surprised 
to find that their sum does not equal the expected
value of one.

where estimates have a great deal of uncertainty,
which limits the ability to evaluate expectations.
There are also instances where very different pro-
cesses may produce very similar expected results. 
In such cases it may be difficult or impossible to dis-
tinguish the different potential causes of a pattern
due to the approximate nature of estimates. While
this book focuses mostly on parameters, it is useful 
to bear in mind that testing or comparing expecta-
tions requires the use of parameter estimates and
statistics that quantify sampling error. The Appendix
provides a review of some basic statistics that are
used in the text.

Inductive and deductive reasoning

Population genetics employs both inductive and
deductive reasoning in an effort to understand 
the biological processes operating in actual popula-
tions as well as to elucidate the general processes
that cause population genetic phenomena. The
inductive approach to population genetics involves
assembling measures of genetic variation (parameter 
estimates) from various populations to build up 
evidence that can be used to identify the underlying
processes that produced the observed patterns. This
approach is logically identical to that used by Isaac
Newton, who used knowledge of how objects fall to
the surface of the Earth as well as knowledge of the
movement of planets to arrive at the general prin-
ciples of gravity. Application of inductive reasoning
requires detailed familiarity with the various empir-
ical data types in population genetics, such as DNA
sequences, along with the results of studies that
report observed patterns of genetic variation. From
this accumulated empirical information it is then
possible to draw more general conclusions about 
the qualities and quantities of genetic variation in
populations. Model organisms like D. melanogaster
and Arabidopsis thaliana play a large role in popula-
tion genetic conclusions reached by inductive 
reasoning. Because model organisms receive a large
amount of scientific effort, to completely sequence
their genomes for example, a great deal of avail-
able genetic data are accumulated for these species.
Based on this evidence, many firm conclusions have
been made about the population genetics of par-
ticular model species. Although model organisms
provide very rich sources of empirical information, 
the number of species is limited by definition so that
any generalizations may not apply universally to 
all species.

··

Parameter A variable or constant appearing
in a mathematical expression; a value (usually
unknown) used to represent a certain
population characteristic; any factor that
defines a system and determines or limits its
performance.
Estimate An indication of the value of an
unknown quantity based on observed data; an
approximation of a true score, parameter, or
value; a statistical estimate of the value of a
parameter.

It could be said that statistics sits at the intersection
of theoretical and empirical population genetics.
Parameters and parameter estimates are funda-
mentally different things. Estimation requires effort 
to understand sampling variation and quantify
sources of error and bias in samples and estimates.
The distinction between parameters and estimates 
is critical when comparing actual populations 
with expectations to test hypotheses. When large, 
random samples can be taken, estimates are likely to
have minimal error. However, there are many cases
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The study of population genetics can also be ap-
proached using deductive reasoning. The actions of 
general processes such as genetic drift, mutation,
and natural selection are represented by parameters
in the mathematical equations that make up popula-
tion genetic models. These models can then be used
to make predictions about the quantity of genetic
variation and patterns of genetic variation in space
and time. Such population genetic models make 
general predictions about things like rates of change
in allele frequency, the eventual equilibrium of allele
or genotype frequencies, and the net outcome of 
several processes operating at the same time. These
predictions are very general in that they apply to 
any population of any species since the predictions
arose from general principles in the first place. At the
same time, such general predictions may not be
directly applicable to a specific population because
the general principles and assumptions used to 
make the prediction are not specific enough to match
an actual population.

Historically, the field of population genetics has
developed from an interplay between arguments 
and evidence developed using both inductive and
deductive reasoning approaches. Nonetheless, most
of the major ideas in population genetics can be 
first approached with deductive reasoning by learn-
ing and understanding the expectations that arise 
from the principles of Mendelian heredity. This book
stresses the process of deductive reasoning to arrive
at these fundamental predictions. Empirical evid-
ence related to expectations is included to illustrate
predictions and also to demonstrate hypothesis tests
that result from expectations. Because the body of
empirical results in population genetics is very large,
readers should resist the temptation to generalize too
much from the limited number of empirical studies
that are presented. Detailed reviews of particular
areas of population genetics, many of which are cited
in the Further reading sections at the end of each
chapter, are a better source for comprehensive sum-
maries of empirical studies.

In the next chapter we will start by building 
expectations for the frequencies of diploid genotypes
based on the foundation of particulate inheritance:
that alleles are passed unaltered from parents to 
offspring. There is ample support for particulate
inheritance both from molecular biology, which
identifies DNA as the hereditary molecule, and from
allele and genotype frequencies that can be observed
in actual populations. The general principle of 
particulate inheritance has been used to formulate a
wide array of expectations about allele and genotype
frequencies in populations.

1.2 Theory and assumptions

• What is a theory and what are assumptions?
• How can theories be useful with so many

assumptions?

In colloquial usage, the word theory refers to some-
thing that is known with uncertainty, or a quantity
that is approximate. On a day you are running late
leaving work you might say, “In theory, I am sup-
posed to be home at 6:00 pm.” In science, theory has
a very different meaning. Theory is the accumula-
tion of expectations and observations that have
withstood tests and critical scrutiny and are accepted
by at least some practitioners of a scientific field.
Theory is the collection of all of the expectations
developed for specific cases or individual biological
processes that together form a more comprehens-
ive set of general principles. The combination of
Darwin’s hypothesis of natural selection with the
laws of Mendelian particulate inheritance is often
called the modern synthesis of evolutionary biology
since it is a comprehensive theory to explain the
causes of evolutionary change. The modern syn-
thesis can offer causal explanations for biological
phenomena ranging from antibiotic resistance in
bacteria to the behavior of elephants to the rate of
DNA sequence change as well as make predictions 
to guide animal and plant breeders. In all of the 
modern synthesis, population genetics plays a 
central role.

It is common for the uninitiated to ask the ques-
tion “what good is theory if it is based on so many
assumptions?” A body of theory is a useful tool to
articulate assumptions and generate testable predic-
tions. Theory that generates many testable predic-
tions about the world also offers many opportunities
to falsify its predictions and assumptions. Since hypo-
theses cannot be proven directly, but alternative

Deductive reasoning Using general
principles to reach conclusions about specific
instances.
Inductive reasoning Utilizing the knowledge
of specific instances or cases to arrive at
general principles.
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hypotheses can be disproven, the generation of 
plausible, testable alternative hypotheses is a require-
ment for scientific inquiry. Strong theories are able
to make accurate predictions, offer causal explana-
tions for diverse observations, and generate altern-
ative hypotheses based on revised assumptions.

The words theory and assumption can seem
abstract, but you should not be intimidated by 
them. Theories are just collections of expectations,
each with a set of assumptions that place bounds 
on the prediction being made. If you understand
what motivates an expectation, its predictions, and
its assumptions, then you understand theory. Most
expectations in population genetics will have at least
a few, and often many, assumptions used to define
and bound the situation. For example, we might
assume something about the size of a population or
the absence of mutation, or that all genotypes are
diploid with two alleles. This is a way of limiting the
prediction to appropriate circumstances and also a
way of defining which quantities and conditions can
vary and which are fixed. Each of these assumptions
can influence the generality of an expectation. Each
assumption can also be relaxed or altered to see how
strongly it influences the expectation. To return to
the example in the last section, if one day meteorites
were falling around us with regularity we would be
forced to call into question some of the basic assump-
tions originally used to formulate our expectation that
meteorite strikes should be rare events. In this way,
assumptions are useful tools to ask “what if . . . ?” 
as part of the process of developing a prediction. If
our initial “what if . . . ?” conditions are badly off the
mark, then the resulting prediction will probably
also be poor.

In population genetics, as in much of science
where theory and expectations are involved, empir-
ical data and model expectations are routinely 
compared. Imagine observing a set of genotype fre-
quencies in a biological population. It would then be
natural to construct an idealized population using
theory that approximates the biological population.
This is an attempt to construct an idealized popula-
tion that is equivalent to the actual population from
the perspective of the processes influencing genotype
frequencies. For example, a large population may
behave exactly like a small, randomly mating ideal
population in terms of genotype frequencies. This
equivalence allows us to use expectations for ideal
populations with one or a few variables specified in
order to describe an actual population where there
are many more, usually unknown, parameters.

What we strive to do is to focus on those variables
that strongly influence genotype frequencies in the
actual population. In this way it is often possible 
to reduce the complexity of a real population and
determine the key variables that strongly influence 
a property like genotype frequencies. The ideal 
population is not meant to match the actual popula-
tion in every detail.

··

Theory A scheme or system of ideas or
statements held as an explanation or account
of a group of facts or phenomena; the general
laws, principles, or causes of something
known or observed.
Infer To draw a conclusion or make a
deduction based on facts or indications; to
have as a logical consequence.

From the comparison of expectation and observa-
tion, we infer that the first principles used to con-
struct the expectation are sound if they can be used
to explain patterns observed in the biological world.
For example, before we had detailed knowledge of
the processes involved in plant and animal reproduc-
tion, organisms were thought to be produced by 
so-called spontaneous generation from non-living
materials. Eventually, controlled experiments revealed
that the expectations of spontaneous generation
were not met. The emergence of flies from pieces of
rotting meat was taken as proof of spontaneous 
generation (a phenomenon that by itself turned out
to be consistent with expectations from two incom-
patible theories). However, when meat was placed 
in screened containers and allowed to rot, no flies
emerged. This latter evidence was inconsistent with
the expectations of spontaneous generation and
indicated that some of the assumptions behind the
theory were not accurate. It was Louis Pasteur in
1859 who used heat sterilization to show conclus-
ively that the expectations of spontaneous genera-
tion were not met.

If observations match what is expected from theory
in an ideal population, we infer that the observed
pattern may be caused by the processes represented
in the ideal population. However, there is a major
distinction between considering an actual and an
idealized population equivalent and considering them
identical. This is seen in cases where the observed 
pattern in an actual population is consistent with the
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expectations from several model populations built
around distinct and incompatible assumptions. In
such cases, it is not possible to infer the processes that
cause a given pattern without additional informa-
tion. A common example in population genetics are
cases of genetic patterns that are potentially con-
sistent with the random process of genetic drift and
at the same time consistent with some form of the
deterministic process of natural selection. In such
cases unambiguous inference of the underlying
cause of a pattern is not possible without additional
empirical information or more precise expectations.

1.3 Simulation

• A method of practice, trial and error learning,
and exploration.

Imagine learning to play the piano without ever
touching a piano or practicing the hand move-
ments required to play. What if you were expected 
to play a difficult concerto after extensive exposure
(perhaps a semester) to only verbal and written
descriptions of how other people play? Such a teach-
ing style would make learning to play the piano very
difficult because there would be no opportunity for
practice, trial and error, or exploration. You would
not have the opportunity for direct experience nor
incremental improvement of your understanding.
Unfortunately, this is exactly how science courses
are taught to some degree. You are expected to learn
and remember concepts with only limited opportun-
ity for directly observing principles in action. In 
fairness, this is partly due to the difficulty of carrying
out some of the experiments or observations that
originally lead someone to discover and understand
an important principle.

In the field of population genetics computer simu-
lations can be used to effectively demonstrate many
fundamental genetic processes. In fact, computer
simulations are an important research tool in popu-
lation genetics. Therefore, when you conduct simu-
lations you are both learning by direct experience 
and learning using the same methods that are used
by researchers. Simulations allow us to view how
quantities like allele frequencies change over time,
observe their dynamics, and determine whether a
stable end point is reached: an equilibrium. With
simulations we can view dynamics (change over
time) and equilibria over very long periods of time
and under a vast array of conditions in an effort to

reach general conclusions. Without simulations, it
would be impossible for us to directly observe allele
frequencies over such long periods of time and in
such diverse biological situations.

Simulations are an effective means to understand
some of the fundamental predictions of population
genetics. Mathematical expressions are frequently
used to express dynamics and equilibria in popula-
tion genetics, but the equations alone can be opaque
at first. Simulations provide a means to explore the
relationships among variables that are summarized
in the compact language of mathematics. Many 
people feel that a set of mathematical equations is
much more meaningful after having the chance to
explore what they describe with some actual numer-
ical values. Simulation provides the means to
explore what equations predict and can make learn-
ing population genetics an easier, more rewarding
experience.

Carrying out simulations has the potential to
make the expectations of population genetics much
more accessible and understandable. Conducting
simulations is not much extra work, especially once
you get into the practice of using the text and simula-
tion software in concert. You can approach simula-
tions as if they are games, where each one shows a
visual scene that helps to solve a puzzle. In addition,
simulations can help you develop a more intuitive
understanding of population genetic predictions 
so you do not have to approach the expectations of
population genetics as disembodied or unanimated
“facts.”

It is important to approach simulations in a sys-
tematic and organized fashion, not as just a collec-
tion of buttons to press and text entry boxes to be
filled in on a whim. It is absolutely imperative that
you understand the meaning behind each variable
that you can control as well as the meaning of the
results you obtain. To do so successfully you will
need to be aware of both specific details and larger
patterns, or both individual trees and the forest that
they compose. For example, in a simulation that 
presents results as a graph, it is important that you
understand the details of what variables are repres-
ented on each axis and the range of axis values.
Sometimes these details are not always completely
obvious in simulation software, requiring you to use
both your intuition and knowledge of the population
genetic processes being simulated.

Once you are comfortable with the details of a 
simulation, you will also want to keep track of 
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the “big picture” patterns that emerge as you view 
simulation results. Seeing these patterns will often
require that you examine the results over a range of
conditions. Try approaching simulations as experi-
ments by changing only one variable at a time until
you understand its effects on the outcome. Changing
several things all at once can lead to confusion and
an inability to see cause-and-effect relationships,
unless you have fully understood the effects of indi-

··

Throughout this book you will encounter Interact boxes. These boxes contain opportunities for 
you to interact directly with the material in the text using computer simulations designed to
demonstrate fundamental concepts of population genetics. Each box will contain step-by-step
instructions for you to follow in order to carry out a simulation. By following the instructions you
will get started with the simulation. However, always feel free to use your own imagination and
intuition. After following the instructions in the Interact box and understanding the point at hand,
enter different values, push more buttons, and even read the documentation. You can also return
to Interact boxes at a later time, perhaps after you have read and understood more of the text, to
reconsider a simulation or view it in a different light. You can also use the simulations to answer
questions that may occur to you, or to test hypotheses that you may have. Questions in population
genetics that start off “What would happen if . . . ?” are often begging to be answered with
simulation.

Using Interact boxes will require that you are in front of a computer with a connection to the
internet. You will also need user privileges to download and install programs in some cases. Some
simulation programs have versions for multiple operating systems (e.g. Windows and Macintosh)
whereas others can be used on only one operating system. It might be a good idea to think of
locations now where you have access to computers with various operating systems. Finally, bear 
in mind that the simulation programs have all been donated to the scientific community by their
respective authors and were often written in the author’s spare time. Don’t be surprised if the
programs have a few rough edges or even bugs: focus on the population genetics concepts and
remember that someone devoted their time to help you learn.

You will begin many of the Interact boxes by connecting to this textbook’s website, whereas for
others you will use a program downloaded in an earlier Interact box. The worldwide web address
(URL) for each of the simulation programs will be given on the textbook website rather than in the 
text itself. This prevents problems if web addresses change because the textbook website can be
updated while your copy of the text cannot.

Step 1 Open a web browser and enter http://www.wiley.com/go/hamiltongenetics.
Step 2 If you are working on a computer you use regularly, bookmark the text website so you can

reach it easily in the future.
Step 3 Click on the link to Interact boxes.
Step 4 Verify that the page gives links for each of the Interact boxes listed by their number. You

could also bookmark this page so you can reach it directly in the future.

Congratulations! You have completed the first Interact box.

Interact box 1.1 The textbook website

vidual variables. Finally, try writing down para-
meter values you have tried in a simulation and
sketching or tabulating results on paper as you work
with a simulation. Use all of your skills as a scientist
and student when conducting simulations and they
will become a powerful learning tool. Eventually,
you may even use scripting and programming to
carry out your own simulations specifically designed
to explore your own genetic hypotheses.
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Chapter 1 review

• General principles and direct measurements taken
in actual populations combine to form compre-
hensive expectations about amounts, patterns,
and cause-and-effect relationships in population
genetics.

• The theory of population genetics is the collection
of well-accepted expectations used to articulate 
a wide array of predictions about the biological
processes that shape genetic variation.

• Parameters are idealized quantities that are exact
while parameter estimates wear notational
“hats” to remind us that they have statistical
uncertainty.

• Population genetics uses both inductive reason-
ing to generalize from knowledge of specifics and
deductive reasoning to build up predictions from
general principles that can be applied to specific
situations.

• Population genetics is not a spectator sport!
Direct participation in computer simulation pro-
vides the opportunity to see population genetic
processes in action. You can learn by trial and
error and test your own understanding by mak-
ing predictions and then comparing them with
simulation results.

Further reading

For a history of population genetics from Darwin to
the 1930s see:

Provine WB. 1971. The Origins of Theoretical Population
Genetics. University of Chicago Press, Chicago, IL.

You don’t have to be a computer programmer to 
create simulations. Check out this book for step-by-
step instructions to construct simulations using the
spreadsheet application Microsoft Excel:

Donovan TM and Welden CW. 2002. Spreadsheet
Exercises in Ecology and Evolution. Sinauer Associates,
Sunderland, MA.

For two personal and historical essays on the past,
present, and assumptions of theoretical population
genetics see:

Lewontin RC. 1985. Population genetics. In
Greenwood PJ, Harvey PH, and Slatkin M (eds),
Evolution: Essays in Honour of John Maynard Smith,
pp. 3–18. Cambridge University Press, Cambridge.

Wakeley J. 2005. The limits of theoretical population
genetics. Genetics 169: 1–7.
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2.1 Mendel’s model of particulate genetics

• Mendel’s breeding experiments.
• Independent assortment of alleles.
• Independent segregation of loci.
• Some common genetic terminology.

In the nineteenth century there were several theories
of heredity, including inheritance of acquired char-
acteristics and blending inheritance. Jean-Baptiste
Lamarck is most commonly associated with the 
discredited hypothesis of inheritance of acquired
characteristics (although it is important to recognize
his efforts in seeking general causal explanations of
evolutionary change). He argued that individuals
contain “nervous fluid” and that organs or features
(phenotypes) employed or exercised more frequently
attract more nervous fluid, causing the trait to
become more developed in offspring. His widely
known example is the long neck of the giraffe, which
he said developed because individuals continually
stretched to reach leaves at the tops of trees. Later,
Charles Darwin and many of his contemporaries
subscribed to the idea of blending inheritance. Under
blending inheritance, offspring display phenotypes
that are an intermediate combination of parental
phenotypes (Fig. 2.1).

From 1856 to 1863, the Augustinian monk
Gregor Mendel carried out experiments with pea
plants that demonstrated the concept of particulate
inheritance. Mendel showed that phenotypes are
determined by discrete units that are inherited intact
and unchanged through generations. His hypothesis
was sufficient to explain three common observations:
(i) phenotype is sometimes identical between parents
and offspring; (ii) offspring phenotype can differ from
that of the parents; and (iii) “pure” phenotypes of ear-
lier generations could skip generations and reappear
in later generations. Neither blending inheritance
nor inheritance of acquired characteristics are satis-
factory explanations for all of these observations. It 

is hard for us to fully appreciate now, but Mendel’s
results were truly revolutionary and served as the
very foundation of population genetics. The lack of
an accurate mechanistic model of heredity severely
constrained biological explanations of cause and
effect up to the point that Mendel’s results were
“rediscovered” in the year 1900.

It is worthwhile to briefly review the experiments
with pea plants that Mendel used to demonstrate
independent assortment of both alleles within a locus
and of multiple loci, sometimes dubbed Mendel’s 
first and second laws. We need to remember that 
this was well before the Punnett square (named 
after Reginald C. Punnett), which originated in about
1905. Therefore, the conceptual tool we would use
now to predict progeny genotypes from parental
genotypes was a thing of the future. So in revisiting
Mendel’s experiments we will not use the Punnett
square in an attempt to follow his logic. Mendel only
observed the phenotypes of generations of pea plants
that he had hand-pollinated. From these phenotypes
and their patterns of inheritance he inferred the 

CHAPTER 2

Genotype frequencies

P1

F1

Figure 2.1 The model of blending inheritance predicts that
progeny have phenotypes that are the intermediate of their
parents. Here “pure” blue and white parents yield light blue
progeny, but these intermediate progeny could never
themselves be parents of progeny with pure blue or white
phenotypes identical to those in the P1 generation. Crossing
any shade of blue with a pure white or blue phenotype 
would always lead to some intermediate shade of blue. By
convention, in pedigrees females are indicated by circles and
males by squares, whereas P refers to parental and F to filial.
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existence of heritable factors. His experiments were
actually both logical and clever, but are now taken
for granted since the basic mechanism of particulate
inheritance has long since ceased to be an open 
question. It was Mendel who established the first and
most fundamental prediction of population genetics:
expected genotype frequencies.

Mendel used pea seed coat color as a phenotype 
he could track across generations. His goal was to
determine, if possible, the general rules govern-
ing inheritance of pea phenotypes. He established
“pure”-breeding lines (meaning plants that always
produced progeny with phenotypes like themselves)
of peas with both yellow and green seeds. Using these
pure-breeding lines as parents, he crossed a yellow-
and a green-seeded plant. The parental cross and 
the next two generations of progeny are shown in
Fig. 2.2. Mendel recognized that the F1 plants had 
an “impure” phenotype because of the F2 genera-
tion plants, of which three-quarters had yellow and
one-quarter had green seed coats.

His insightful next step was to self-pollinate a 
sample of the plants from the F2 generation (Fig. 2.3).
He considered the F2 individuals with yellow and
green seed coats separately. All green-seeded F2
plants produced green progeny and thus were “pure”

green. However, the yellow-seeded F2 plants were of
two kinds. Considering just the yellow F2 seeds, one-
third were pure and produced only yellow-seeded
progeny whereas two-thirds were “impure” yellow
since they produced both yellow- and green-seeded
progeny. Mendel combined the frequencies of the 
F2 yellow and green phenotypes along with the fre-
quencies of the F3 progeny. He reasoned that three-
quarters of all F2 plants had yellow seeds but these
could be divided into plants that produced pure 
yellow F3 progeny (one-third) and plants that pro-
duced both yellow and green F3 progeny (two-thirds).
So the ratio of pure yellow to impure yellow in the F2
was (1/3 × 3/4) = 1/4 pure yellow to (2/3 × 3/4) = 1/2

“impure” yellow. The green-seeded progeny com-
prised one-quarter of the F2 generation and all 
produced green-seeded progeny when self-fertilized,
so that (1 × 1/4 green) = 1/4 pure green. In total, the
ratios of phenotypes in the F2 generation were 1 pure
yellow : 2 impure yellow : 1 pure green or 1 : 2 : 1.
Mendel reasoned that “the ratio of 3 : 1 in which the
distribution of the dominating and recessive traits
take place in the first generation therefore resolves
itself into the ratio of 1 : 2 : 1 if one differentiates the

P1

F1
(100% yellow)

Yellow
seeds

Green
seeds

Yellow
seeds

Yellow
seeds

Yellow
seeds

Yellow
seeds

Yellow
seeds

Green
seeds

3/4 Yellow 1/4 Green

F2

Figure 2.2 Mendel’s crosses to examine the segregation
ratio in the seed coat color of pea plants. The parental plants
(P1 generation) were pure breeding, meaning that if self-
fertilized all resulting progeny had a phenotype identical to
the parent. Some individuals are represented by diamonds
since pea plants are hermaphrodites and can act as a mother,
a father, or can self-fertilize.

Yellow
seeds

Yellow
seeds

Yellow
seeds

Green
seeds

F2

F3

3/4 of all F2 individuals
had a yellow phenotype

1/4 of all F2 individuals
had a green phenotype

Yellow
seeds

Yellow
seeds

Green
seeds

Green
seeds

Yellow
seeds

Figure 2.3 Mendel self-pollinated (indicated by curved
arrows) the F2 progeny produced by the cross shown in
Figure 2.2. Of the F2 progeny that had a yellow phenotype
(three-quarters of the total), one-third produced all progeny
with a yellow phenotype and two-thirds produced progeny
with a 3 : 1 ratio of yellow and green progeny (or three-
quarters yellow progeny). Individuals are represented by
diamonds since pea plants are hermaphrodites.
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Genotype frequencies 11

meaning of the dominating trait as a hybrid and 
as a parental trait” (quoted in Orel 1996). During 
his work, Mendel employed the terms “dominating”
(which became dominant) and “recessive” to describe
the manifestation of traits in impure or heterozygous
individuals.

With the benefit of modern symbols of particulate
heredity, we could diagram Mendel’s monohybrid
cross with pea color in the following way.

P1 Phenotype Yellow × green
Genotype GG gg
Gametes produced G g

F1 Phenotype All “impure”yellow
Genotype Gg
Gametes produced G, g

A Punnett square could be used to predict the pheno-
typic ratios of the F2 plants:

F2 Phenotype 3 Yellow : 1 green
Genotype GG Gg gg
Gametes produced G G, g g

Individual pea plants obviously have more than a
single phenotype and Mendel followed the inheritance
of other characters in addition to seed coat color. 
In one example of his crossing experiments, Mendel
tracked the simultaneous inheritance of both seed
coat color and seed surface condition (either wrinkled
(“angular”) or smooth). He constructed an initial
cross among pure-breeding lines identical to what 
he had done when tracking seed color inheritance,
except now there were two phenotypes (Fig. 2.4).

and another Punnett square could be used to predict
the genotypic ratios of the two-thirds of the yellow
F2 plants:

··

Mendel’s first “law” Predicts independent
segregation of alleles at a single locus: two
members of a gene pair (alleles) segregate
separately into gametes so that half of the
gametes carry one allele and the other half
carry the other allele.

G g

G GG Gg

g Gg gg

G g

G GG Gg

g Gg gg

F1

F2

P1

Yellow/
wrinkled

seeds

Green/
smooth

seeds

Yellow/
smooth

seeds

Yellow/
smooth

seeds

Figure 2.4 Mendel’s
crosses to examine the
segregation ratios of two
phenotypes, seed coat
color (yellow or green)
and seed coat surface
(smooth or wrinkled), in
pea plants. The hatched
pattern indicates
wrinkled seeds while
white indicates smooth
seeds. The F2 individuals
exhibited a phenotypic
ratio of 9 round/yellow :
3 round/green :
3 wrinkled/yellow :
1 wrinkled/green.
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The F2 progeny appeared in the phenotypic ratio of 
9 round/yellow : 3 round/green : 3 wrinkled/yellow : 1
wrinkled/green.

How did Mendel go from this F2 phenotypic ratio
to the second law? He ignored the wrinkled/smooth
phenotype and just considered the yellow/green
seed color phenotype in self-pollination crosses of 
F2 plants just like those for the first law. In the F2
progeny, 12/16 or three-quarters had a yellow seed
coat and 4/16 or one-quarter had a green seed coat,
or a 3 yellow : 1 green phenotypic ratio. Again using
self-pollination of F2 plants like those in Fig. 2.3, 
he showed that the yellow phenotypes were one-
quarter pure and one-half impure yellow. Thus, the
segregation ratio for seed color was 1 : 2 : 1 and 
the wrinkled/smooth phenotype did not alter this
result. Mendel obtained an identical result when
focusing instead on the wrinkled/smooth phenotype
and ignoring the seed color phenotype.

Mendel concluded that a phenotypic segregation
ratio of 9 : 3 : 3 : 1 is the same as combining two
independent 3 : 1 segregation ratios of two pheno-
types since (3 : 1) × (3 : 1) = 9 : 3 : 3 : 1. Similarly,
multiplication of two (1 : 2 : 1) phenotypic ratios
will predict the two phenotype ratio (1 : 2 : 1) ×
(1 : 2 : 1) = 1 : 2 : 1 : 2 : 4 : 2 : 1 : 2 : 1. We now
recognize that dominance in the first two phenotype 
ratios masks the ability to distinguish some of the
homozygous and heterozygous genotypes, whereas
the ratio in the second case would result if there was
no dominance. You can confirm these conclusions
by working out a Punnett square for the F2 progeny
in the two-locus case.

Mendel performed similar breeding experiments with
numerous other pea phenotypes and obtained similar
results. Mendel described his work with peas and
other plants in lectures and published it in 1866 in
the Proceedings of the Natural Science Society of Brünn
in German. It went unnoticed for nearly 35 years.
However, Mendel’s results were eventually recognized
and his paper was translated into several languages.
Mendel’s rediscovered hypothesis of particulate

inheritance was also bolstered by evidence from
microscopic observations of cell division that led
Walter Sutton and Theodor Boveri to propose the
chromosome theory of heredity in 1902.

Mendel’s second “law” Predicts
independent assortment of multiple loci:
during gamete formation, the segregation of
alleles of one gene is independent of the
segregation of alleles of another gene.

Much of the currently used terminology 
was coined as the field of particulate 
genetics initially developed. Therefore, 
many of the critical terms in genetics have
remained in use for long periods of time.
However, the meanings and connotations 
of these terms have often changed as 
our understanding of genetics has also
changed.

Unfortunately, this has lead to a situation
where words can sometimes mislead. 
A common example is equating gene
and allele. For example, it is commonplace 
for news media to report scientific
breakthroughs where a “gene” has been
identified as causing a particular phenotype,
often a debilitating disease. Very often what 
is meant in these cases is that an allele with 
the phenotypic effect has been identified.
Both unaffected and affected individuals 
all possess the gene, but they differ in their
alleles and therefore in their genotype. If
individuals of the same species really differed
in their gene content (or loci they possessed),
that would provide evidence of additions or
deletions to genomes. For an interesting
discussion of how terminology in genetics 
has changed – and some of the
misunderstandings this can cause – 
see Judson (2001).
Gene Unit of particulate inheritance; in
contemporary usage usually means an exon 
or series of exons, or a DNA sequence that
codes for an RNA or protein.
Locus (plural loci, pronounced “low-sigh”)
Literally “place” or location in the genome; 
in contemporary usage is the most general
reference to any sequence or genomic region,
including non-coding regions.
Allele Variant or alternative form of the DNA
sequence at a given locus.
Genotype The set of alleles possessed 
by an individual at one locus; the genetic
composition of an individual at one or 
many loci.
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2.2 Hardy–Weinberg expected genotype
frequencies

• Hardy–Weinberg and its assumptions.
• Each assumption is a population genetic process.
• Hardy–Weinberg is a null model.
• Hardy–Weinberg in haplo-diploid systems.

Mendel’s “laws” could be called the original expecta-
tions in population genetics. With the concept of 
particulate genetics established, it was possible to
make a wide array of predictions about genotype 
and allele frequencies as well as the frequency of 
phenotypes with a one-locus basis. Still, progress
and insight into particulate genetics was gradual.
Until 1914 it was generally believed that rare 

(infrequent) alleles would disappear from populations
over time. Godfrey H. Hardy (1908) and Wilhelm
Weinberg (1908) worked independently to show that
the laws of Mendelian heredity did not predict such a
phenomenon (see Crow 1988). In 1908 they both
formulated the relationship that can be used to pre-
dict allele frequencies given genotype frequencies or
predict genotype frequencies given allele frequencies.
This relationship is the well-known Hardy–Weinberg
equation

p2 + 2pq + q2 = 1 (2.1)

where p and q are allele frequencies for a genetic
locus with two alleles.

Genotype frequencies predicted by the Hardy–
Weinberg equation can be summarized graphically.
Figure 2.5 shows Hardy–Weinberg expected geno-
type frequencies on the y axis for each genotype for
any given value of the allele frequency on the x axis.
Another graphical tool to depict genotype and allele
frequencies simultaneously for a single locus with
two alleles is the De Finetti diagram (Fig. 2.6). As 
we will see, De Finetti diagrams are helpful when
examining how population genetic processes dictate
allele and genotype frequencies. In both graphs it 
is apparent that heterozygotes are most frequent
when the frequency of the two alleles is equal to 0.5.
You can also see that when an allele is rare, the 
corresponding homozygote genotype is even rarer
since the genotype frequency is the square of the
allele frequency.

··

Phenotype The morphological, biochemical,
physiological, and behavioral attributes of 
an individual; synonymous with character,
trait.
Dominant Where the expressed 
phenotype of one allele takes precedence 
over the expressed phenotype of another
allele. The allele associated with the 
expressed phenotype is said to be dominant.
Dominance is seen on a continuous scale 
that ranges between “complete” dominance
(one allele completely masks the phenotype 
of another allele so that the phenotype of 
a heterozygote is identical to a homozygote
for the dominant allele), “partial,” or
“incomplete” dominance (masking effect 
is incomplete so that the phenotype of a
heterozygote is intermediate to both
homozygotes) and includes over- and 
under-dominance (phenotype is outside the
range of phenotypes seen in the homozygous
genotypes). The lack of dominance
(heterozygote is exactly intermediate to
phenotypes of both homozygotes) is
sometimes termed “codominance” or 
“semi-dominance.”
Recessive The expressed phenotype 
of one allele is masked by the expressed
phenotype of another allele. The allele
associated with the concealed phenotype 
is said to be recessive.
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Figure 2.5 Hardy–Weinberg expected genotype frequencies
for AA, Aa, and aa genotypes (y axis) for any given value of
the allele frequency (x axis). Note that the value of the allele
frequency not graphed can be determined by q = 1 − p.
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A single generation of reproduction where a set of
conditions, or assumptions, are met will result in a
population that meets Hardy–Weinberg expected
genotype frequencies, often called Hardy–Weinberg
equilibrium. The list of assumptions associated with
this prediction for genotype frequencies is long. The
set of assumptions includes:

• the organism is diploid,
• reproduction is sexual (as opposed to clonal),
• generations are discrete and non-overlapping,

• the locus under consideration has two alleles,
• allele frequencies are identical among all mating

types (i.e. sexes),
• mating is random (as opposed to assortative),
• there is random union of gametes,
• population size is very large, effectively infinite,
• migration is negligible (no population structure,

no gene flow),
• mutation does not occur or its rate is very low,
• natural selection does not act (all individuals and

gametes have equal fitness).

PopGene.S2 (short for Population genetics simulation software) is a population genetics simulation
program that will be featured in several Interact boxes. Here we will use PopGene.S2 to explore
interactive versions of Figs 2.5 and 2.6. Using the program will require that you download it from a
website and install it on a computer running Windows. Simulations that can be explored with
PopGene.S2 will be featured in Interact boxes throughout this book.

Find Interact box 2.1 on the text web page and click on the link for PopGene.S2. The
PopGene.S2 website has download and installation instructions (and lists computer operating
system requirements). But don’t worry: the program is small, runs on most Windows computers,
and is simple to install. After you have PopGene.S2 installed according to the instructions provided
in the PopGene.S2 website, move on to Step 1 to begin the simulation.

Step 1 Open PopGene.S2 and click once on the information box to make it disappear. Click on the
Allele and Genotype Frequencies menu and select Genotype frequencies. A new window
will open that contains a picture like Fig. 2.5 and some fields where you can enter genotype
frequency values. Enter 0.25 into P(AA) to specify the frequency of the AA genotype. After
entering each value the program will update the p and q values (the allele frequencies).
Now enter 0.5 into P(Aa). Once two genotype frequencies are entered the third genotype
frequency is determined and the program will display the value. Click the OK button. A dot
will appear on the graph corresponding to the value of P(Aa) and the frequency of the a
allele. Changing the P(AA) and P(Aa) frequencies to different values and then clicking OK
again will add a new dot. Try several values for the genotype frequencies at different allele
frequencies, both in and out of Hardy–Weinberg expected genotype frequencies.

Step 2 Leave the Genotype frequencies window open but move it to one side to make room for
another window. Now click on the Mating Models menu and select Autosomal locus. 
A new window will open that contains a triangular graph like that in Fig. 2.6. To display a
set of genetype frequencies, enter the frequencies for P(AA) and P(Aa) in the text boxes and
click OK. (Frequency of the aa genotype or P(aa) is calculated since the three genotype
frequencies must sum to one.) The point on the De Finetti diagram representing the 
user-entered genotype frequencies will be plotted as a red square and displayed under the
heading of “Initial frequencies”. Hardy-Weinberg expected genotype frequencies are
plotted as a blue square based on the allele frequencies that correspond to the user-entered
genotype frequencies. These Hardy–Weinberg expected genotype frequencies are
displayed under the heading of “Panmixia frequencies”. Try several sets of different
genotype frequencies to see values for genotype frequencies at different allele frequencies,
both in and out of Hardy–Weinberg expected genotype frequencies.

Step 3 Compare the two ways of visualizing genotype frequencies by plotting identical genotype
frequencies in each window.

Interact box 2.1 Genotype frequencies
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These assumptions make intuitive sense when each
is examined in detail (although this will probably be
more apparent after more reading and simulation).
As we will see later, Hardy–Weinberg holds for any
number of alleles, although equation 2.1 is valid 
for only two alleles. Many of the assumptions can 
be thought of as assuring random mating and pro-
duction of all possible progeny genotypes. Hardy–
Weinberg genotype frequencies in progeny would
not be realized if the two sexes have different allele
frequencies even if matings take place between 
random pairs of parents. It is also possible that just by
chance not all genotypes would be produced if only 
a small number of parents mated, just like flipping 

a fair coin only a few times may not produce an 
equal number of heads and tails. Natural selection is
a process that causes some genotypes in either the
parental or progeny generations to be more frequent
than others. So it is logical that Hardy–Weinberg
expectations would not be met if natural selection
were acting. In a sense, these assumptions define the
biological processes that make up the field of popula-
tion genetics. Each assumption represents one of 
the conceptual areas where population genetics can
make testable predictions via expectation in order 
to distinguish the biological processes operating in
populations. This is quite a set of accomplishments
for an equation with just three terms!

Despite all of this praise, you might ask: what good
is a model with so many restrictive assumptions? 
Are all these assumptions likely to be met in actual
populations? The Hardy–Weinberg model is not 
necessarily meant to be an exact description of any
actual population, although actual populations often
exhibit genotype frequencies predicted by Hardy–
Weinberg. Hardy–Weinberg provides a null model,
a prediction based on a simplified or idealized situ-
ation where no biological processes are acting and
genotype frequencies are the result of random com-
bination. Actual populations can be compared with
this null model to test hypotheses about the evolution-
ary forces acting on allele and genotype frequencies.
The important point and the original motivation for
Hardy and Weinberg was to show that the process 
of particulate inheritance itself does not cause any
changes in allele frequencies across generations.
Thus, changes in allele frequency or departures from
Hardy–Weinberg expected genotype frequencies must
be caused by processes that alter the outcome of
basic inheritance.

In the final part of this section we will explore geno-
type frequency expectations adjusted to account 
for ploidy (number of homologous chromosomes)

··

Frequency of Aa

Frequency of AAFrequency of aa

1.0

0.0 1.01.0

0.00.0

p q

Figure 2.6 A De Finetti diagram for one locus with two
alleles. The triangular coordinate system results from the
requirement that the frequencies of all three genotypes must
sum to one. Any point inside or on the edge of the triangle
represents all three genotype frequencies of a population. 
The parabola describes Hardy–Weinberg expected genotype
frequencies. The dashed lines represent the frequencies of
each of the three genotypes between zero and one. Genotype
frequencies at any point can be determined by the length 
of lines that are perpendicular to each of the sides of the
triangle. A practical way to estimate genotype frequencies 
on the diagram is to hold a ruler parallel to one of the sides 
of the triangle and mark off the distance on one of the
frequency axes. The point on the parabola is a population 
in Hardy–Weinberg equilibrium where the frequency 
of AA is 0.36, the frequency of aa is 0.16, and the frequency 
of Aa is 0.48. The perpendicular line to the base of the 
triangle also divides the bases into regions corresponding 
in length to the allele frequencies. Any population with
genotype frequencies not on the parabola has an excess
(above the parabola) or deficit (below the parabola) of
heterozygotes compared to Hardy–Weinberg expected
genotype frequencies.

Null model A testable model of no effect. 
A prediction or expectation based on the
simplest assumptions to predict outcomes.
Often, null models make predictions based 
on purely random processes, random 
samples, or variables having no effect on 
an outcome.
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differences between males and females as seen in
chromosomal sex determination and haplo-diploid
organisms. In chromosomal sex determination as
seen in mammals, birds, and Lepidoptera (butterflies
and moths), one sex is determined by possession of
two identical chromosomes (the homogametic sex)
and the other sex determined by possession of two
different chromosomes (the heterogametic sex). In
mammals females are homogametic (XX) and males
heterogametic (XY), whereas in birds and Lepidoptera
the opposite is true, with heterogametic females (ZW)
and homogametic males (ZZ). In haplo-diploid species
such as bees and wasps (Hymenoptera), males are
haploid (hemizygous) for all chromosomes whereas
females are diploid for all chromosomes.

Predicting genotype frequencies at one locus 
in these cases under random mating and the other
assumptions of Hardy–Weinberg requires keeping
track of allele or genotype frequencies in both sexes
and loci on specific chromosomes. An effective
method is to draw a Punnett square that distinguishes
the sex of an individual as well as the gamete types 

that can be generated at mating (Table 2.1). The
Punnett square shows that genotype frequencies 
in the diploid sex are identical to Hardy–Weinberg
expectations for autosomes, whereas genotype fre-
quencies are equivalent to allele frequencies in the
haploid sex. One consequence of different chromo-
some types between the sexes is that fully recessive
phenotypes are more common in the heterogametic
sex, where a single chromosome determines the 
phenotype and recessive phenotypes appear at the
allele frequency. However, in the homogametic sex,
fully recessive phenotypes appear at the frequency 
of the recessive genotype (e.g. q2) since they are
masked in heterozygotes. Some types of color blind-
ness in humans are examples of traits due to genes
on the X chromosome (called “X-linked” traits) that
are more common in men than in women due to
haplo-diploid inheritance.

Later, in section 2.4, we will examine two categories
of applications of Hardy–Weinberg expected geno-
type frequencies. The first set of applications arises
when we assume (often with supporting evidence)

Table 2.1 Punnett square to predict genotype frequencies for loci on sex chromosomes and for all loci 
in males and females of haplo-diploid species. Notation in this table is based on birds where the sex
chromosomes are Z and W (ZZ males and ZW females) with a diallelic locus on the Z chromosome possessing
alleles A and a at frequencies p and q, respectively. In general, genotype frequencies in the homogametic or
diploid sex are identical to Hardy–Weinberg expectations for autosomes, whereas genotype frequencies are
equal to allele frequencies in the heterogametic or haploid sex.

Hemizygous or haploid sex Diploid sex

Genotype Gamete Frequency Genotype Gamete Frequency

ZW Z-A p ZZ Z-A p
Z-a q Z-a q
W

Expected genotype frequencies under random mating

Homogametic sex
Z-A Z-A p2

Z-A Z-a 2pq
Z-a Z-a q2

Heterogametic sex
Z-A W p
Z-a W q
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that the assumptions of Hardy–Weinberg are true.
We can then compare several expectations for geno-
type frequencies with actual genotype frequencies to
distinguish between several alternative hypotheses.
The second type of application is where we examine
what results when assumptions of Hardy–Weinberg
are not met. There are many cases where popula-
tion genotype frequencies can be used to reveal the 
action of various population genetic processes. Before 
that, the next section builds a proof of the Hardy–
Weinberg prediction that inheritance per se will not
alter allele frequencies.

2.3 Why does Hardy–Weinberg work?

• A simple proof of Hardy–Weinberg.
• Hardy–Weinberg with more than two alleles.

The Hardy–Weinberg equation is one of the most
basic expectations we have in population genetics. 
It is very likely that you were already familiar with
the Hardy–Weinberg equation before you picked up 
this book. But where does Hardy–Weinberg actually
come from? What is the logic behind it? Let’s develop
a simple proof that Hardy–Weinberg is actually 
true. This will also be our first real foray into the 
type of algebraic argument that much of population
genetics is built on. Given that you start out know-
ing the conclusion of the Hardy–Weinberg tale, this
gives you the opportunity to focus on the style in
which it is told. Algebraic or quantitative arguments
are a central part of the language and vocabulary 
of population genetics, so part of the task of learning
population genetics is becoming accustomed to this
mode of discourse.

We would like to prove that p2 + 2pq + q2 = 1
accurately predicts genotype frequencies given the
values of allele frequencies. Let’s start off by mak-
ing some explicit assumptions to bound the problem.
The assumptions, in no particular order, are:

1 mating is random (parents meet and mate
according to their frequencies);

2 all parents have the same number of offspring
(equivalent to no natural selection on fecundity);

3 all progeny are equally fit (equivalent to no 
natural selection on viability);

4 there is no mutation that could act to change an
A to a or an a to A;

5 it is a single population that is very large;
6 there are two and only two mating types.

Now let’s define the variables we will need for a case
with one locus that has two alleles (A and a).

N = Population size of individuals (N diploid indi-
viduals have 2N alleles)

Allele frequencies:
p = frequency(A allele)

= (total number of A alleles)/2N

q = frequency(a allele)
= (total number of a alleles)/2N

p + q = 1

Genotype frequencies:
X = frequency(AA genotype)

= (total number of AA genotypes)/N

Y = frequency(Aa genotype)
= (total number of Aa genotypes)/N

Z = frequency(aa genotype)
= (total number of aa genotypes)/N

X + Y + Z = 1

We do not distinguish between the heterozygotes 
Aa  and aA and treat them as being equivalent geno-
types. Therefore, we can express allele frequencies 
in terms of genotype frequencies by adding together
the frequencies of A-containing and a-containing
genotypes:

p = X + 1/2Y (2.2)

q = Z + 1/2Y (2.3)

Each homozygote contains two alleles of the same
type while each heterozygote contains one allele of
each type so the heterozygote genotypes are each
weighted by half.

With the variables defined, we can then follow
allele frequencies across one generation of reproduc-
tion. The first step is to calculate the probability that
parents of any two particular genotypes will mate.
Since mating is assumed to be random, the chance
that two genotypes will mate is just the product of
their individual frequencies. As shown in Fig. 2.7,
random mating can be thought of as being like gas
atoms in a balloon. As with gas atoms, each geno-
type or gamete bumps into others at random, with
the probability of a collision (or mating or union)
being the product of the frequencies of the two objects

··
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colliding. To calculate the probabilities of mating
among the three different genotypes we can make a
table to organize the resulting mating frequencies.
This table will predict the mating frequencies among
genotypes in the initial generation, which we will
call generation t.

A parental mating frequency table (generation t)
is shown below.

The table expresses parental mating frequencies in
the currency of genotype frequencies. For example,
we expect matings between AA moms and Aa dads
to occur with a frequency of XY.

Next we need to determine the frequency of 
each genotype in the offspring of any given parental 
mating pair. This will require that we predict the 
offspring genotypes resulting from each possible
parental mating. We can do this easily with a Punnett
square. We will use the frequencies of each parental

mating (above) together with the frequencies of the
offspring genotypes. Summed for all possible parental
matings, this gives the frequency of offspring geno-
types one generation later, or in generation t + 1. A
table will help organize all the frequencies, like the
offspring frequency table (generation t + 1) shown
below.

In this table, the total frequency is just the frequency
of each parental mating pair taken from the parental
mating frequency table. We now need to partition
this total frequency of each parental mating into 
the frequencies of the three progeny genotypes pro-
duced. Let’s look at an example. Parents with AA
and Aa genotypes will produce progeny with two
genotypes: half AA and half Aa (you can use a
Punnett square to show this is true). Therefore, the
AA × Aa parental matings, which have a total fre-
quency of 2XY under random mating, are expected
to produce (1/2)2XY = XY of each of AA and Aa
progeny. The same logic applies to all of the other
parental matings. Notice that each row in the off-
spring genotype frequency table sums to the total 
frequency of each parental mating.

The columns in the offspring genotype frequency
table are the basis of the final step. The sum of each
column gives the total frequencies of each progeny
genotype expected in generation t + 1. Let’s take 
the sum of each column, again expressed in the 
currency of genotype frequencies, and then simplify 
the algebra to see whether Hardy and Weinberg
were correct.

AA = X2 + XY + Y2/4
= (X + 1/2Y)2 (recall that p = X + 1/2Y)
= p2

A

A

A

A

A

A

A
A

A

A

A
A

a

a

a

a
a

a

a

a

a
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Figure 2.7 A schematic representation of random mating 
as a cloud of gas where the frequency of A alleles is 14/24 
and the frequency of a alleles is 10/24. Any given A has a
frequency of 14/24 and will encounter another A with
probability of 14/24 or an a with the probability of 10/24.
This makes the frequency of an A–A collision (14/24)2 and
an A–a collision (14/24)(10/24), just as the probability of
two independent events is the product of their individual
probabilities. The population of A and a alleles is assumed to
be large enough so that taking one out of the cloud will make
almost no change in the overall frequency of its type.

Offspring genotype 
frequencies

Parental Total AA Aa aa
mating frequency

AA × AA X2 X2 0 0

AA × Aa 2XY XY XY 0

AA × aa 2XZ 0 2XZ 0

Aa × Aa Y2 Y2/4 (2Y2)/4 Y2/4

Aa × aa 2YZ 0 YZ YZ

aa × aa Z2 0 0 Z2

Moms Dads

AA Aa aa

Frequency . . . X Y Z

AA X X2 XY XZ

Aa Y XY Y2 YZ

aa Z ZX ZY Z2
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aa = Y2/4 + YZ + Z2

= (Z + 1/2Y)2 (recall that q = Z + 1/2Y)
= q2

Aa = XY + 2XZ + 2Y2/4 + YZ
= 2(XY/2 + XZ + Y2/4 + YZ/2)
= 2(X + Y/2)(Z + Y/2)
= 2pq (2.4)

So we have proved that progeny genotype and 
allele frequencies are identical to parental genotype
and allele frequencies over one generation or that 
f(A)t = f(A)t+1. The major conclusion here is that
genotype frequencies remain constant over generations
as long as the assumptions of Hardy–Weinberg are met.
In fact, we have just proved that under Mendelian
heredity genotype and allele frequencies should not
change over time unless one or more of our assump-
tions is not met. This simple model of expected 
genotype frequencies has profound conclusions! In
fact, Hardy–Weinberg expected genotype frequen-
cies serve as one of the most basic tools to test for the
action of biological processes that alter genotype and
allele frequencies.

You might wonder whether Hardy–Weinberg
applies to loci with more than two alleles. For the 
last point in this section let’s explore that question.
With three alleles at one locus (allele frequencies
symbolized by p, q, and r), Hardy–Weinberg expected
genotype frequencies are p2 + q2 + r2 + 2pq + 2pr +
2qr = 1. These genotype frequencies are obtained by
expanding (p + q + r)2, a method that can be applied
to any number of alleles at one locus. In general,
expanding the squared sum of the allele frequencies
will show:

• the frequency of any homozygous genotype is 
the squared frequency of the single allele that
composes the genotype ([allele frequency]2);

• the frequency of any heterozygous genotype is
twice the product of the two allele frequencies
that comprise the genotype (2[allele 1 frequency]
× [allele 2 frequency]); and

• there are as many homozygous genotypes as there

are alleles and heterozygous genotypes 

where N is the number of alleles.

Do you think it would be possible to prove Hardy–
Weinberg for more than two alleles at one locus? 
The answer is absolutely yes. This would just require
constructing larger versions of the parental genotype

N N( )− 1
2

mating table and expected offspring frequency table
as we did for two alleles at one locus.

2.4 Applications of Hardy–Weinberg

• Apply Hardy–Weinberg to estimate the frequency
of an observed genotype in a forensic DNA typing
case.

• The χ2 test gauges whether observed and expected
differ more than expected by chance.

• Assume Hardy–Weinberg to compare two genetic
models.

In the previous two sections we established the
Hardy–Weinberg expectations for genotype fre-
quencies. In this section we will examine three ways
that expected genotype frequencies are employed in
practice. The goal of this section is to become familiar
with realistic applications as well as hypothesis tests
that compare observed and Hardy–Weinberg expected
genotype frequencies. In this process we will also
look at a specific method to account for sampling
error (see Appendix).

Forensic DNA profiling

Our first application of Hardy–Weinberg can be found
in newspapers on a regular basis and commonly 
dramatized on television. A terrible crime has been
committed. Left at the crime scene was a biological
sample that law-enforcement authorities use to obtain
a multilocus genotype or DNA profile. A suspect in
the crime has been identified and subpoenaed to 
provide a tissue sample for DNA profiling. The DNA
profiles from the suspect and from the crime scene
are identical. The DNA profile is shown in Table 2.2.
Should we conclude that the suspect left the bio-
logical sample found at the crime scene?

··

Table 2.2 Example DNA profile for three simple
tandem repeat (STR) loci commonly used in
human forensic cases. Locus names refer to the
human chromosome (e.g. D3 means third
chromosome) and chromosome region where
the SRT locus is found.

Locus D3S1358 D21S11 D18S51

Genotype 17, 18 29, 30 18, 18
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To answer this critical question we will employ
Hardy–Weinberg to predict the expected frequency
of the DNA profile or genotype. Just because two
DNA profiles match, there is not necessarily strong
evidence that the individual who left the evidence
DNA and the suspect are the same person. It is pos-
sible that there are actually two or more people 
with identical DNA profiles. Hardy–Weinberg and
Mendel’s second law will serve as the bases for us 
to estimate just how frequently a given DNA profile
should be observed. Then we can determine whether
two unrelated individuals sharing an identical DNA
profile is a likely occurrence.

To determine the expected frequency of a one-
locus genotype, we employ the Hardy–Weinberg
equation (2.1). In doing so, we are implicitly accept-
ing that all of the assumptions of Hardy–Weinberg are
approximately met. If these assumptions were not
met, then the Hardy–Weinberg equation would 
not provide an accurate expectation for the genotype
frequencies! To determine the frequency of the three-
locus genotype in Table 2.2 we need allele frequencies
for those loci, which are found in Table 2.3. Starting
with the locus D3S1358, we see in Table 2.3 that 
the 17-repeat allele has a frequency of 0.2118 and
the 18-repeat allele a frequency of 0.1626. Then
using Hardy–Weinberg, the 17, 18 genotype has an
expected frequency of 2(0.2118)(0.1626) = 0.0689
or 6.89%. For the two other loci in the DNA profile of
Table 2.2 we carry out the same steps.

D21S11 29-Repeat allele frequency = 0.1811
30-Repeat allele frequency = 0.2321
Genotype frequency
= 2(0.1811)(0.2321) = 0.0841 
or 8.41%

D18S51 18-Repeat allele frequency = 0.0918
Genotype frequency = (0.0918)2

= 0.0084 or 0.84%

The genotype for each locus has a relatively large
chance of being observed in a population. For 
example, a little less than 1% of white US citizens (or
about 1 in 119) are expected to be homozygous for
the 18-repeat allele at locus D18S51. Therefore, a
match between evidence and suspect DNA profiles
homozygous for the 18 repeat at that locus would
not be strong evidence that the samples came from
the same individual.

Fortunately, we can combine the information
from all three loci. To do this we use the product

rule, which states that the probability of observing
multiple independent events is just the product of
each individual event. We already used the product
rule in the last section to calculate the expected fre-
quency of each genotype under Hardy–Weinberg by
treating each allele as an independent probability.
Now we just extend the product rule to cover multiple
genotypes, under the assumption that each of the loci is
independent by Mendel’s second law (the assumption 
is justified here since each of the loci is on a separate
chromosome). The expected frequency of the three
locus genotype (sometimes called the probability 
of identity) is then 0.0689 × 0.0841 × 0.0084 =
0.000049 or 0.0049%. Another way to express this
probability is as an odds ratio, or the reciprocal of
the probability (an approximation that holds when
the probability is very small). Here the odds ratio 
is 1/0.000049 = 20,408, meaning that we would
expect to observe the three-locus DNA profile once 
in 20,408 white US citizens.

··

Product rule The probability of two 
(or more) independent events occurring
simultaneously is the product of their
individual probabilities.
Odds ratio The number of events divided 
by the number of non-events; one over the
expected sample size required to observe a
single instance or event.

Now we can return to the question of whether 
two unrelated individuals are likely to share an 
identical three-locus DNA profile by chance. One 
out of every 20,408 white US citizens is expected 
to have the genotype in Table 2.2. Although the
three-locus DNA profile is considerably less frequent 
than a genotype for a single locus, it is still does not
approach a unique, individual identifier. Therefore,
there is a finite chance that a suspect will match an
evidence DNA profile by chance alone. Such DNA
profile matches, or “inclusions,” require additional
evidence to ascertain guilt or innocence. In fact, 
the term prosecutor’s fallacy was coined to describe 
failure to recognize the difference between a DNA
match and guilt (for example, a person can be pre-
sent at a location and not involved in a crime). 
Only when DNA profiles do not match, called an
“exclusion,” can a suspect be unambiguously and
absolutely excluded as the source of a biological 
sample at a crime scene.
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Current forensic DNA profiles use 10–13 loci to
estimate expected genotype frequencies. Problem 2.1
gives a 10-locus genotype for the same individual 
in Table 2.2, allowing you to calculate the odds 
ratio for a realistic example. In Chapter 4 we will
reconsider the expected frequency of a DNA profile
with the added complication of allele-frequency 
differentiation among human racial groups.

Testing for Hardy–Weinberg

A common use of Hardy–Weinberg expectations is
to test for deviations from its null model. Populations
with genotype frequencies that do not fit Hardy–
Weinberg expectations are evidence that one or
more of the evolutionary processes embodied in the
assumptions of Hardy–Weinberg are acting to det-
ermine genotype frequencies. Our null hypothesis 
is that genotype frequencies meet Hardy–Weinberg
expectations within some degree of estimation error.
Genotype frequencies that are not close to Hardy–
Weinberg expectations allow us to reject this null
hypothesis. The processes in the list of assumptions
then become possible alternative hypotheses to
explain observed genotype frequencies. In this sec-
tion we will work through a hypothesis test for
Hardy–Weinberg equilibrium.

The first example uses observed genotypes for the
MN blood group, a single locus in humans that has

Calculate the expected genotype frequency
and odds ratio for the 10-locus DNA profile
below. Allele frequencies are given in 
Table 2.3.

D3S1358 17, 18
vWA 17, 17
FGA 24, 25
Amelogenin X, Y
D8S1179 13, 14
D21S11 29, 30
D18S51 18, 18
D5S818 12, 13
D13S317 9, 12
D7S820 11, 12

What does the amelogenin locus tell us and
how did you assign an expected frequency
to the observed genotype? Is it likely that
two unrelated individuals would share this
10-locus genotype by chance? For this
genotype, would a match between a crime
scene sample and a suspect be convincing
evidence that the person was present at the
crime scene?

Problem box 2.1
The expected genotype 

frequency for a DNA profile

The loci used for human DNA profiling are a
general class of DNA sequence marker known
as simple tandem repeat (STR), simple
sequence repeat (SSR), or microsatellite loci.
These loci feature tandemly repeated DNA
sequences of one to six base pairs (bp) and
often exhibit many alleles per locus and high
levels of heterozygosity. Allelic states are
simply the number of repeats present at 
the locus, which can be determined by
electrophoresis of PCR amplified DNA
fragments. STR loci used in human DNA
profiling generally exhibit Hardy–Weinberg
expected genotype frequencies, there is
evidence that the genotypes are selectively
“neutral” (i.e. not affected by natural
selection), and the loci meet the other
assumptions of Hardy–Weinberg. STR loci 

are employed widely in population genetic
studies and in genetic mapping (see reviews
by Goldstein & Pollock 1997; McDonald &
Potts 1997).

This is an example of the DNA sequence
found at a microsatellite locus. This sequence
is the 24.1 allele from the FGA locus (Genbank
accession no. AY749636; see Fig. 2.8). The
integral repeat is the 4 bp sequence CTTT 
and most alleles have sequences that differ 
by some number of full CTTT repeats.
However, there are exceptions where alleles
have sequences with partial repeats or 
stutters in the repeat pattern, for example 
the TTTCT and CTC sequences imbedded 
in the perfect CTTT repeats. In this case, 
the 24.1 allele is 1 bp longer than the 
24 allele sequence. (continued)

Box 2.1 DNA profiling
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GCCCCATAGGTTTTGAACTCACAGATTAAACTGTAACCAAAATAAAATTAGGCATTATTTACAAGCTA
GTTT CTTT CTTT CTTT TTTCT CTTT CTTT CTTT CTTT CTTT CTTT CTTT CTTT CTTT CTTT CTTT
CTTT CTTT CTTT CTTT CTTT CTC CTTC CTTC CTTT CTTC CTTT CTTT TTTGCTGGCA
ATTACAGACAAATCAA

Box 2.1 (continued)

D5S818 D13S317 D7S820

Amelogenin D21S11 D18S51D8S1179

D351358 vWA FGA
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Figure 2.8 The original data for the DNA profile given in Table 2.2 and Problem box 2.1 obtained by capillary
electrophoresis. The PCR oligonucleotide primers used to amplify each locus are labeled with a molecule that emits blue,
green, or yellow light when exposed to laser light. Thus, the DNA fragments for each locus are identified by their label color
as well as their size range in base pairs. (a) A simulation of the DNA profile as it would appear on an electrophoretic gel 
(+ indicates the anode side). Blue, green, and yellow label the 10 DNA-profiling loci, shown here in grayscale. Other DNA
fragments are size standards (originally in red) with a known molecular weight used to estimate the size in base pairs of the
other DNA fragments in the profile. (b) The DNA profile for all loci and the size-standard DNA fragments as a graph of color
signal intensity by size of DNA fragment in base pairs. (c) A simpler view of trace data for each label color independently
with the individual loci labeled above the trace peaks. A few shorter peaks are visible in the yellow, green, and blue traces of
(c) that are not labeled as loci. These artifacts, called pull-up peaks, are caused by intense signal from a locus labeled with
another color (e.g. the yellow and blue peaks in the location of the green-labeled amelogenin locus). A full-color version of
this figure is available on the textbook website.
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two alleles (Table 2.4). First we need to estimate the
frequency of the M allele, using the notation that the
estimated frequency of M is F and the frequency of 
N is G. Note that the “hat” superscripts indicate that
these are allele-frequency estimates (see Chapter 1).
The total number of alleles is 2N given a sample 
of N diploid individuals. We can then count up all of
the alleles of one type to estimate the frequency of
that allele.

(2.5)

(2.6)

Since F + G ≈ 1, we can estimate the frequency of the
N allele by subtraction as G = 1 − F = 1 − 0.4184 =
05816.

Using these allele frequencies allows calculation of
the Hardy–Weinberg expected genotype frequency
and number of individuals with each genotype, as
shown in Table 2.4. In Table 2.4 we can see that 
the match between the observed and expected is not 
perfect, but we need some method to ask whether the
difference is actually large enough to conclude that
Hardy–Weinberg equilibrium does not hold in the
sample of 1066 genotypes. Remember that any allele-
frequency estimate (F) could differ slightly from the
true parameter (p) due to chance events as well as due
to random sampling in the group of genotypes used
to estimate the allele frequencies. Asking whether
genotypes are in Hardy–Weinberg proportions is actu-
ally the same as asking whether a coin is “fair.” With
a fair coin we expect one-half heads and one-half tails
if we flip it a large number of times. But even with 
a fair coin we can get something other than exactly

  
F =

× +
×

= =
2 165 562

2 1066
892

2132
0 4184.

   
F =

× +2
2

Frequency(MM) frequency(MN)
N

50 : 50 even if the sample size is large. We would 
consider a coin fair if in 1000 flips it produced 510
heads and 490 tails. However, the hypothesis that a
coin is fair would be in doubt if we observed 250
heads and 750 tails given that we expect 500 of each.

In more general terms, the expected frequency of
an event, p, times the number of trials or samples, n,
gives the expected number events or np. To test the
hypothesis that p is the frequency of an event in 
an actual population, we compare np with nF. Close
agreement suggests that the parameter and the 
estimate are the same quantity. But a large disagree-
ment instead suggests that p and F are likely to be 
different probabilities. The Chi-squared (χ2) distribu-
tion is a statistical test commonly used to compare np
and nF. The χ2 test provides the probability of obtaining
the difference (or more) between the observed (nF) and
expected (np) number of outcomes by chance alone if 
the null hypothesis is true. As the difference between
the observed and expected grows larger it becomes
less probable that the parameter and the parameter
estimate are actually the same but differ in a given
sample due to chance. The χ2 statistic is:

χ2 = (2.7)

The χ2 formula makes intuitive sense. In the numer-
ator there is the difference between the observed and
Hardy–Weinberg expected number of individuals.
This difference is squared, like a variance, since we
do not care about the direction of the difference 
but only the magnitude of the difference. Then in the
denominator we divide by the expected number of
individuals to make the squared difference relative.
For example, a squared difference of 4 is small if 
the expected number is 100 (it is 4%) but relatively

 

( )observed expected
expected

−∑
2

Table 2.4 Expected numbers of each of the three MN blood group genotypes under the null hypotheses of
Hardy–Weinberg. Genotype frequencies are based on a sample of 1066 Chukchi individuals, a native people
of eastern Siberia (Roychoudhury and Nei 1988).

Frequency of M == < == 0.4184
Frequency of N == > == 0.5816

Genotype Observed Expected number of genotypes Observed −− expected

MM 165 N × F2 = 1066 × (0.4184)2 = 186.61 −21.6
MN 562 N × 2FG = 1066 × 2(0.4184)(0.5816) = 518.80 43.2
NN 339 N × G2 = 1066 × (0.5816)2 = 360.58 −21.6
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larger if the expected number is 8 (it is 50%). Adding
all of these relative squared differences gives the 
total relative squared deviation observed over all
genotypes.

(2.8)

We need to compare our statistic to values from 
the χ2 distribution. But first we need to know 
how much information, or the degrees of freedom 
(commonly abbreviated as df ), was used to estimate
the χ2 statistic. In general, degrees of freedom are
based on the number of categories of data: df = no. of
classes compared – no. of parameters estimated – 1

 
χ2

2 2 221 6
181 61

43 2
518 80

21 6
360

=
−

+ +
−( . )

.
( . )

.
( . )

..
.

58
7 46=

for the χ2 test itself. In this case df = 3 − 1 −1 = 1 for
three genotypes and one estimated allele frequency
(with two alleles: the other allele frequency is fixed
once the first has been estimated).

Figure 2.9 shows a χ2 distribution for one degree
of freedom. Small deviations of the observed from the
expected are more probable since they leave more
area of the distribution to the right of the χ2 value. 
As the χ2 value gets larger, the probability that the
difference between the observed and expected is just
due to chance sampling decreases (the area under
the curve to the right gets smaller). Another way 
of saying this is that as the observed and expected 
get increasingly different, it becomes more improb-
able that our null hypothesis of Hardy–Weinberg is 
actually the process that is determining genotype
frequencies. Using Table 2.5 we see that a χ2 value 
of 7.46 with 1 df has a probability between 0.01 
and 0.001. The conclusion is that the observed
genotype frequencies would be observed less than
1% of the time in a population that actually had
Hardy–Weinberg expected genotype frequencies.
Under the null hypothesis we do not expect this much
difference or more from Hardy–Weinberg expecta-
tions to occur often. By convention, we would reject
chance as the explanation for the differences if the 
χ2 value had a probability of 0.05 or less. In other
words, if chance explains the difference in five trials
out of 100 or less then we reject the hypothesis that
the observed and expected patterns are the same.
The critical value above which we reject the null
hypothesis for a χ2 test is 3.84 with 1 df, or in nota-
tion χ2

0.05, 1 = 3.84. In this case, we can clearly see an
excess of heterozygotes and deficits of homozygotes
and employing the χ2 test allows us to conclude that
Hardy–Weinberg expected genotype frequencies are
not present in the population.

··
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Figure 2.9 A χ2 distribution with one degree of freedom. 
The χ2 value for the Hardy–Weinberg test with MN blood
group genotypes as well as the critical value to reject the null
hypothesis are shown (see text for details). The area under 
the curve to the right of the arrow indicates the probability 
of observing that much or more difference between the
observed and expected outcomes.

Table 2.5 χ2 values and associated cumulative probabilities in the right-hand tail of the distribution for 1–5 df.

Probability

df 0.5 0.25 0.1 0.05 0.01 0.001

1 0.4549 1.3233 2.7055 3.8415 6.6349 10.8276
2 1.3863 2.7726 4.6052 5.9915 9.2103 13.8155
3 2.3660 4.1083 6.2514 7.8147 11.3449 16.2662
4 3.3567 5.3853 7.7794 9.4877 13.2767 18.4668
5 4.3515 6.6257 9.2364 11.0705 15.0863 20.5150
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Assuming Hardy–Weinberg to test alternative
models of inheritance

Biologists are all probably familiar with the ABO blood
groups and are aware that mixing blood of different
types can cause blood cell lysis and possibly result in
death. Although we take this for granted now, there
was a time when blood types and their patterns of
inheritance defined an active area of clinical research.
It was in 1900 that Karl Landsteiner of the University
of Vienna mixed the blood of the people in his labor-
atory to study the patterns of blood cell agglutination
(clumping). Landsteiner was awarded the Nobel Prize

for Medicine in 1930 for his discovery of human ABO
blood groups. Not until 1925, due to the research of
Felix Bernstein, was the genetic basis of the ABO
blood groups resolved (see Crow 1993a).

Landsteiner observed the presence of four blood
phenotypes A, B, AB, and O. A logical question was,
then, “what is the genetic basis of these four blood
group phenotypes?” We will test two hypotheses 
(or models) to explain the inheritance of ABO blood
groups that coexisted for 25 years. The approach will
use the frequency of genotypes in a sample popula-
tion to test the two hypotheses rather than an
approach such as examining pedigrees. The hypo-
theses are that the four blood group phenotypes are
explained by either two independent loci with two
alleles each with one allele completely dominant at
each locus (hypothesis 1) or a single locus with three
alleles where two of the alleles show no dominance
with each other but both are completely dominant
over a third allele (hypothesis 2). Throughout, we
will assume that Hardy–Weinberg expected geno-
type frequencies are met in order to determine which
hypothesis best fits the available data.

Our first task is a straightforward application of
Hardy–Weinberg in order to determine the expected
frequencies of the blood group genotypes. The geno-
types and the expected genotype frequencies are
shown in Table 2.6. Look at the table but cover up
the expected frequencies with a sheet of paper. The
genotypes given for the two hypotheses would both
explain the observed pattern of four blood groups.
Hypothesis 1 requires complete dominance of the A
and B alleles at their respective loci. Hypothesis 2
requires A and B to have no dominance with each
other but complete dominance when paired with 
the O allele.

Table 2.6 Hardy–Weinberg expected genotype frequencies for the ABO blood groups under the hypotheses
of (1) two loci with two alleles each and (2) one locus with three alleles. Both hypotheses have the potential to
explain the observation of four blood group phenotypes. The notation fx is used to refer to the frequency of
allele x. The underscore indicates any allele; for example, A_ means both AA and Aa genotypes. The observed
blood type frequencies were determined for Japanese people living in Korea (from Berstein (1925) as reported
in Crow (1993a)).

Blood type Genotype Expected genotype frequency Observed (total == 502)

Hypothesis 1 Hypothesis 2 Hypothesis 1 Hypothesis 2

O aa bb OO fa2fb2 fO2 148
A A_ bb AA, AO (1 − fa2)fb2 fA2 + 2fAfO 212
B aa B_ BB, BO fa2(1 − fb2) fB2 + 2fBfO 103
AB A_ B_ AB (1 − fa2)(1 − fb2) 2fAfB 39

The program PopGene.S2 (refer to the link
for Interact box 2.1 to obtain PopGene.S2

if necessary) can be used to carry out a χ2

test for one locus with two alleles under 
the null hypothesis of Hardy–Weinberg
genotype frequencies. Launch PopGene.S2

and select Chi-square test under the 
Allele and Genotype Frequencies menu.

Try these examples.

• Input the observed genotype frequencies
in Table 2.4 to confirm the calculations
and χ2 value.

• Test the null hypothesis of Hardy–
Weinberg genotype frequencies for these
data from a sample of 459 Yugoslavians:
MM, 144; MN, 201; NN, 114.

Interact box 2.2 χχ2 test
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Now let’s construct several of the expected geno-
type frequencies (before you lift that sheet of paper).
The O blood group under hypothesis 1 is the frequency
of a homozygous genotype at two loci (aa bb). The
frequency of one homozygote is the square of the allele
frequency: fa2 and fb2 if we use fx to indicate the fre-
quency of allele x. Using the product rule or Mendel’s
second law, the expected frequency of the two-locus
genotype is the product of frequencies of the one-locus
genotypes, fa2 and fb2. For the next genotype under
hypothesis 1 (A_ bb), we use a little trick to simplify
the amount of notation. The genotype A_ means AA
or Aa: in other words, any genotype but aa. Since the
frequencies of the three genotypes at one locus must
sum to one, we can write fA_ as 1 − faa or 1 − fa2. Then
the frequency of the A_ bb genotype is (1 − fa2)fb2.
You should now work out and write down the other
six expected genotype frequency expressions: then
lift the paper and compare your work to Table 2.6.

The next step is to compare the expected genotype
frequencies for the two hypotheses with observed
genotype frequencies. To do this we will need to 
estimate allele frequencies under each hypothesis
and use these to compute the expected genotype 
frequencies. (Although these allele frequencies are
parameter estimates, the “hat” notation is not used
for the sake of readability.) For the hypothesis of two
loci (hypothesis 1) fb2 = (148 + 212)/502 = 0.717
so we can estimate the allele frequency as fb = √fb2 =
√0.717 = 0.847. The other allele frequency at that
locus is then determined by subtraction: fB = 1 − 0.847
= 0.153. Similarly for the second locus fa2 = (148 +
103)/502 = 0.50 and fa = √fb2 = √0.50 = 0.707,
giving fA = 1 − 0.707 = 0.293 by subtraction.

For the hypothesis of one locus with three alleles
(hypothesis 2) we estimate the frequency of any of 
the alleles by using the relationship that the three
allele frequencies sum to one. This basic relationship
can be reworked to obtain the expected genotype 
frequency expressions into expressions that allow us 
to estimate the allele frequencies (see Problem box
2.2). It turns out that adding together all expected
genotype frequency terms for two of the alleles estim-
ates the square of one minus the other allele. For
example, (1 − fB)2 = fO2 + fA2 + 2fAfO, and checking
in Table 2.7 this corresponds to (148 + 212)/502
= 0.717. Therefore, 1 − fB = 0.847 and fB = 0.153.
Using similar steps, (1 − fA)2 = fO2 + fB2 + 2fBfO =

··

Can you use algebra to prove that adding
together expected genotype frequencies
under hypotheses 1 and 2 in Table 2.7 gives
the allele frequencies shown in the text? 
For the genotypes of hypothesis 1, show
that f(aa bb) + f(A_ bb) = the frequency of
the bb genotype. For hypothesis 2 show 
the observed genotype frequencies that 
can be used to estimate the frequency of
the B allele starting off with the relationship
fA + fB + fO = 1 and then solving for fB in
terms of fA and fO.

Problem box 2.2
Proving allele frequencies 

are obtained from expected
genotype frequencies

Table 2.7 Expected numbers of each of the four blood group genotypes under the hypotheses of (1) two loci
with two alleles each and (2) one locus with three alleles. Estimated allele frequencies are based on a sample of
502 individuals.

Blood Observed Expected number of genotypes Observed – (Observed – expected)2/
expected expected

Hypothesis 1 (fA = 0.293, fa = 0.707, fB = 0.153, fb = 0.847)
O 148 502(0.707)2(0.847)2 = 180.02 −40.02 8.90
A 212 502(0.500)(0.847)2 = 180.07 31.93 5.66
B 103 502(0.707)2(0.282) = 70.76 32.24 14.69
AB 39 502(0.500)(0.282) = 70.78 −31.78 14.27

Hypothesis 2 (fA = 0.293, fB = 0.153, fO = 0.554)
O 148 502(0.554)2 = 154.07 −6.07 0.24
A 212 502((0.293)2 + 2(0.293)(0.554)) = 206.07 5.93 0.17
B 103 502((0.153)2 + 2(0.153)(0.554)) = 96.85 6.15 0.39
AB 39 502(2(0.293)(0.153)) = 45.01 −6.01 0.80
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(148 + 103)/502 = 0.50. Therefore, 1 − fA = 0.707
and fA = 0.293. Finally, by subtraction fO = 1 − fB −
fA = 1 − 0.153 − 0.293 = 0.554.

The number of genotypes under each hypothesis 
can then be found by using the expected genotype
frequencies in Table 2.6 and the estimated allele 
frequencies. Table 2.7 gives the calculation for the
expected numbers of each genotype under both hypo-
theses. We can also calculate a Chi-squared value
associated with each hypothesis based on the differ-
ence between the observed and expected genotype
frequencies. For hypothesis 1 χ2 = 43.52, whereas
χ2 = 1.60 for hypothesis 2. Both of these tests have
one degree of freedom (4 genotypes – 2 for estimated
allele frequencies – 1 for the test), giving a critical

value of χ2
0.05,1 = 3.84. Clearly the hypothesis of three

alleles at one locus is the better fit to the observed
data. Thus, we have just used genotype frequency
data sampled from a population with the assump-
tions of Hardy–Weinberg equilibrium as a means to
distinguish between two hypotheses for the genetic
basis of blood groups.

2.5 The fixation index and heterozygosity

• The fixation index (F) measures deviation 
from Hardy–Weinberg expected heterozygote
frequencies.

• Examples of mating systems and F in wild 
populations.

• Observed and expected heterozygosity.

The mating patterns of actual organisms frequently
do not exhibit the random mating assumed by
Hardy–Weinberg. In fact, many species exhibit 
mating systems that create predictable deviations
from Hardy–Weinberg expected genotype frequencies.
The term assortative mating is used to describe
non-random mating. Positive assortative mating
describes the case when individuals with like genotypes
or phenotypes tend to mate. Negative assortative
mating occurs when individuals with unlike geno-
types or phenotypes tend to mate (also called dis-
assortative mating). Both of these general types of
non-random mating will impact expected genotype
frequencies in a population. This section describes
the impacts of non-random mating on genotype fre-
quencies and introduces a commonly used measure
of non-random mating that can be utilized to estimate
mating patterns in natural populations.

Mating among related individuals, termed con-
sanguineous mating or biparental inbreeding,
increases the probability that the resulting progeny
are homozygous compared to random mating. This
occurs since relatives, by definition, are more likely
than two random individuals to share one or two
alleles that were inherited from ancestors they share
in common (this makes mating among relatives a
form of assortative mating). Therefore, when related
individuals mate their progeny have a higher chance
of receiving the same allele from both parents, giving
them a greater chance of having a homozygous
genotype. Sexual autogamy or self-fertilization
is an extreme example of consanguineous mating
where an individual can mate with itself by virtue of
possessing reproductive organs of both sexes. Many
plants and some animals, such as the nematode

Corn kernels are individual seeds that
display a wide diversity of phenotypes 
(see Fig. 2.10 and Plate 2.10). In a total of
3816 corn seeds, the following phenotypes
were observed:

Purple, smooth 2058
Purple, wrinkled 728
Yellow, smooth 769
Yellow, wrinkled 261

Are these genotype frequencies consistent
with inheritance due to one locus with three
alleles or two loci each with two alleles?

Problem box 2.3
Inheritance for corn kernel

phenotypes

Figure 2.10 Corn cobs demonstrating yellow and
purple seeds that are either wrinkled or smooth. For a
color version of this image see Plate 2.10.
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Caenorhabditis elegans, are hermaphrodites that can
mate with themselves.

There are also cases of disassortative mating, where
individuals with unlike genotypes have a higher
probability of mating. A classic example in mammals
is mating based on genotypes at major histocompat-
ibility complex (MHC) loci, which produce proteins
involved in self/non-self recognition in immune
response. Mice are able to recognize individuals with
similar MHC genotypes via odor, and based on these
odors avoid mating with individuals possessing a
similar MHC genotype. Experiments where young
mice were raised in nests of either their true parents
or foster parents (called cross-fostering) showed that
mice learn to avoid mating with individuals possess-
ing odor cues similar to their nest-mates’ rather than
avoiding MHC-similar individuals per se (Penn & Potts
1998). This suggests mice learn the odor of family
members in the nest and avoid mating with individuals
with similar odors, indirectly leading to disassortat-
ive mating at MHC loci as well as the avoidance of
consanguineous mating. One hypothesis to explain
the evolution of disassortative mating at MHC loci 
is that the behavior is adaptive since progeny with

higher heterozygosity at MHC loci may have more
effective immune response. There is also evidence
that humans prefer individuals with dissimilar MHC
genotypes (Wedekind & Füri 1997).

The effects of non-random mating on genotype 
frequencies can be measured by comparing Hardy–
Weinberg expected frequency of heterozygotes, which
assumes random mating, with observed hetero-
zygote frequencies in a population. A quantity called
the fixation index, symbolized by F (or sometimes
ƒ, although it never will be in this book, since f is
reserved for the inbreeding coefficient as introduced
later in section 2.6), is commonly used to compare
how much heterozygosity is present in an actual
population relative to expected levels of heterozygos-
ity under random mating:

(2.9)

where He is the Hardy–Weinberg expected frequency of
heterozygotes based on population allele frequencies
and Ho is the observed frequency of heterozygotes.
Dividing the difference between the expected and

F
H H

H
e o

e

=
−

··

The impact of assortative mating on genotype frequencies can be simulated in PopGene.S2. 
The program models several non-random mating scenarios that can be selected under the 
Mating Models menu. The results in each case are presented on a De Finetti diagram, where
genotype and allele frequencies can be followed over multiple generations.

Start with the Positive w/o dominance model of mating. In this case only like genotypes are
able to mate (e.g. AA mates only with AA, Aa mates only with Aa, and aa mates only with aa). 
Take the time to write out Punnett squares to predict progeny genotype frequencies for 
each of the matings that takes place. Enter initial genotype frequencies of P(AA) = 0.25 and 
P(Aa) = 0.5 (P(aa) is determined by subtraction) as a logical place to start. At first, run the
simulation for 30 generations. With these values and mating patterns, what happens to the
frequency of heterozygotes? What happens to the allele frequencies? Next try other initial
genotype frequencies that vary the allele frequencies and that are both in and out of
Hardy–Weinberg proportions.

Next run both the Positive with dominance and Negative (Dissassortative matings) models. 
In the Positive with dominance model, the AA and Aa genotypes have identical phenotypes.
Mating can therefore take place among any pairing of genotypes with the dominant phenotype 
or between aa individuals with the recessive phenotype. In the Negative mating model, only
unlike genotypes can mate. Take the time to write out Punnett squares to predict progeny
genotype frequencies for each of the matings that takes place. In each case, use a set of the 
same genotype frequencies that you employed in the Positive w/o dominance mating model.
How do all types of non-random mating affect genotype frequencies? How do they affect 
allele frequencies?

Interact box 2.3 Assortative mating and genotype frequencies
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observed heterozygosity by the expected heterozy-
gosity expresses the difference in the numerator as 
a percentage of the expected heterozygosity. Even if
the difference in the numerator may seem small, it
may be large relative to the expected heterozygosity.
Dividing by the expected heterozygosity also puts F
on a convenient scale of −1 and +1. Negative values
indicate heterozygote excess and positive values indic-
ate homozygote excess relative to Hardy–Weinberg
expectations. In fact, the fixation index can be inter-
preted as the correlation between the two alleles
sampled to make a diploid genotype (see the Appendix
for an introduction to correlation if necessary). Given
that one allele has been sampled from the popula-
tion, if the second allele tends to be identical there is a
positive correlation (e.g. A and then A or a and then
a), if the second allele tends to be different there is a
negative correlation (e.g. A and then a or a and then
A), and if the second allele is independent there is 
no correlation (e.g. equally likely to be A or a). With
random mating, no correlation is expected between
the first and second allele sampled to make a diploid
genotype.

Let’s work through an example of genotype data 
for one locus with two alleles that can be used to 
estimate the fixation index. Table 2.8 gives observed
counts and frequencies of the three genotypes in a
sample of 200 individuals. To estimate the fixation
index from these data requires an estimate of allele
frequencies first. The allele frequencies can then be
used to determine expected heterozygosity under the
assumptions of Hardy–Weinberg. If p represents the
frequency of the B allele,

(2.10)

using the genotype counting method to estimate allele
frequency (Table 2.8 uses the allele counting method).
The frequency of the b allele, q, can be estimated directly
in a similar fashion or by subtraction (G = 1 − F = 1 −
0.78 = 0.22) since there are only two alleles in this
case. The Hardy–Weinberg expected frequency of
heterozygotes is He = 2FG = 2(0.78)(0.22) = 0.343.
It is then simple to estimate the fixation index using
the observed and expected heterozygosities:

(2.11)
  
J =

−
=

0 343 0 14
0 343

0 59
. .

.
.

  
F =

+
=

142 28
200

0 78
1 2/ ( )

.

Table 2.8 Observed genotype counts and frequencies in a sample of N = 200 individuals for a single locus
with two alleles. Allele frequencies in the population can be estimated from the genotype frequencies by
summing the total count of each allele and dividing it by the total number of alleles in the sample (2N).

Genotype Observed Observed frequency Allele count Allele frequency

BB 142 284 B

Bb 28 28 B, 28 b

bb 30 60 b
  
G =

+
=

60 28
400

0 22.
 

30
200

0 15= .

 

28
200

0 14= .

  
F =

+
=

284 28
400

0 78.
 

142
200

0 71= .

Assortative mating Mating patterns where
individuals do not mate in proportion to their
genotype frequencies in the population;
mating that is more (positive assortative
mating) or less (negative assortative mating)
frequent with respect to genotype or
genetically based phenotype frequency than
expected by random combination.
Consanguineous mating Mating between
related individuals that can take the form 

of biparental inbreeding (mating between 
two related individuals) or sexual autogamy
(self-fertilization).
Fixation index (F ) The proportion by which
heterozygosity is reduced or increased relative
to the heterozygosity in a randomly mating
population with the same allele frequencies.
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In this example there is a clear deficit of heterozygotes
relative to Hardy–Weinberg expectations. The popu-
lation contains 59% fewer heterozygotes than would
be expected in a population with the same allele 
frequencies that was experiencing random mating 
and the other conditions set out in the assumptions
of Hardy–Weinberg. Interpreted as a correlation
between the allelic states of the two alleles in a geno-
type, this value of the fixation index tells us that the
two alleles in a genotype are much more frequently
of the same state than expected by chance.

In biological populations, a wide range of values
has been observed for the fixation index (Table 2.9).
Fixation indices have frequently been estimated with
allozyme data (see Box 2.2). Estimates of J are gener-
ally correlated with mating system. Even in species
where individuals possess reproductive organs of
one sex only (termed dioecious individuals), mating
among relatives can be common and ranges from in-
frequent to almost invariant. In other cases, mating is
essentially random or complex mating and social sys-
tems have evolved to prevent consanguineous mating.
Pure-breed dogs are an example where mating among
relatives has been enforced by humans to develop line-
ages with specific phenotypes and behaviors, resulting
in high fixation indices in some breeds. Many plant
species possess both male and female sexual functions
(hermaphrodites) and exhibit an extreme form of
consanguineous mating, self-fertilization, that causes
rapid loss of heterozygosity. In the case of Ponderosa
pines in Table 2.9, the excess of heterozygotes may
be due to natural selection against homozygotes 

at some loci (inbreeding depression). This makes 
the important point that departures from Hardy–
Weinberg expected genotype frequencies estimated
by the fixation index are potentially influenced by
processes in addition to the mating system. Genetic
loci free of the influence of other processes such as
natural selection are often sought to estimate J. In
addition, J can be estimated using the average of
multiple loci, which will tend to reduce bias since 
loci will differ in the degree they are influenced by
other processes and outliers will be apparent.

Extending the fixation index to loci with more
than two alleles just requires a means to calculate
the expected heterozygosity (He) for an arbitrary num-
ber of alleles at one locus. This can be accomplished
by adding up all of the expected frequencies of each
possible homozygous genotype and subtracting this
total from one or summing the expected frequencies
of all heterozygous genotypes:

(2.12)

where k is the number of alleles at the locus, the 
p i

2 and 2pi pj terms represent the expected genotype 

frequencies based on allele frequencies, and the 

(pronounced “sigma”) indicates summation of the
frequencies of the k homozygous genotypes. This
quantity is also called the gene diversity (Nei
1987). The expected heterozygosity can be adjusted

i

k

=
∑

1

H p p pe i
i

k

i j
j i

k

i

k

= − =
= = +=

−

∑ ∑∑1 22

1 11

1

··

Table 2.9 Estimates of the fixation index (J ) for various species and breeds based on pedigree or molecular
genetic marker data.

Species Mating system ; Method Reference

Human
Homo sapiens Outcrossed 0.0001–0.046 Pedigree Jorde 1997

Snail
Bulinus truncates Selfed and outcrossed 0.6–1.0 Microsatellites Viard et al. 1997

Domestic dogs
Breeds combined Outcrossed 0.33 Allozyme Christensen et al. 1985
German Shepherd Outcrossed 0.10
Mongrels Outcrossed 0.06

Plants
Arabidopsis thaliana Selfed 0.99 Allozyme Abbott and Gomes 1989
Pinus ponderosa Outcrossed −0.37 Allozyme Brown 1979
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for small samples by multiplying He by 2N/(2N − 1)
where N is the total number of genotypes (Nei &
Roychoudhury 1974), a correction that makes little
difference unless N is about 50 or fewer individuals.
In a similar manner, the observed heterozygosity
(Ho) is the sum of the frequencies of all heterozygotes
observed in a sample of genotypes:

(2.13)

where the observed frequency of each heterozyg-
ous genotype Hi is summed over the h = k(k − 1)/2

Ko i
i

h

H=
=
∑

1

heterozygous genotypes possible with k alleles.
Finally, both He and Ho can be averaged over mul-
tiple loci to obtain mean heterozygosity estimates 
for two or more loci. Heterozygosity provides one 
of the basic measures of genetic variation in popula-
tion genetics.

The fixation index as a measure of deviation from
expected levels of heterozygosity is a critical concept
that will appear in several places later in this text. The
fixation index plays a conceptual role in understand-
ing the effects of population size on heterozygosity
(Chapter 3) and also serves as an estimator of the
impact of population structure on the distribution of
genetic variation (Chapter 4).

Determining the genotypes of individuals at
enzymatic protein loci is a rapid technique to
estimate genotype frequencies in populations.
Protein analysis was the primary molecular
genotyping technique for several decades
before DNA-based techniques became widely
available. Alleles at loci that code for proteins
with enzymatic function can be ascertained 
in a multi-step process. First, fresh tissue
samples are ground up under conditions that
preserve the function of proteins. Next, these
protein extracts are loaded onto starch gels
and exposed to an electric field. The electrical
current results in electrophoresis where
proteins are separated based on their ratio of
molecular charge to molecular weight. Once
electrophoresis is complete, the gel is then
“stained” to visualize specific enzymes. The
primary biochemical products of protein
enzymes are not themselves visible. However,
a series of biochemical reactions in a process
called enzymatic coupling can be used to
eventually produce a visible product (often
nitro blue tetrazolium or NBT) at the site
where the enzyme is active (see Fig. 2.11). 
If different DNA sequences at a protein
enzyme locus result in different amino acid
sequences that differ in net charge, then
multiple alleles will appear in the gel after
staining. The term allozyme (also known as
isozyme) is used to describe the multiple allelic
staining variants at a single protein locus.
Allozyme electrophoresis and staining detects

only a subset of genetic variation at protein
coding loci. Amino acid changes that are
charge-neutral and nucleotide changes that
are synonymous (do not alter the amino acid
sequence) cannot be detected by allozyme
electrophesis methods. Refer to Manchenko
(2003) for a technical introduction and
detailed methods of allozyme detection.

Box 2.2 Protein locus or allozyme genotyping

SS

FF

+

–

Figure 2.11 An allozyme gel stained to show alleles at
the phosphoglucomutase or PGM locus in striped bass 
and white bass. The right-most three individuals are
homozygous for the faster-migrating allele (FF genotype)
while the left-most four individuals are homozygous for
the slower-migrating allele (SS genotype). No double-
banded heterozygotes (FS genotype) are visible on this gel.
The + and − indicate the cathode and anode ends of the
gel, respectively. Wells where the individuals samples
were loaded into the gel can be seen at the bottom of the
picture. Gel picture kindly provided by J. Epifanio.
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2.6 Mating among relatives

• Consanguineous mating alters genotype fre-
quencies but not allele frequencies.

• Mating among relatives and the probability that
two alleles are identical by descent.

• Inbreeding depression and its possible causes.
• The many meanings of inbreeding.

The previous section of this chapter showed how
non-random mating can increase or decrease the fre-
quency of heterozygote genotypes compared to the
frequency that is expected with random mating. The
last section also introduced the fixation index as well
as ways to quantify heterozygosity in a population.
This section will build on that foundation to show two
concepts: (i) the consequences of non-random mating
on allele and genotype frequencies in a population
and (ii) the probability that two alleles are identical
by descent. The focus will be on positive genotypic
assortative mating (like genotypes mate) or inbreeding
since this will eventually be helpful to understand
genotype frequencies in small populations. The end
of this section will consider some of the consequences
of inbreeding and the evolution of autogamy.

Impacts of inbreeding on genotype and 
allele frequencies

Let’s develop an example to understand the impact 
of inbreeding on genotype and allele frequencies 
in a population. Under complete positive assortative
mating or selfing, individuals mate with another indi-
vidual possessing an identical genotype. Figure 2.12
diagrams the process of positive genotypic assortative
mating for a diallelic locus, following the frequencies
of each genotype through time. Initially, the fre-
quency of the heterozygote is H but this frequency
will be halved each generation. A Punnett square for
two heterozygotes shows that half of the progeny are
heterozygotes (H/2). The other half of the progeny are
homozygotes (H/2), composed of one-quarter of the
original heterozygote frequency of each homozygote
genotype (H/2(1 − 1/2)). It is obvious that matings
among like homozygotes will produce only identical
homozygotes, so the homozygote genotypes each
yield a constant frequency of homozygous progeny
each generation. In total, however, the frequency 
of the homozygous genotypes increases by a factor 

of each generation due to homozygous 
  

H
2

1
1
2

−
⎛

⎝
⎜

⎞

⎠
⎟

progeny of the heterozygous genotypes. If the process
of complete assortative mating continues, the popula-
tion rapidly loses heterozygosity and approaches a
state where the frequency of heterozygotes is 0.

As an example, imagine a population where 
p = q = 0.5 that has Hardy–Weinberg genotype fre-
quencies D = 0.25, H = 0.5, and R = 0.25. Under
complete positive assortative mating, what would be
the frequency of heterozygotes after five generations?
Using Fig. 2.12, at time t = 5 heterozygosity would
be H(1/2)5 = H(1/32) = 1/64 or 0.016. This is a drastic
reduction in only five generations.

Genotype frequencies change quite rapidly under
complete assortative mating, but what about allele
frequencies? Let’s employ the same example popula-
tion with p = q = 0.5 and Hardy–Weinberg genotype
frequencies D = 0.25, H = 0.5, and R = 0.25 to
answer the question. For both of the homozygous
genotypes, the initial frequencies would be D = R =
(0.5)2 = 0.25. In Fig. 2.12, the contribution of each

··

Genotype

Generation

0

1

2

t

Infinity

AA Aa aa

D H R

D + H/2 H/2 R

D + H/2 0 R + H/2

1
2

1
2(1 – (    )t)H

2
D + 1

2(1 – (    )t)H
2

R +H(    )t1
2

1
2

(1 –     )H
2

1
2

(1 –     )H
2

D + H/2 + H/4 H/4 R + H/2 + H/4

1
2

H/4 H/4

Figure 2.12 The impact of complete positive genotypic
assortative mating (like genotypes mate) or self-fertilization
on genotype frequencies. The initial genotype frequencies are
represented by D, H, and R. When either of the homozygotes
mates with an individual with the same genotype, all 
progeny bear their parent’s homozygous genotype. When
two heterozygote individuals mate, the expected genotype
frequencies among the progeny are one half heterozygous
genotypes and one quarter of each homozygous genotype.
Every generation the frequency of the heterozygotes 
declines by one-half while one-quarter of the heterozygote
frequency is added to the frequencies of each homozygote
(diagonal arrows). Eventually, the population will lose all
heterozygosity although allele frequencies will remain
constant. Therefore, assortative mating or self-fertilization
changes the packing of alleles in genotypes but not the allele
frequencies themselves.
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homozygote genotype frequency from mating among
heterozygotes after five generations is H/2(1 − (1/2)5)
= H/2(1 − 1/32) = H/2(31/32). With the initial fre-
quency of H = 0.5, H/2(31/32) = 0.242. Therefore,
the frequencies of both homozygous genotypes are
0.25 + 0.242 = 0.492 after five generations. It is
also apparent that the total increase in homozygotes
(31/32) is exactly the same as the total decrease in
heterozygotes (31/32), so that the allele frequencies 
in the population have remained constant. After five
generations of assortative mating in this example,
genotypes are much more likely to contain two 
identical alleles than they are to contain two unlike
alleles. This conclusion is also reflected in the value
of the fixation index for this example, J = (0.5 −
0.016)/0.5 = 0.968. In general, positive assortative
mating or inbreeding changes the way in which alleles are
“packaged” into genotypes, increasing the frequencies
of all homozygous genotypes by the same total amount
that heterozygosity is decreased, but allele frequencies
in a population do not change.

The fact that allele frequencies do not change over
time can also be shown elegantly with some simple
algebra. Using the notation in Fig. 2.12 and defining
the frequency of the A allele as p and the a allele as 
q with subscripts to indicate generation, allele fre-
quencies can be determined by the genotype count-
ing method as p0 = D0 + 1/2H0 and q0 = R0 + 1/2H0.
Figure 2.12 also provides the expressions for geno-
type frequencies from one generation to the next: 
D1 = D0 + 1/4H0, H1 = 1/2H0, and R1 = R0 + 1/4H0.
We can then use these expressions to predict allele
frequency in one generation:

p1 = D1 + 1/2H1 (2.14)

as a function of genotype frequencies in the previous
generation using substitution for D1 and H1:

p1 = D0 + 1/4H0 + 1/2(1/2H0) (2.15)

which simplifies to:

p1 = D0 + 1/2H0 (2.16)

and then recognizing that the right hand side is
equal to the frequency of A in generation 0:

p1 = p0 (2.17)

Thus, allele frequencies remain constant under com-
plete assortative mating. As practice, you should
carry out the algebra for the frequency of the a allele.

Under complete self-fertilization heterozygosity
declines very rapidly. There can also be partial self-
fertilization in a population (termed mixed mating),
where some matings are self-fertilization and others
are between two individuals (called outcrossing).
In addition, many organisms are not capable of 
self-fertilization but instead engage in biparental
inbreeding to some degree. In general, these forms 
of inbreeding will reduce heterozygosity compared 
to random mating, although they will not drive 
heterozygosity toward zero as in the case of com-
plete selfing. The rate of decline in heterozygosity
can be determined for many possible types of mating 
systems and a few examples are shown in Fig. 2.13.
Regardless of the specifics of the form of consan-
guineous mating that occurs, it remains true that
inbreeding causes alleles to be packaged more fre-
quently as homozygotes (heterozygosity declines)
and inbreeding does not alter allele frequencies in 
a population.

Inbreeding coefficient and autozygosity 
in a pedigree

The effects of consanguineous mating can also be
thought of as increasing the probability that two
alleles at one locus in an individual are inherited
from the same ancestor. Such a genotype would 
be homozygous and considered autozygous since
the alleles were inherited from a common ancestor. 
If the two alleles are not inherited from the same
ancestor in the recent past, we would call the 
genotype allozygous (allo- means other). You are
probably already familiar with autozygosity, although
you may not recognize it as such. Two times the
probability of autozygosity (since diploid individuals
have two alleles) is commonly expressed as the degree
of relatedness among relatives. For example, full
siblings (full brothers and sisters) are one-half related
and first cousins are one-eighth related. Using a 
pedigree and tracing the probabilities of inheritance
of an allele, the autozygosity and the basis of average
relatedness can be seen.

Inbreeding in the autozygosity sense, often called
the coefficient of inbreeding ( f ), can best be 
seen in a pedigree such as that shown in Fig. 2.14.
Fig. 2.14a gives a hypothetical pedigree for four 
generations. The pedigree can be used to determine
the probability that the fourth-generation progeny,
labeled G, have autozygous genotypes due to indi-
vidual A being a common ancestor of both their
maternal and paternal parents. To make the process
simpler, Fig. 2.14b strips away all of the external
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ancestors and shows only the paths where alleles
could be inherited in the progeny from individual A.

To begin the process of determining the autozygos-
ity for G, it is necessary to determine the probability
that A transmitted the same allele to individuals B

and C, or in notation P(a = a′). With two alleles 
designated 1 and 2, there are only four possible pat-
terns of allelic transmission from A to B and C, shown
in Fig. 2.15. In only half of these cases do B and C
inherit an identical allele from A, so P(a = a′) = 1/2.
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Figure 2.13 The impact of various systems of consanguineous mating or inbreeding on heterozygosity, the fixation index (F),
and the inbreeding coefficient ( f ) over time. Initially, the population has allele frequencies of p = q = 0.5 and all individuals are
assumed randomly mated. Since inbreeding does not change allele frequencies, expected heterozygosity (He) remains 0.5 for all 20
generations. As inbreeding progresses, observed heterozygosity declines and the fixation index and inbreeding coefficient increase.
Selfing is 100% self-fertilization whereas mixed mating is 50% of the population selfing and 50% randomly mating. Full sib is
brother–sister or parent–offspring mating. Backcross is one individual mated to its progeny, then to its grand progeny, then to its
great-grand progeny and so on, a mating scheme that is difficult to carry on for many generations. Change in the coefficient of
inbreeding over time is based on the following recursion equations: selfing ft+1 = 1/2(1 − Ft); mixed ft+1 = 1/2(1 − Ft)(s) where s is the
selfing rate; full sib ft+2 = 1/4(1 + 2ft+1 + ft); backcross ft+1 = 1/4(1 + 2ft) (see Falconer & MacKay 1996 for detailed derivations).
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Figure 2.14 Average relatedness and autozygosity as the probability that two alleles at one locus are identical by descent. 
(a) A pedigree where individual A has progeny that are half-siblings (B and C). B and C then produce progeny D and E, which in
turn produce offspring G. (b) Only the paths of relatedness where alleles could be inherited from A, with curved arrows to indicate
the probability that gametes carry alleles identical by descent. Upper-case letters for individuals represent diploid genotypes and
lower-case letters indicate allele copies within the gametes produced by the genotypes. The probability that A transmits a copy of
the same allele to B and C depends on the degree of inbreeding for individual A, or FA.
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This probability would still be 1/2 no matter how
many alleles were present in the population, since
the probability arises from the fact that diploid geno-
types have only two alleles.

To have a complete account of the probability 
that B and C inherit an identical allele from A, we
also need to take into account the past history of A’s
genotype since it is possible that A was itself the 
product of mating among relatives. If A was the pro-
duct of some level of biparental inbreeding, then the
chance that it transmits alleles identical by descent
to B and C is greater than if A was from a randomly
mating population. Another way to think of it is,
with A being the product of some level of inbreed-
ing instead of random mating, the chances that the
alleles transmitted to B and C are not identical (see
Fig. 2.14b) will be less than 1/2 by the amount that A
is inbred. If the degree to which A is inbred (or the
probability that A is autozygous) is FA, then the total
probability that B and C inherit the same allele is:

P(a = a′ ) = 1/2 + 1/2FA = 1/2(1 + FA) (2.18)

If FA is 0 in equation 2.18, then the chance of trans-
mitting the same allele to B and C reduces to the 1/2

expected in a randomly mating population.
For the other paths of inheritance in Fig. 2.14, the

logic is similar to determine the probability that an
allele is identical by descent. For example, what is the
probability that the allele in gamete d is identical by
descent to the allele in gamete b, or P(b = d)? When D
mated it passed on one of two alleles, with a probabil-
ity of 1/2 for each allele. One allele was inherited from
each parent, so there is a 1/2 chance of transmitting a
maternal or paternal allele. This makes P(b = d) = 1/2.
( Just like with individual A, P(b = d) could also be
increased to the extent that B was inbred, although
random mating for all genotypes but A is assumed
here for simplicity.) This same logic applies to all
other paths in the pedigree that connect A and the

progeny G. The probability of a given allele being
transmitted along a path is independent of the prob-
ability along any other path, so the probability of
autozygosity (symbolized as f to distinguish it from
the pre-existing autozygosity of individual A) over
the entire pedigree for any of the G progeny is:

fG = fDE = 1/2 × 1/2 × 1/2(1 + fA) × 1/2 × 1/2

P(b = d) P(a = b) P(a = a′) P(a′ = c) P(c = e)

= (1/2)5(1 + fA) = 1/32(1 + fA) (2.19)

since independent probabilities can be multiplied to
find the total probability of an event. This is equival-
ent to the average relatedness among half-cousins.
In general for pedigrees, f = (1/2)i(1 + FA) where A 
is the common ancestor and i is the number of paths
or individuals over which alleles are transmitted. A
trick is to write down the chain of individuals start-
ing with the common ancestor and ending with the
individuals of interest and count the individuals along
paths of inheritance (not including the individuals 
of interest). That gives GDBACEG or five ancestors,
yielding a result identical to equation 2.19.

Although it is useful to determine the inbreeding
coefficient (autozygosity) for a specific pedigree, the
more general point is to see mating among relatives
as a process that increases autozygosity in a popula-
tion. When individuals have common relatives, 
the chance that their genotype contains loci with 
alleles identical by descent is increased. Further, the
inbreeding coefficient or autozygosity measured for 
a specific pedigree is identical in concept and inter-
pretation to the departure from Hardy–Weinberg
measured by the fixation index (assuming most of
the deviation from Hardy–Weinberg expectations 
is caused by non-random mating and not other 
population genetic processes). Both express the prob-
ability that two alleles in a genotype are identical due
to common ancestry.

The departure from Hardy–Weinberg expected
genotype frequencies, the autozygosity or inbreeding
coefficient, and the fixation index are all interrelated.
Another way of stating the results that were devel-
oped in Fig. 2.12 is that f measures the degree to
which Hardy–Weinberg genotype proportions are
not met, due to inbreeding:

D = p2 + fpq

H = 2pq − f2pq

R = q2 + fpq (2.20)

Path of inheritance

Allele

a a’

1 1

a a’

1 2

a a’

2 2

a a’

2 1

Alleles identical
by descent (IBD)

Alleles not identical
by descent

Figure 2.15 The possible patterns of transmission from one
parent to two progeny for a locus with two alleles. Half of the
outcomes result in the two progeny inheriting an allele that is
identical by descent. The a and a′ refer to paths of inheritance
in the pedigree in Fig. 2.14b.
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With consanguineous mating, the decline in hetero-
zygosity is proportional to the increase in the inbreed-
ing coefficient, shown by substituting He for 2pq in
equation 2.20 and rearranging to give

H = He(1 − f ) (2.21)

where He is the Hardy–Weinberg expected hetero-
zygosity based on population allele frequencies.
Rearranging equation 2.21 in terms of the inbreed-
ing coefficient gives:

(2.22)

This is really exactly the same quantity as the fixation
index (equation 2.9)

(2.23)

The inbreeding coefficient and the fixation index are
measures of excess homozygosity and therefore are
just different ways of expressing the heterozygosity.
Returning to Fig. 2.13 helps show the equivalence of
the inbreeding coefficient, the fixation index, and the
decline in heterozygosity in several specific cases of
regular consanguineous mating. Remember that in
all cases in Fig. 2.13, the Hardy–Weinberg expected
heterozygosity is 1/2.
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Phenotypic consequences of inbreeding

The process of consanguineous mating or inbreeding
is associated with changes in the mean phenotype
within a population. These changes arise from two
general causes: changes in genotype frequencies in a
population per se and fitness effects associated with
changes in genotype frequencies.

The mean phenotype of a population will be
impacted by the changes in genotype frequency
caused by inbreeding. To show this it is necessary 
to introduce terminology to express the phenotype
associated with a given genotype, a topic covered 
in much greater detail and explained more fully 
in Chapters 9 and 10 in this volume. We will assign 
AA genotypes the phenotype +a, heterozygotes the
phenotype d, and aa homozygotes the phenotype 
−a. Each genotype contributes to the overall pheno-
type based on how frequent it is in the population.
The mean phenotype in a population is then the sum
of each genotype-frequency-weighted phenotype
(Table 2.10). When there is no dominance, the pheno-
type of the heterozygotes is exactly intermediate
between the phenotypes of the two homozygotes and
d = 0. In that case, it is easy to see that inbreeding will
not change the mean phenotype in the population
since both homozygous genotypes increase by the
same amount and their effects on the mean pheno-
type cancel out (mean = ap2 + afpq + d2pq − df2pq −
aq2 − afpq, where the heterozygote terms are crossed
out since d = 0). When there is some degree of domin-
ance (positive d indicates the phenotype of Aa is like
that of AA while negative d indicates the phenotype
of Aa is like that of aa), then the mean phenotype 
of the population will change with consanguine-
ous mating since heterozygotes will be become less
frequent. If dominance is in the direction of the 
+a phenotype (d > 0), then inbreeding will reduce
the population mean because the heterozygote fre-
quency will drop. Similarly, if dominance is in the
direction of −a (d < 0) then inbreeding will increase
the population mean again because the heterozygote
frequency decreases. It is also true in the case of 
dominance that a return to random mating will
restore the frequencies of heterozygotes and return
the population mean to its original value before
inbreeding. These changes in the population mean
phenotype are simply a consequence of changing 
the genotype frequencies when there is no change 
in the allele frequencies.

There is a wealth of evidence that inbreeding has
deleterious (harmful or damaging) consequences

··

Allozygous genotype A homozygous or
heterozygous genotype composed of two
alleles not inherited from a recent common
ancestor.
Autozygosity or inbreeding coefficient 
(f ) The probability that two alleles in a
homozygous genotype are identical by
descent.
Autozygous genotype A homozygous
genotype composed of two identical 
alleles that are inherited from a common
ancestor.
Identity by descent Transmission from 
a common ancestor.
Relatedness The expected proportion 
of alleles between two individuals that are
identical by descent; twice the autozygosity.
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and is associated with a decline in the average pheno-
type in a population, a phenomenon referred to as
inbreeding depression. Since the early twentieth
century, studies in animals and plants that have
been intentionally inbred provide ample evidence
that decreased performance, growth, reproduction,
viability (all measures of fitness), and abnormal 
phenotypes are associated with consanguineous
mating. A related phenomenon is heterosis or hybrid
vigor, characterized by beneficial consequences of
increased heterozygosity such as increased viabil-
ity and reproduction, or the reverse of inbreeding
depression. One example is the heterosis exhibited in
corn, which has lead to the nearly universal use of F1
hybrid seed for agriculture in developed countries.

There is evidence that humans experience inbreed-
ing depression, based on observed phenotypes in 
the offspring of couples with known consanguinity.
For example, mortality among children of first-cousin
marriages was 4.5% greater than for marriages
between unrelated individuals measured in a range
of human populations (see review by Jorde 1997).
Human studies have utilized existing parental pairs
with relatively low levels of inbreeding, such as uncle/
niece, first cousins, or second cousins, in contrast 

to animal and plant studies where both very high
levels and a broad range of inbreeding coefficients
are achieved intentionally. Drawing conclusions
about the causes of variation in phenotypes from
such observational studies requires extreme caution,
since the prevalence of consanguineous mating in
humans is also correlated with social and economic
variables such as illiteracy, age at marriage, dura-
tion of marriage, and income. These latter variables
are therefore not independent of consanguinity and
can themselves contribute to variation in pheno-
types such as fertility and infant mortality (see Bittles
et al. 1991, 2002).

The Mendelian genetic causes of inbreeding
depression have been a topic of population genetics
research for more than a century. There are two 
classical hypotheses to explain inbreeding depression
and changes in fitness as the inbreeding coefficient
increases (Charlesworth & Charlesworth 1999; Carr
& Dudash 2003). Both hypotheses predict that levels
of inbreeding depression will increase along with con-
sanguineous mating that increases homozygosity,
although for different reasons (Table 2.11). The first
hypothesis, often called the dominance hypothesis,
is that increasing homozygosity increases the pheno-
typic expression of fully and partly recessive alleles
with deleterious effects. The second hypothesis is that
inbreeding depression is the result of the decrease 
in the frequency of heterozygotes that occurs with
consanguineous mating. This explanation supposes
that heterozygotes have higher fitness than homozy-
gotes (heterosis) and is called the overdominance
hypothesis. In addition, the fitness interactions 
of alleles at different loci (epistasis; see Chapter 9) 
may also cause inbreeding depression, a hypothesis 
that is particularly difficult to test (see Carr & Dudash
2003). These causes of inbreeding depression may
all operate simultaneously.

These dominance and overdominance hypo-
theses make different testable predictions about 

Table 2.10 The mean phenotype in a population that is experiencing consanguineous mating. The
inbreeding coefficient is f and d = 0 when there is no dominance.

Genotype Phenotype Frequency Contribution to population mean

AA +a p2 + fpq ap2 + afpq
Aa d 2pq − f2pq d2pq − df2pq
aa −a q2 + fpq −aq2 − afpq

Population mean: ap2 + d2pq − df2pq − aq2 = a(p − q) + d2pq(1 − f )

Heterosis The increase in performance,
survival, and ability to reproduce of individuals
possessing heterozygous loci (hybrid vigor);
increase in the population average phenotype
associated with increased heterozygosity.
Inbreeding depression The reduction in
performance, survival, and ability to reproduce
of individuals possessing homozygous loci;
decrease in population average phenotype
associated with consanguineous mating that
increases homozygosity.

9781405132770_4_002.qxd  1/19/09  2:22 PM  Page 38



Genotype frequencies 39

how inbreeding depression (measured as the aver-
age phenotype of a population) will change over time
with continued consanguineous mating. Under the
dominance hypothesis, recessive alleles that cause
lowered fitness are more frequently found in homo-
zygous genotypes under consanguineous mating.
This exposes the deleterious phenotype and the geno-
type will decrease in frequency in a population by
natural selection (individuals homozygous for such
alleles have lower survivorship and reproduction).
This reduction in the frequency of deleterious alleles
by natural selection is referred to as purging of
genetic load. Purging increases the frequency of
alleles that do not have deleterious effects when
homozygous, so that the average phenotype in a
population then returns to the initial average it had
before the onset of consanguineous mating. In con-
trast, the overdominance hypothesis does not predict
a purging effect with consanguineous mating. With
consanguineous mating, the frequency of hetero-
zygotes will decrease and not recover until mating
patterns change (see Fig. 2.12). Even if heterozygotes
are frequent and have a fitness advantage, each 
generation of mating and Mendelian segregation
will reconstitute the two homozygous genotypes 
so purging cannot occur. These predictions high-
light the major difference between the hypotheses.
Inbreeding depression with overdominance arises
from genotype frequencies in a population while
inbreeding depression with dominance is caused 
by the frequency of deleterious recessive alleles in 
a population. Models of natural selection that are 
relevant to inbreeding depression on population geno-
type and allele frequencies receive detailed coverage
in Chapter 6 in this volume.

Inbreeding depression in many animals and plants
appears to be caused, at least in part, by deleterious
recessive alleles consistent with the dominance
hypothesis (Byers & Waller 1999; Charlesworth 
& Charlesworth 1999; Crnokrak & Barrett 2002). 
A classic example of inbreeding depression and 
recovery of the population mean for litter size in mice
is shown in Fig. 2.16. Model research organisms

··

Table 2.11 A summary of the Mendelian basis of inbreeding depression under the dominance and
overdominance hypotheses along with predicted patterns of inbreeding depression with continued
consanguineous mating.

Hypothesis

Dominance

Overdominance

Changes in inbreeding
depression with continued
consanguineous mating

Purging of deleterious alleles
that is increasingly effective as
degree of recessiveness
increases

No changes as long as
consanguineous mating keeps
heterozygosity low

Low-fitness genotypes

Only homozygotes for
deleterious recessive alleles

All homozygotes

Mendelian basis

Recessive and partly
recessive deleterious alleles

Heterozygote advantage
or heterosis

4.0

5.0

6.0
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Litter size
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Figure 2.16 A graphical depiction of the predictions of the
dominance and overdominance hypotheses for the genetic
basis of inbreeding depression. The line for dominance 
shows purging and recovery of the population mean under
continued consanguineous mating expected if deleterious
recessive alleles cause inbreeding depression. However, the
line for overdominance as the basis of inbreeding depression
shows no purging effect since heterozygotes continue to
decrease in frequency. The results of an inbreeding depression
experiment with mice show that litter size recovers under
continued brother–sister mating as expected under the
dominance hypothesis (Lynch 1977). Only two of the original
14 pairs of wild-caught mice were left at the sixth generation.
Not all of the mouse phenotypes showed patterns consistent
with the dominance hypothesis.
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such as mice, rats, and Drosophila, intentionally
inbred by schemes such as full-sib mating for 10s 
or 100s of generations to create highly homozygous,
so-called pure-breeding lines, are also not immune 
to inbreeding depression. Such inbred lines are 
often founded from multiple families and many of
these family lines go extinct from low viability or
reproductive failure with habitual inbreeding. This 
is another type of purging effect due to natural 
selection that leaves only those lines that exhibit 
less inbreeding depression, which could be due to 
dominance, overdominance, or epistasis. Purging is
not universally observed in all species and it is likely
that inbreeding depression has several genetic causes
within species as well as different predominant
causes among different species.

The social and economic correlates of inbreeding
depression in humans mentioned above are a specific
example of environmental effects on phenotypes.
Inbreeding depression can be more pronounced
when environmental conditions are more severe or
limiting. For example, in the plant rose pink (Sabatia
angularis), progeny from self-fertilizations showed
decreasing relative performance when grown in 
the greenhouse, a garden, and their native habitat,
consistent with environmental contributions to the
expression of inbreeding depression (Dudash 1990).
In another study, the number of surviving progeny
for inbred and random-bred male wild mice (Mus
domesticus) were similar under laboratory conditions,
but inbred males sired only 20% of the surviving
progeny that random bred males did when under
semi-natural conditions due to male–male competi-
tion (Meagher et al. 2000). However, not all studies
show environmental differences in the expression of
inbreeding depression. As an example, uniform levels
of inbreeding depression were shown by mosquitoes
grown in the laboratory and in natural tree holes
where they develop as larvae and pupae in the wild
(Armbruster et al. 2000).

The degree of inbreeding depression also depends
on the phenotype being considered. In plants, 
traits early in the life cycle such as germination less
often show inbreeding depression than traits later 
in the life cycle such as growth and reproduction
(Husband & Schemske 1996). A similar pattern 
is apparent in animals, with inbreeding depression
most often observed for traits related to survival and
reproduction.

Inbreeding depression is a critical concept when
thinking about the evolution of mating patterns 
in plants and animals. Suppose that a single locus

determines whether an individual will self or out-
cross and the only allele present in a population is 
the outcrossing allele. Then imagine that mutation
produces an allele at that locus, which, when homo-
zygous, causes an individual to self-fertilize. Such 
a selfing allele would have a transmission advant-
age over outcrossing alleles in the population. To 
see this, consider the number of allele copies at the 
mating locus transmitted from parents to progeny.
Parents with outcrossing alleles mate with another
individual and transmit one allele to their progeny.
Self-fertilizing parents, however, are both mom 
and dad to their offspring and transmit two alleles 
to their progeny. In a population of constant size 
where each individual contributes an average of 
one progeny to the next generation, the selfing allele 
is reproduced twice as fast as an outcrossing allele 
and would rapidly become fixed in the population
(Fisher 1999; see Lande & Schemske 1985). Based
on this two-fold higher rate of increase of the 
selfing allele, complete self-fertilization would even-
tually evolve unless some disadvantage counteracted
the increase of selfed progeny in the population.
Inbreeding depression where the average fitness of
outcrossed progeny exceeds the average fitness of
selfed progeny by a factor of two could play this 
role. If outcrossed progeny are at a two-fold advant-
age due to inbreeding depression, then complete 
outcrossing would evolve. Explaining the existence
of populations that engage in intermediate levels of
selfing and outcrossing, a mating system common in
plants, remains a challenge under these predictions
(Byers & Waller 1999).

The many meanings of inbreeding

Unfortunately, the word inbreeding is used as a generic
term to describe multiple distinct, although inter-
related, concepts in population genetics ( Jacquard
1975; Templeton & Read 1994). Inbreeding can
apply to:

• consanguinity or kinship of two different 
individuals;

• autozygosity of two alleles either within an indi-
vidual or sampled at random;

• the fixation index and Hardy–Weinberg expected
and observed genotype frequencies, especially
when there is an excess of homozygotes;

• inbreeding depression;
• the description of the mating system of a popula-

tion or species (as in inbred);
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• genetic subdivision of a species into populations
that exchange limited levels of gene flow such that
individual populations increase in autozygosity;

• the increase in homozygosity in a population due
to its finite size.

These different concepts all relate in some way to
either the autozygosity or to genotype frequencies 
in a population, so the connection to inbreeding 
is clear. Awareness of the different ways the word
inbreeding is used as well as an understanding of
these different uses will prevent confusion, which
can often be avoided simply by using more specific
terminology. Remembering that the concepts are
interrelated under the general umbrella of inbreed-
ing can also help in realizing the equivalence of 
the population genetic processes in operation. The
next chapter will show how finite population size is
equivalent in its effects to inbreeding. Chapter 4 will
take up the topic of population subdivision.

2.7 Gametic disequilibrium

• Estimating gametic disequilibrium with D.
• Approach to gametic equilibrium over time.
• Causes of gametic disequilibrium.

In 1902 Walter Sutton and Theodor Boveri advanced
the chromosome theory of heredity. They observed
cell division and hypothesized that the discrete bod-
ies seen separating into sets at meiosis and mitosis
contained hereditary material that was transmitted
from parents to offspring. At the time the concept 
of chromosomal inheritance presented a paradox.
Mendel’s second law says that gamete haplotypes
(haploid genotype) should appear in frequencies
proportional to the product of allele frequencies. This
prediction conflicted with the chromosome theory of
heredity since there are not enough chromosomes to
represent each hereditary trait.

To see the problem, take the example of Homo sapi-
ens with a current estimate of around 30,000 genes
in the nuclear genome. However, humans have only
23 pairs of chromosomes. There are a large num-
ber of loci but a small number of chromosomes. So 
if chromosomes are indeed hereditary molecules,
many genes must be on the same chromosome (on
average about 1300 genes per chromosome for
humans if there are 30,000 genes). This means that
some genes are physically linked by being located
on the same chromosome (see Fig. 2.17). The solu-
tion to the paradox is the process of recombination.
Sister chromatids touch at random points during

··
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Figure 2.17 Maps for human
chromosomes 18 (left) and 19
(right) showing chromosome
regions, the physical locations of
identified genes and open reading
frames (labeled orf ) along the
chromosomes, and the names and
locations of a subset of genes.
Chromosome 18 is about 85 million
bp and chromosome 19 is about 
67 million bp. Maps from NCBI 
Map Viewer based on data as of
January 2008.
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meiosis and exchange short segments, a process
known as crossing-over (Fig. 2.18).

Linkage of loci has the potential to impact multi-
locus genotype frequencies and violate Mendel’s 
law of independent segregation, which assumes the
absence of linkage. To generalize expectations for
genotype frequencies for two (or more) loci requires
a model that accounts explicitly for linkage by includ-
ing the rate of recombination between loci. The effects
of linkage and recombination are important deter-
minants of whether or not expected genotype fre-
quencies under independent segregation of two loci
(Mendel’s second law) are met. Autosomal linkage is
the general case that will be used to develop expecta-
tions for genotype frequencies under linkage.

The frequency of a two-locus gamete haplotype
will depend on two factors: (i) allele frequencies and
(ii) the amount of recombination between the two
loci. We can begin to construct a model based on 
the recombination rate by asking what gametes are 
generated by the genotype A1A2B1B2. Throughout

this section loci are indicated by the letters, alleles 
at the loci by the numerical subscripts and allele 
frequencies indicated by p1 and p2 for locus A and 
q1 and q2 for locus B. The problem is easier to con-
ceptualize if we draw the two locus genotype as being
on two lines akin to chromosomal strands

A1 B1

A2 B2

Given this physical arrangement of the two loci,
what are the gametes produced during meiosis with
and without recombination events?

A1B1 and A2B2 “Coupling” gametes: alleles on the
same chromosome remain together (term coined by
Bateson and Punnett).
A1B2 and A2B1 “Repulsion” gametes: alleles on the
same chromosome seem repulsed by each other and
pair with alleles on the opposite strand (term coined
by Thomas Hunt Morgan).

The recombination fraction, symbolized as r (or
sometimes c), refers to the total frequency of gametes
resulting from recombination events between two
loci. Using r to express an arbitrary recombination
fraction, let’s build an expectation for the frequency
of coupling and repulsion gametes. If r is the rate 
of recombination, then 1 − r is the rate of non-
recombination since the frequency of all gametes is
one, or 100%. Within each of these two categories 
of gametes (coupling and repulsion), two types of
gametes are produced so the frequency of each
gamete type is half that of the total frequency for 
the gamete category. We can also determine the
expected frequencies of each gamete under random
association of the alleles at the two loci based on
Mendel’s law of independent segregation.

Gamete Frequency

Expected Observed

A1B1 p1q1 g11 = (1 − r)/2

A2B2 p2q2 g22 = (1 − r)/2

A1B2 p1q2 g12 = r/2

A2B1 p2q1 g21 = r/2

A B

A B

A B

Figure 2.18 A schematic diagram of the process of
recombination between two loci, A and B. Two double-
stranded chromosomes (drawn in different colors) exchange
strands and form a Holliday structure. The crossover event
can resolve into either of two recombinant chromosomes 
that generate new combinations of alleles at the two loci. 
The chance of a crossover event occurring generally
increases as the distance between loci increases. Two loci 
are independent when the probability of recombination and
non-recombination are both equal to 1/2. Gene conversion, 
a double crossover event without exchange of flanking
strands, is not shown.

1 − r is the
frequency of 
all coupling
gametes.

r is the
frequency of all
recombinant
gametes.
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The recombination fraction, r, can be thought of as
the probability that a recombination event will occur
between two loci. With independent assortment, 
the coupling and repulsion gametes are in equal fre-
quencies and r equals 1/2 (like the chances of getting
heads when flipping a coin). Values of r less than 1/2

indicate that recombination is less likely than non-
recombination, so coupling gametes are more frequent.
Values of r greater than 1/2 are possible and would
indicate that recombinant gametes are more frequent
than non-recombinant gametes (although such a
pattern would likely be due to a process such as natural
selection eliminating coupling gametes from the
population rather than recombination exclusively).

The expected frequencies of gametes produced 
by all possible genotypes for two diallelic loci includ-
ing the contributions of recombination are derived 
in Table 2.12. Summing the frequencies of each
gamete produced by all genotypes gives the gamete
frequencies that will found the next generation. 
This gives expected gamete frequencies for the more
general case of a randomly mating population rather
than for a single genotype. The table shows how 
only two of 10 possible genotypes contribute to the 
production of recombinant gametes. Most genotypes
produce recombinant gametes that are identical to
non-recombinant gametes (e.g. the A1B1/A1B2 geno-
type produces A1B1 and A1B2 coupling gametes and
A1B1 and A1B2 repulsion gametes).

We can utilize observed gamete frequencies to
develop a measure of the degree to which alleles are

associated within gamete haplotypes. This quantity
is called the gametic disequilibrium (or sometimes
linkage disequilibrium) parameter and can be
expressed by:

D = g11g22 − g12g21 (2.24)
(coupling term)  − (repulsion term)

where gxy stands for a gamete frequency. D is the dif-
ference between the product of the coupling gamete
frequencies and the product of the repulsion gamete
frequencies. This makes intuitive sense: with inde-
pendent assortment the frequencies of the coupling
and repulsion gamete types are identical and cancel
out to give D = 0, or gametic equilibrium. Another
way to think of the gametic disequilibrium parameter
is as a measure of the difference between observed
and expected gamete frequencies: g11 = p1q1 + D, 
g22 = p2q2 + D, g12 = p1q2 − D, and g21 = p2q1 − D (note
that observed and expected gamete frequencies can-
not be negative). In this sense, D measures the devia-
tion of gamete frequencies from what is expected
under independent assortment. Since D can be both
positive as well as negative, both coupling and repul-
sion gametes can be in excess or deficit relative to the
expectations of independent assortment.

Gametic disequilibrium can be measured using
several estimators, including the squared correla-
tion coefficient (ρ2, where ρ is pronounced “rho”),
where ρ2 = D2/(p1p2q1q2), which has a range of −1 to
+1. Different estimators of gametic disequilibrium

··

Table 2.12 Expected frequencies of gametes for two diallelic loci in a randomly mating population with a
recombination rate between the loci of r. The first eight genotypes have non-recombinant and recombinant
gametes that are identical. The last two genotypes produce novel recombinant gametes, requiring inclusion
of the recombination rate to predict gamete frequencies. Summing down each column of the table gives the
total frequency of each gamete in the next generation.

Frequency of gametes in next generation

Genotype Expected frequency A1B1 A2B2 A1B2 A2B1

A1B1/A1B1 (p1q1)
2 (p1q1)

2

A2B2/A2B2 (p2q2)
2 (p2q2)

2

A1B1/A1B2 2(p1q1)(p1q2) (p1q1)(p1q2) (p1q1)(p1q2)
A1B1/A2B1 2(p1q1)(p2q1) (p1q1)(p2q1) (p1q1)(p2q1)
A2B2/A1B2 2(p2q2)(p1q2) (p2q2)(p1q2) (p2q2)(p1q2)
A2B2/A2B1 2(p2q2)(p2q1) (p2q2)(p2q1) (p2q2)(p2q1)
A1B2/A1B2 (p1q2)

2 (p1q2)
2

A2B1/A2B1 (p2q1)
2 (p2q1)

2

A2B2/A1B1 2(p2q2)(p1q1) (1 − r)(p2q2)(p1q1) (1 − r)(p2q2)(p1q1) r(p2q2)(p1q1) r(p2q2)(p1q1)
A1B2/A2B1 2(p1q2)(p2q1) r(p1q2)(p2q1) r(p1q2)(p2q1) (1 − r)(p1q2)(p2q1) (1 − r)(p1q2)(p2q1)
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have slightly different strengths and weaknesses 
(see Hedrick 1987; Flint-Garcia et al. 2003). The dis-
cussion here will focus on the classical estimator D to
develop the conceptual basis of measuring gametic
disequilibrium and to understand the genetic pro-
cesses that cause it.

Now that we have developed an estimator of gametic
disequilibrium, it can be used to understand how
allelic association at two loci changes over time or its
dynamic behavior. If a population starts out with some
level of gametic disequilibrium, what happens to D
over time with recombination? Imagine a population
with a given level of gametic disequilibrium at the
present time (Dt=n). How much gametic disequilibrium
was there a single generation before the present at
generation n − 1? Recombination will produce r
recombinant gametes each generation so that:

Dtn = (1 − r)Dtn−1 (2.25)

Since gametic disequilibrium decays by a factor of 
1 − r each generation,

Dtn = (1 − r)Dtn−1 = (1 − r)2Dtn−2
= (1 − r)3Dtn−3 . . . (2.26)

We can predict the amount of gametic disequilibrium
over time by using the amount of disequilibrium 
initially present (Dt0) and multiplying it by (1 − r)
raised to the power of the number of generations that
have elapsed:

Dtn = Dt0(1 − r)n (2.27)

Figure 2.19 shows the decay of gametic disequilib-
rium over time using equation 2.27. Initially there
are only coupling gametes in the population and 
no repulsion gametes, giving a maximum amount of

gametic disequilibrium. As r increases, the approach
to gametic equilibrium (D = 0) is more rapid. Equa-
tion 2.27 and Fig. 2.19 both assume that there are no
other processes acting to counter the mixing effect 
of recombination. Therefore, the steady-state will
always be equal frequencies of all gametes (D = 0),
with the recombination rate determining how rapidly
gametic equilibrium is attained.

One potential drawback of D in equation 2.24 is that
its maximum value depends on the allele frequen-
cies in the population. This can make interpreting 
an estimate of D or comparing estimates of D from 
different populations problematic. For example, it 
is possible that two populations have very strong 
association among alleles within gametes (e.g. no
repulsion gametes), but the two populations differ 

The program PopGene.S2 has two
simulation modules under the Gametic
Disequilibrium menu that demonstrate
two features of gametic disequilibrium
covered so far.

The Magnitude of D simulation can be
used to model and graph the decay in D
over time given an initial value of D and a
value for the recombination rate. This
module can be used to produce graphs like
that shown in Fig. 2.19.

The Gamete frequencies simulation can
be used to conduct a hypothesis test using
a χ2 test that the observed level of gametic
disequilibrium is significantly different than
expected under random segregation.
Another way to carry out this test without
the aid of PopGene.S2 is to use

(2.28)

where N is the total sample size of gametes, 
D is the gametic disequilibrium parameter,
and p and q are the allele frequencies at 
two diallelic loci. The χ2 value has 1 df and
can be compared with the critical value
found in Table 2.5.

  
χ2

2

1 2 1 2

=
D N

p p q q

Interact box 2.4
Decay of gametic 

disequilibrium and a χχ2 test

Gametic disequilibrium The non-random
association or combination of alleles at
multiple loci in a sample of gametes or
haplotypes.
Linkage Co-inheritance of loci caused by
physical location on the same chromosome.
Recombination fraction The proportion 
of “repulsion” or recombinant gametes
produced by a double heterozygote genotype
each generation.
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in allele frequency so that the maximum value of D
in each population is also different. If all alleles are
not at equal frequencies in a population, then the 
frequencies of the two coupling or the two repulsion
gametes are also not equal. When D < 0, Dmax is the
larger of −p1q1 or −p2q2, whereas when D > 0, Dmax is
the smaller of p1q2 or p2q1.

A way to avoid these problems is to express D as
the percentage of its largest value:

D′ = D/Dmax (2.29)

This gives a measure of gametic disequilibrium that
is normalized by the maximum or minimum value 
D can assume given population allele frequencies.
Even though a given value of D may seem small in
the absolute, it may be large relative to Dmax given
the population allele frequencies.

Measures of gametic disequilibrium can be used 
to test fundamental hypotheses regarding the pro-
cesses that shape genotype frequencies in natural
populations. In epidemiology, pathogens are often
considered to reproduce predominantly clonally even
if capable of sex and recombination. This assumption
has implications for clinical treatment of infections, 
the emergence of new virulent strains, and vaccine
development strategies. Clonal reproduction would
accompany high levels of gametic disequilibrium
since recombination would not occur, a hypothesis

that can be tested with genetic marker data. The 
protozoan parasite Toxoplasma gondii is one such
example. It infects all mammals and birds and causes
toxoplasmosis, an illness in humans, and was con-
sidered clonal despite sexual reproduction that occurs
in cats. To test this hypothesis, Lehmann et al. (2004)
sampled T. gondii from pigs, chickens, and cats, and
then genotyped the protozoa at seven loci. The results
revealed normalized gametic disequilibrium (| D′ |)
between pairs of loci that ranged from 0.35 to 0.96.
The two loci known to be physically linked showed
the highest values of D′ while all others have less
gametic disequilibrium. This pattern is inconsistent
with clonal reproduction, which would maintain
gametic disequilibrium at all loci regardless of the
physical distance between loci.

D is frequently called the linkage disequilibrium
parameter rather than the gametic disequilibrium
parameter. This is a misnomer, since physical linkage
only dictates the rate at which allelic combinations
approach independent assortment. Recombination,
determined by the degree of linkage, only causes a
reduction in gametic disequilibrium over time, but it
cannot cause an increase in gametic disequilibrium.
Processes other than linkage are responsible for the
production of deviations from independent assort-
ment of alleles at multiple loci in gametes. Using 
the term gametic disequilibrium reminds us that 
the deviation from random association of alleles at 
two loci is a pattern seen in gametes or haplotypes.
Although linkage can certainly contribute to this
pattern, so can a number of other population genetic
processes. It is even possible that several processes
operating simultaneously produce a given pattern 
of gametic disequilibrium. Processes that maintain
or increase gametic disequilibrium include those 
discussed in the following sections.

Physical linkage

Linkage is the physical association of loci on a 
chromosome that causes alleles at the loci to be
inherited in their original combinations. This associ-
ation of alleles at loci on the same chromosome is
broken down by crossing over and recombination.
The probability that a recombination event occurs
between two loci is a function of the distance along
the chromosome between two loci. Loci that are 
very far apart (or on separate chromosomes) have
recombination rates approaching 50% and are said
to be unlinked. Loci located very near each other on
the same chromosome might have recombination

··
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Figure 2.19 The decay of gametic disequilibrium (D) over
time for four recombination rates. Initially, there are only
coupling (P11 = P22 = 1/2) and no repulsion gametes 
(P12 = P21 = 0). Gametic disequilibrium decays as a function
of time and the recombination rate (Dtn = Dt0(1 − r)n)
assuming a single large population, random mating, and 
no counteracting genetic processes. If all gametes were
initially repulsion, gametic disequilibrium would initially
equal −0.25 and decay to 0 in an identical fashion.
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rates of 5 or 1% and would be described as tightly
linked. Therefore, the degree of physical linkage of
loci dictates the recombination rate and thereby the
decay of gametic disequilibrium.

Linkage-like effects can be seen in some chromo-
somes and genomes where gametic disequilibrium 
is expected to persist over longer time scales due to
exceptional inheritance or recombination patterns.
Organisms such as birds and mammals have chromo-
somal sex determination, as with the well-known 
X and Y sex chromosome system in humans. Loci
located on X chromosomes experience recombination
normally whereas those on Y chromosomes experi-
ence no recombination. This is caused by the Y 
chromosome lacking a homologous chromosome to
pair with at meiosis since YY genotypes do not exist.
In addition, we would expect that the rate of decay of
gametic disequilibrium for X chromosomes is about
half that of autosomes with comparable recombina-
tion rates, since X recombination takes place only 
in females (XX) at meiosis, and not at all in males
(XY). Organelle genomes found in mitochondria and
chloroplasts are a case where gametic disequilibrium
persists indefinitely since these genomes are unipar-
entally inherited and do not experience observable
levels of recombination.

Natural selection

Natural selection is a process that can continuously
counteract the randomizing effects of recombina-
tion. Imagine a case where genotypes have different
rates of survival or different fitnesses. In such a case
natural selection will reduce the frequency of lower

fitness genotypes, which will also reduce the number
of gametes these genotypes contribute to forming 
the next generation. At the same time that natural
selection is acting, recombination is also working to
randomize the associations of alleles at the two loci.
Figure 2.20 shows an example of this type of natural
selection acting in concert with recombination to
maintain gametic disequilibrium.

The action of natural selection acting on differences
in gamete fitness can produce steady states other
than D = 0, expected eventually under even free
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Figure 2.20 The decay of gametic disequilibrium (D) over
time when both strong natural selection and recombination
are acting. Initially, there are only coupling (P11 = P22 = 1/2)
and no repulsion gametes (P12 = P21 = 0). The relative fitness
values of the AAbb and aaBB genotypes are 1 while all other
genotypes have a fitness of 1/2. Unlike in Fig. 2.19, gametic
disequilibrium does not decay to zero over time due to the
action of natural selection.

To simulate the combined action of recombination and natural selection on gametic disequilibrium,
try the program Populus, which can be obtained by following the link on the text website.

In the Java version of Populus, use the Natural Selection menu to select the Two-Locus Selection
simulation. Set pAB = pab = 0.5 and pAb = paB = 0.0 as a case where there is maximum gametic
disequilibrium initially. Use fitness values of wAaBb = 1, all others = 0.5 and wAAbb = waaBB = 1, all
others = 0.5 to generate strong natural selection (relative fitness values are explained in Chapter 6).
Finally, try recombination values of r = 0.5 and 0.05. Focus your attention on the D vs. t plot. 
What do the two different fitness cases do to levels of gametic disequilibrium and how effective is
recombination in opposing or accelerating this effect?

For those who would like to see the details behind the recombination and natural selection
model in Populus, a spreadsheet version of this model is available in Microsoft Excel format. The
spreadsheet model will allow you to see all the calculations represented by formulas along with a
graph of gametic disequilibrium over time.

Interact box 2.5
Gametic disequilibrium under both recombination and natural selection
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recombination. In such cases, the population reaches 
a balance where the action of natural selection to
increase D and the action of recombination to decrease
D cancel each other out. The point where the two pro-
cesses are exactly equal in magnitude but opposite 
in their effects is where gametic disequilibrium will
be maintained in a population. It is important to 
recognize that the amount of steady-state gametic
disequilibrium depends on which genotypes have high
fitness values, so there are also plenty of cases where
natural selection and recombination act in concert
to accelerate the decay of gametic disequilibrium more
rapidly than just recombination alone.

Mutation

Alleles change from one form to another by the random
process of mutation, which can either increase or
decrease gametic disequilibrium. First consider the
case of mutation producing a novel allele not found
previously in the population. Since a new allele is
present in the population as only a single copy, it is
found only in association with the other alleles on
the chromosome strand where it originated. Thus, 
a novel allele produced by mutation would initially
increase gametic disequilibrium. Should the novel
allele persist in the population and increase in fre-
quency, then recombination will work to randomize
the other alleles found with the novel allele and even-
tually dissipate the gametic disequilibrium. Mutation
can also produce alleles identical to those currently
present in a population. In that case, mutation can
contribute to randomizing the combinations of alleles

at different loci and thereby decrease levels of gametic
disequilibrium. On the other hand, if the popula-
tion is at gametic equilibrium mutation can create
gametic disequlibrium by changing the frequencies
of gamete haplotypes. However, it is important to
recognize that mutation rates are often very low and
the gamete frequency changes caused by mutation
are inversely proportional to population size, so that
mutation usually makes a modest contribution to
overall levels of gametic disequilibrium.

Mixing of diverged populations

The mixing of two genetically diverged populations,
often termed admixture, can produce substantial
levels of gametic disequilibrium. This is caused by
different allele frequencies in the two source popula-
tions that result in different gamete frequencies at
gametic equilibrium. Recombination acts to produce
independent segregation but it does so only based 
on the allele frequencies within a group of mating
individuals. Table 2.13 gives an example of gametic
disequilibrium produced when two populations with
diverged allele frequencies are mixed equally to form
a third population. In the example, the allele-frequency
divergence is large and admixture produces a new
population where gametic disequilibrium is 64% of its
maximum value. In general, gametic disequilibrium
due to the admixture of two diverged populations
increases as allele frequencies become more diverged
between the source populations, and the initial com-
position of the mixture population approaches equal
proportions of the source populations.

··

Table 2.13 Example of the effect of population admixture on gametic disequilibrium. In this case the two
populations are each at gametic equilibrium given their respective allele frequencies. When an equal number
of gametes from each of these two genetically diverged populations are combined to form a new population,
gametic disequilibrium results from the diverged gamete frequencies in the founding populations. The allele
frequencies are: population 1 p1 = 0.1, p2 = 0.9, q1 = 0.1, q2 = 0.9; population 2 p1 = 0.9, p2 = 0.1, q1 = 0.9, 
q2 = 0.1. In population 1 and population 2 gamete frequencies are the product of their respective allele
frequencies as expected under independent segregation. In the mixture population, all allele frequencies
become the average of the two source populations (0.5) with Dmax = 0.25.

Gamete/D Gamete frequency Population 1 Population 2 Mixture population

A1B1 g11 0.01 0.81 0.41
A2B2 g22 0.81 0.01 0.41
A1B2 g12 0.09 0.09 0.09
A2B1 g21 0.09 0.09 0.09
D 0.0 0.0 0.16
D’ 0.0 0.0 0.16/0.25 = 0.64
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Mating system

As covered earlier in this chapter, self-fertilization
and mating between relatives increases homozy-
gosity at the expense of heterozygosity. An increase
in homozygosity causes a reduction in the effective
rate of recombination because crossing over between
two homozygous loci does not alter the gamete 
haplotypes produced by that genotype. The effective
recombination fraction under self-fertilization is:

(2.30)

where s is the proportion of progeny produced by
self-fertilization each generation. This is based on 
the expected inbreeding coefficient at equilibrium 

(Haldane 1924). Figure 2.21 shows the 

decay in gametic disequilibrium predicted by 
equation 2.30 for four self-fertilization rates in the
cases of free recombination (r = 0.5) and tight link-
age (r = 0.05). Self-fertilization clearly increases 
the persistence of gametic disequilibrium, with
marked effects at high selfing rates. In fact, the pre-
dominantly self-fertilizing plant Arabidopsis thaliana
exhibits gametic disequilibrium over much longer
regions of chromosome compared to outcrossing
plants and animals (see review by Flint-Garcia et al.
2003).
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Chance

It is possible to observe gametic disequilibrium just
by chance in small populations or small samples 
of gametes. Recombination itself is a random pro-
cess in terms of where crossing over events occur in
the genome. As shown in the Appendix, estimates
are more likely to approach their true values as
larger samples are taken. This applies to mating 
patterns and the number of gametes that contribute
to surviving progeny in biological populations. If
only a few individuals mate (even at random) or 
only a few gametes found the next generation, then
this is a small “sample” of possible gametes that
could deviate from independent segregation just 
by chance. When the chance effects due to popula-
tion size and recombination are in equilibrium, the 
effects of population size can be summarized approx-
imately by:

(2.31)

where Ne is the genetic effective population size 
and r is the recombination fraction per generation
(Hill & Robertson 1968; Ohta & Kimura 1969; the
basis of this type of equation is derived in Chapter 4).
As shown in Fig. 2.22, when the product of Ne and 
r is small, chance sampling contributes to main-
taining some gametic disequilibrium since only a 
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Figure 2.21
The decay of gametic
disequilibrium (D) 
over time with random
mating (s = 0) and
three levels of self-
fertilization. Initially,
there are only coupling
(P11 = P22 = 1/2) and 
no repulsion gametes
(P12 = P21 = 0). Self-
fertilization slows 
the decay of linkage
disequilibrium
appreciably even 
when there is free
recombination 
(r = 0.5).
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few gametes contribute to the next generation when
Ne is small or only a few recombinant gametes exist
when r is small. The lesson is that D as we have used
it in this section assumes a large population size 

(similar to Hardy–Weinberg) so that actual gamete
frequencies approach those expected based on allele
frequencies, an assumption that is not always met 
in actual populations.

··

In practice, the recombination fraction for two loci can be measured by crossing a double
heterozygote with a double homozygote and then counting the recombinant gametes. However,
this basic experiment cannot be carried out with species that cannot easily be mated in controlled
crosses. An alternative but approximate means to test for gametic equilibrium is to examine the
joint frequencies of genotypes at pairs of loci. If there is independent segregation at the two loci
then the genotypes observed at one locus should be independent of the genotypes at the other
locus. Such contingency table tests are commonly employed to determine whether genotypes at
one locus are independent of genotypes at another locus.

Contingency table tests involve tabulating counts of all genotypes for pairs of loci. In 
Table 2.14, genotypes observed at two microsatellite loci (AC25-6#10 and AT150-2#4) within 
a single population (the Choptank river) of the striped bass Morone saxatilis are given. The
genotypes of 50 individuals are tabulated with alleles at each locus are represented with numbers.
For example, there were 15 fish that had a 22 homozygous genotype for locus AC25-6#10 and 
also had a 44 homozygous genotype for locus AT150-2#4. This joint frequency of homozygous
genotypes is unlikely if genotypes at the two loci are independent, in which case the counts 
should be distributed randomly with respect to genotypes.

In the striped bass case shown here, null alleles (microsatellite alleles that are present in the
genome but not reliably amplified by PCR) are probably the cause of fewer than expected
heterozygotes that lead to a non-random joint distribution of genotypes (Brown et al. 2005). 
Thus, the perception of gametic disequilibrium can be due to technical limitations of genotyping
techniques in addition to population genetic processes such as physical linkage, self-fertilization,
consanguineous mating, and structured populations that cause actual gametic disequilibrium.

Genepop on the Web can be used to construct genotype count tables for pairs of loci and 
carry out statistical tests that compare observed to those expected by chance. Instructions on 
how to use Genepop and an example of striped bass microsatellite genotype data set in Genepop
format are available on the text website along with a link to the Genepop site.

Interact box 2.6 Estimating genotypic disequilibrium

Table 2.14 Joint counts of genotype frequencies observed at two microsatellite loci in the fish Morone
saxatilis. Alleles at each locus are indicated by numbers (e.g. 12 is a heterozygote and 22 is a homozygote).

Genotype at locus AC25-6#10

Genotype at locus AT150-2#4 12 22 33 24 44 Row totals

22 0 0 1 0 0 1
24 1 4 0 4 1 10
44 2 15 0 0 0 17
25 0 3 0 0 0 3
45 0 8 0 1 0 9
55 1 1 0 0 0 2
26 0 1 0 2 0 3
46 1 3 0 0 0 4
56 0 0 0 1 0 1
Column totals 5 35 1 8 1 50
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Chapter 2 review

• Mendel’s experiments with peas lead him to hypo-
thesize particulate inheritance with independent
segregation of alleles within loci and independent
assortment of multiple loci.

• Expected genotype frequencies predicted by the
Hardy–Weinberg equation (for any number of
alleles) show that Mendelian inheritance should
lead to constant allele frequencies across genera-
tions. This prediction has a large set of assumptions
about the absence of many population genetic
processes. Hardy–Weinberg expected genotype
frequencies therefore serve as a null model used
as a standard of reference.

• The null model of Hardy–Weinberg expected geno-
type frequencies can be tested directly or assumed
to be approximately true in order to test other
hypotheses about Mendelian inheritance.

• The fixation index (F) measures departures from
Hardy–Weinberg expected genotype frequencies
(excess or deficit of heterozygotes) that can be
caused by patterns of mating.

• Mating among relatives or consanguineous 
mating causes changes in genotype frequencies
(specifically a decrease in heterozygosity) but no
changes in allele frequencies.

• Consanguineous mating can also be viewed as 
a process that increases the chances that alleles

descended from a common ancestor are found
together in a diploid genotype (autozygosity).

• The fixation index, the autozygosity, and the co-
efficient of inbreeding are all interrelated measures
of changes in genotype frequencies with consan-
guineous mating.

• Consanguineous mating may result in inbreeding
depression, which ultimately is caused by over-
dominance (heterozygote advantage) or domin-
ance (deleterious recessive alleles).

• The gametic disequilibrium parameter (D) meas-
ures the degree of non-random association of alleles
at two loci. Gametic disequilibrium is broken down
by recombination.

• A wide variety of population genetic processes –
natural selection, chance, admixture of populations,
mating system, and mutation – can maintain and
increase gametic disequilibrium even between loci
without physical linkage to reduce recombination.

Further reading

For a detailed history of Gregor Mendel’s research 
in the context of early theories of heredity as well 
as the analysis of Mendel’s results by subsequent
generations of scientists see:

Orel V. 1996. Gregor Mendel: the First Geneticist. Oxford
University Press, Oxford.

For recent perspectives on whether or not Gregor
Mendel may have fudged his data, see a set of articles
published together:

Myers JR. 2004 An alternative possibility for seed coat
color determination in Mendel’s experiment. Genetics
166: 1137.

Novitiski E. 2004. Revision of Fisher’s analysis of Mendel’s
garden pea experiments. Genetics 166: 1139–40.

Novitiski E. 2004. On Fisher’s criticism of Mendel’s
results with the garden pea. Genetics 166: 1133–6.

To learn more about the population genetics of DNA
typing in criminal investigation consult:

Commission on DNA Forensic Science. 1997. The 
evaluation of forensic DNA evidence. Proceedings of 
the National Academy of Sciences USA 94: 5498–500
(an excerpt from the Executive Summary of the 1996
National Research Council Report).

Gill P. 2002. Role of short tandem repeat DNA in 
forensic casework in the UK – past, present, and
future perspectives. BioTechniques 32: 366–85.

National Research Council, Commission on DNA Forensic
Science. 1996. The Evaluation of Forensic DNA Evid-
ence: an Update. National Academy of Sciences Press,
Washington, DC.
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Figure 2.22 Expected levels of gametic disequilibrium (ρ2)
due to the combination of finite effective population size (Ne)
and the recombination rate (r). Chance sampling will
maintain gametic disequilibrium if very few recombinant
gametes are produced (small r), the population is small so 
that gamete frequencies fluctuate by chance (small Ne), or 
if both factors in combination cause chance fluctuations in
gamete frequency (small Ner).
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To learn more about the Mendelian genetics of the
ABO blood group, see the brief history:

Crow JF. 1993. Felix Bernstein and the first human
marker locus. Genetics 133: 4–7.

Inbreeding depression has a large literature and
probing its causes employs a wide array of methods.
A good single source from which to learn more is:

Lynch M and Walsh B. 1998. Genetics and Analysis of
Quantitative Traits. Sinauer Associates, Sunderland,
MA.

For more detail on ways to estimate gametic dis-
equilibrium, consult:

Gaut BS and Long AD. 2003. The lowdown on linkage
disequilibrium. Plant Cell 15: 1502–6.

A review of estimators of gametic disequilibrium, 
the genetic processes that influence its levels, and
extensive references to past papers can be found in:

Flint-Garcia SA, Thornsberry JM, and Buckler ES.
2003. Structure of linkage disequilibrium in plants.
Annual Review of Plant Biology 54: 357–74.

··

Problem box 2.1 answer

Using the allele frequencies in Table 2.3 
we can calculate the expected genotype
frequencies for each locus:

D3S1358: 2(0.2118)(0.1626) = 0.0689;
D21S11: 2(0.1811)(0.2321) = 0.0841;
D18S51: (0.0918)2 = 0.0084;
vWA: (0.2628)2 = 0.0691;
FGA: 2(0.1378)(0.0689) = 0.0190;
D8S1179: 2(0.3393)(0.2015) = 0.1367;
D5S818: 2(0.3538)(0.1462) = 0.0992;
D13S317: 2(0.0765)(0.3087) = 0.0472;
D7S820: 2(0.2020)(0.1404) = 0.0567.

As is evident from the allele designations, 
the amelogenin locus resides on the sex
chromosomes and can be used to distinguish
chromosomal males and females. It is a
reasonable approximation to say that half of
the population is male and assign a frequency
of 0.5 to the amelogenin genotype. The
expected frequency of the ten-locus genotype
is therefore 0.0689 × 0.0841 × 0.0084 ×
0.0691 × 0.0190 × 0.1367 × 0.0992 × 0.0472
× 0.0567 × 0.5 = 1.160 × 10−12. The odds ratio
is one in 862,379,847,814. This 10-locus DNA
profile is effectively a unique identifier since the
current human population is approximately
6.5 billion and we would expect to observe
this exact 10-locus genotype only once in a
population 132 times larger than the current
human population. In fact, it is likely that this 
10-locus genotype has only occurred once 
in all of the humans who have ever lived.

Problem box 2.2 answer

For hypothesis 1 the observed frequency of
the bb genotype is given by:

f(aa bb) + f(A_ bb) = fa2fb2 + (1 − fa2)fb2

Expanding the second term gives:

= fa2fb2 + fb2 − fa2fb2 = fb2

The other allele frequencies can be obtained by
similar steps. This must be true under Mendel’s
second law if the two loci are truly independent.

For hypothesis 2 the frequency of the 
B allele can be obtained from the fact that 
all the allele frequencies must sum to 1:

fA + fB + fO = 1

Then subtracting fB from each side gives:

fA + fO = 1 − fB

Squaring both sides gives:

(fA + fO)2 = (1 − fB)2

The left side of which can be expanded to:

(fA + fO)2 = (fA + fO)(fA + fO)
= fO2 + 2fAfO + fA2

And then:

(1 − fB)2 = fO2 + 2fAfO + fA2

Problem box answers
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The last expression on the right is identical to the
sum of the first and second expected genotype
frequencies for hypothesis 2 in Table 2.3.
Expressions for the frequency of the A and 
O alleles can also be obtained in this fashion.

Problem box 2.3 answer

The first step is to hypothesize genotypes
under the two models of inheritance, as shown
in Tables 2.6 and 2.7 for blood groups. Then
these genotypes can be used to estimate allele
frequencies (symbolized here with a P
to indicate probability). For the hypothesis of
two loci with two alleles each:

Pa2 = = 0.270, Pa = 0.52

Pb2 = = 0.260, Pb = 0.51

PA = 1 − Pa = 0.48, PB = 1 − Pb = 0.49

For the hypothesis of one locus with three alleles:

(1 − PB)2 = (PA + PC)2 = PA2 + 2PAPC + PC2

= = 0.260
 

728 261
3816

+

 

728 261
3816

+
 

769 261
3816

+

1 − PB = √0.260 = 0.51
PB = 0.49

(1 − PA)2 = (PB + PC)2 = PB2 + 2PBPC + PC2

= = 0.270

1 − PA = √0.270 = 0.52
PA = 0.48
PC = 1 − PA − PB = 0.03

The expected numbers of each genotype as
well as the differences between the observed
and expected genotype frequencies are worked
out in the tables. For the hypothesis of two loci
with two alleles each, χ2 = 0.266, whereas 
χ2 = 19,688 for the hypothesis of one locus
with three alleles. Both of these tests have 
one degree of freedom (4 genotypes – 2 for
estimated allele frequencies – 1 for the test),
giving a critical value of χ2

0.05,1 = 3.84 from
Table 2.5. The deviations between observed and
expected genotype frequencies could easily be
due to chance under the hypothesis of two loci
with two alleles each. However, the observed
genotype frequencies are extremely unlikely
under the hypothesis of three alleles at one locus
since the deviations between observed and
expected genotype frequencies are very large.

 

769 261
3816

+

Phenotype Genotype Observed Expected number of genotypes Observed– (Observed–expected)2/
expected expected

Hypothesis 1: two loci with two alleles each
Purple/smooth A_B_ 2058 3816 (1 − 0.522)(1 − 0.512) 2.0 0.002

= 2060.0
Purple/wrinkled A_bb 728 3816 (1 − 0.522)(0.51)2 3.8 0.020

= 724.2
Yellow/smooth aaB_ 769 3816 (0.52)2(1 − 0.512) 5.5 0.040

= 763.5
Yellow/wrinkled aabb 261 3816 (0.52)2(0.51)2 = 268.4 −7.4 0.204

Hypothesis 2: one locus with three alleles
Purple/smooth AB 2058 3816 (2(0.48)(0.49)) = 1795 63.0 38.5
Purple/wrinkled AA, AC 728 3816 ((0.48)2 + 2(0.48)(0.03)) −261.1 68.9

= 989.1
Yellow/smooth BB, BC 769 3816 ((0.49)2 + 2(0.49)(0.03)) −259.4 63.7

= 1028.4
Yellow/wrinkled CC 261 3816 (0.03)2 = 3.4 257.6 19,517.0
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3.1 The effects of sampling lead to 
genetic drift

• Biological populations are finite.
• A simple sampling experiment with micro-

centrifuge tube “populations.”
• The Wright–Fisher model of sampling.
• Sampling error and genetic drift in biological 

populations.

In Chapter 2, that population size is very large, effect-
ively infinite, was among the assumptions listed for
Hardy–Weinberg expected genotype frequencies to
be realized. This entire chapter will be devoted to the
changes in allele and genotype frequency that occur
when this assumption is not met and populations are
small or at least finite. Population size has profound
effects on allele frequencies in biological populations
and has a specific definition in the context of popula-
tion genetics. A variable for population size in one form
or another appears in many of the fundamental equa-
tions used to predict genotype or allele frequencies in
populations. In those expectations where no explicit
variable for population size appears there is an
assumption instead, just as in the Hardy–Weinberg
expectation for genotype frequencies. There is a
strong biological motivation behind this attention to
population size. All biological populations, without
exception, are finite. Therefore, no actual population
ever exactly meets the population size assumption of
Hardy–Weinberg, although some may be large enough
to show few genetic effects of finite size over relatively
short periods of time. There is also a tremendous range
of population sizes in the biological world. An under-
standing of the population genetic effects of population
size will help to explain why some populations and
species violate the assumptions to a greater degree
than others, making sense of both the factors that
cause differences in population size and the conse-
quences of such differences. The causes and allele-
frequency consequences of finite population size can

be understood and modeled in a variety of ways.
Those models and concepts critical to understanding
the population genetic impacts of finite population
size will be the topics of this chapter.

A simple, hands-on demonstration can be used 
to show the role that population size plays in allele
frequency in a population from one generation to the
next. A plastic beaker filled with micro-centrifuge
tubes can be used to represent gametes (Fig. 3.1). 
The micro-centrifuge tubes are of two different 
colors, say blue and clear, and there are 50 of each
per beaker. Each beaker approximates a population 
with one diallelic locus where the allele frequencies
are p = q = 0.5. Imagine sampling four tubes from a
beaker and recording the resulting frequencies of the
blue and clear tubes. Then imagine (after returning
the four tubes and mixing the contents of the beaker)
drawing out a sample of 20 tubes and recording the
frequency of the blue and clear tubes. These handfuls
of micro-centrifuge tubes represent the sampling pro-
cess that occurs during reproduction and can be used
to understand what happens to allele frequencies
over time in a finite population.

CHAPTER 3

Genetic drift and effective population size

Figure 3.1 Beakers filled with micro-centrifuge tubes can
be used to simulate the process of sampling and genetic drift. 
For a color version of this image see Plate 3.1.
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Some results typical for sampling from these micro-
centrifuge tube populations are given in Table 3.1.
The results have several striking patterns. First,
micro-centrifuge tube “allele” frequencies fluctuate
quite a bit in the samples. In some cases the results
are 0.50/0.50 like in the ancestral population, but
the results range from 0.35/0.65 in the sample of 20
to 0.0/1.0 in the sample of four. This latter result is
called fixation or loss, since one allele composed the
entire sample (its frequency went to 1) and the other
allele was not sampled at all (its frequency went to
zero). Second, the amount of fluctuation in the allele
frequencies appears to be related to the size of the
sample that was taken from the original population.
The samples of four had greater fluctuations in 
allele frequency including a case of fixation and loss. 
The samples of 20 deviated somewhat less from the 
original allele frequencies of 0.50/0.50 and in those
10 trials no fixation/loss events were observed.

Compare these micro-centrifuge tube sampling
results with what would be expected in an infinite
population with p = q = 0.5. In the infinite population
there would not be a sample of four or 20 drawn to
found the next generation, the entire population would
be used to found the next generation. Within the
bounds of the micro-centrifuge tube population ana-
logy, that would be like taking the entire beaker and
just pouring it into another beaker to found the next
generation: the allele frequencies would remain ident-
ical to the original frequency. This would also mean
that if all other assumptions of Hardy–Weinberg were
met, genotype frequencies would also remain constant
(1/4 AA, 1/2 Aa, and 1/4 aa with p = q = 0.5).

Now return to the finite micro-centrifuge tube
populations with a sample of two individuals, or 

four gametes, drawn to found the population in the
next generation. What are the chances that this 
next generation will consist of only AA genotypes?
This is the same as asking what is the probability of
sampling four blues or clear tubes in a handful of
four. Since drawing one clear or blue tube has an
independent probability of 1/2, the probability of get-
ting four is (1/2)4 = 1/16. The same result can be seen 
from the perspective of genotypes by asking what 
are the chances of founding a population with two
homozygous genotypes. If the source population is 
in Hardy–Weinberg equilibrium then 1/4 of all geno-
types are one of the two homozygotes. The chance 
of drawing two identical homozygous genotypes is
the product of their independent probabilities, or
(1/4)2 = 1/16.

The micro-centrifuge tube populations are a 
low-tech demonstration that genotype and allele fre-
quencies fluctuate from one generation to the next
due to small samples, or sampling error, in a pro-
cess called genetic drift. The amount of genetic drift
increases as the size of the sample used to found the
next generation decreases. Another way to restate
the population size assumption of Hardy–Weinberg
is to say instead that Hardy–Weinberg assumes that
there is very little or no genetic drift occurring.

N == 4 N == 20

Trial Blue Clear p Blue Clear p

1 1 3 0.25 12 8 0.60
2 2 2 0.50 10 10 0.50
3 3 1 0.75 9 11 0.45
4 0 4 0.0 7 13 0.35
5 2 2 0.50 8 12 0.40
6 1 3 0.25 11 9 0.55
7 2 2 0.50 11 9 0.55
8 3 1 0.75 12 8 0.60
9 2 2 0.50 10 10 0.50

10 1 3 0.25 9 11 0.45

Table 3.1 Typical
results of sampling
from beaker
populations of
micro-centrifuge
tubes where the
frequency of both
blue (p) and clear
tubes is 1/2. After
each draw, all tubes
are replaced and the
beaker is mixed to
randomize the tubes
for the next draw.

Sampling error The difference between 
the value found in a finite sample from 
a population and the true value in the
population.
Genetic drift Random changes in allele
frequency from one generation to the next in
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To extend and generalize the model of genetic drift
started with the micro-centrifuge tube populations,
a model of the biological process of reproduction 
is helpful. To do this, let’s consider the process of
reproduction in populations. During reproduction,
individual adult organisms produce gametes. These
gametes are exchanged with mates and fuse to form
zygotes, and these zygotes develop into a new gen-
eration of adult organisms (Fig. 3.2). This schematic 
of the biological life cycle is called the Wright–Fisher
model of sampling (introduced by Sewall Wright
(1931) and Ronald A. Fisher (1999; originally 

published in 1930)). It is not completely biologically
realistic. There is obviously not an infinite number 
of gametes in any real population and sampling
events can take place at many points during the life
history of a population of organisms. But it allows
the process of genetic drift to be reduced to a point
that it can be modeled in a simple fashion. The
Wright–Fisher model makes assumptions identical
to those of Hardy–Weinberg (see section 2.2), with
the exception that the population is finite rather than
approaching infinite. Particularly critical assump-
tions include:

• generations are discrete and do not overlap,
equivalent to adults that reproduce synchron-
ously but only once during their lifetime;

• the numbers of females and males are equal;
• the size of the population (N individuals) remains

constant through time; and
• all individuals are equal in their production of

gametes and all gametes are equally viable,
equivalent to no natural selection.

These assumptions reduce the complexity of sam-
pling error in biological populations, concentrating
all sampling into a single step as an approximation. 
This simplification approximates the genetic drift
that occurs in biological populations. For example,
sampling at several points in the life cycle can be
equivalent in its effect on allele frequencies to the
same total amount of sampling at a single point in
the life cycle. As will be shown later in this chapter,
sampling events may occur at many stages of the life

biological populations due to the finite
samples of individuals, gametes, and
ultimately alleles that contribute to the next
generation. The amount of genetic drift
increases as the size of the sample used to
found the next generation decreases.
Stochastic process A process where
individual outcomes are dictated by chance
but the average of a large number of
outcomes can be described as a probability
distribution based on initial conditions.
Wright–Fisher model A simplified version of
the biological life cycle where all sampling to
found the next generation occurs from 
an infinite pool of gametes built from 
equal contributions of all individuals. This
approximation is commonly employed to
model genetic drift.

Random sample of 
2N gametes

Infinite number
of gametesN individuals

Generation t Generation t + 1

Infinite number
of gametesN individuals

Figure 3.2 The Wright–Fisher model of genetic drift uses a simplified view of biological reproduction where all sampling occurs
at one point: sampling 2N gametes from an infinite gamete pool. In this case N diploid individuals (N/2 of each sex) generate an
infinite pool of gametes where allele frequencies are perfectly represented, and a finite sample of 2N alleles is drawn from this
gamete pool to form N new diploid individuals in the next generation. Genetic drift takes place only in the random sample of 2N
gametes to form the next generation. Major assumptions include non-overlapping generations, equal fitness of all individuals, and
constant population size through time. The model can easily be adjusted for haploid individuals or loci by assuming 2N individuals
or sampling N gametes to form the next generation.
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cycle in actual biological populations. The implica-
tions of relaxing other assumptions such as constant
population size are topics of later chapters.

A major limitation of the micro-centrifuge tube
demonstration is that it shows the effects of genetic
drift over only one generation. A more general model
of the effect of sampling error is needed to predict
what may happen to allele frequencies over many
generations. A general model would sample from one
generation to found the next generation, then build
a large pool of gametes (like the beakers of micro-
centrifuge tubes) with those new allele frequencies.
The sampling process would then be continued 
for many generations. Figure 3.3 shows computer-
simulated allele frequencies based on this more 
general model for many generations under the
assumptions of the Wright–Fisher model (note that
the populations in Fig. 3.3 are twice as large as the
samples of micro-centrifuge tubes). The effects of
genetic drift are more obvious over longer periods 
of time. Allele frequencies over a few generations
change at random, both increasing and decreasing,
sometimes changing very little in one generation

and other times changing more substantially. There
is a clear trend that over time in these genetic drift
simulations that the frequency of one allele reaches
either fixation (p = 1.0) or loss (p = 0.0), identical to
loss (q = 0.0) and fixation (q = 1.0) for the alternate
allele. There is also a trend that fixation or loss occurs
in fewer generations with the smaller between-
generation sample size and more slowly with the
larger between-generation sample size. Since these
simulations do not include any processes that could
reintroduce genetic variation, once a population has
reached fixation or loss there can be no further
change in allele frequency.

The bottom panels of Fig. 3.3 show genotype 
frequencies based on random mating for one of the 
populations represented in the top panels. Genetic
drift clearly causes genotype frequencies to change
over time along with the changes in allele frequency.
This is in contrast to the processes considered in
Chapter 2, such as consanguineous mating, that result
in changes in genotype frequency only but do not
alter allele frequency. Genetic drift is most commonly
modeled and demonstrated from the perspective of
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Figure 3.3 The results of genetic drift continued every generation in populations of N = 4 and N = 20. In the top panels, the 
six lines represent independent replicates or independent populations experiencing genetic drift starting at the same initial allele
frequency (p = 0.5). The random nature of genetic drift can be seen by the zig-zag changes in allele frequency that have no
apparent direction. Allele frequencies that reach the upper or lower axes represent cases of fixation or loss. In the bottom panels,
the genotype frequencies are shown for the allele frequencies represented by the black and blue lines under the assumption of
random mating within each generation. The changes in genotype frequencies are a consequence of changes in allele frequencies
due to genetic drift.
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allele frequencies since it is easier to summarize a
diallelic locus in a population as two allele frequencies
rather than three genotype frequencies. But remem-
ber that genotype frequencies are affected by genetic
drift too, and genotype frequencies can always be
obtained by multiplication given allele frequencies
under the assumption of random mating.

Up to this point, the beakers of micro-centrifuge
tubes and computer simulations only considered cases
of alleles at equal initial frequencies (p = q = 0.5).
Figure 3.4 shows results of computer simulations 
for genetic drift where initial allele frequencies are 
p = 0.2 and p = 0.8 with identical population sizes of 
N = 25. Identical simulations under the assumptions 
of the Wright–Fisher model were used to produce
both Figs 3.3 and 3.4, so the results in the two cases
can be compared directly. Initial allele frequencies 
do influence the outcome of genetic drift in the 
simulations shown in Fig. 3.4. The lower initial allele
frequency is associated with more frequent loss of the
allele (five of six replicates) while the higher initial
allele frequency fixed in five of six replicates. These
results are consistent with what would occur in a
much larger number of replicate simulations with
the same initial allele frequencies and population
size. A larger sample would show that the probability
that an allele reaches fixation under genetic drift is
the same as the initial allele frequency. This makes

intuitive sense, since with a lower initial frequency 
a population is closer in frequency to loss than to
fixation. If the direction and magnitude of genetic
drift in allele frequencies is random, there is a better
chance of reaching zero on average than reaching
one. This same pattern would be true for any initial
values of the allele frequency closer to zero or to one,
except in the special case of equal allele frequencies
where the chances of fixation or loss for an allele
would be equal.

Under the Wright–Fisher model the following are
general conclusions about the action of genetic drift
in finite populations:

• the direction of changes in allele frequency is 
random;

• the magnitude of random fluctuations in allele
frequencies from generation to generation
increases as the population size decreases;

• fixation or loss is the equilibrium state if there are
no other processes acting to counteract genetic
drift or reintroduce genetic variation;

• genetic drift changes allele frequencies and thereby
genotype frequencies; and

• the probability of eventual fixation of an allele is
equal to its initial frequency (or the probability of
ultimate loss of an allele is equal to one minus its
initial frequency).
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Figure 3.4 The results of genetic drift with different initial allele frequencies. The two panels have identical population sizes 
(N = 25) but initial allele frequency is p = 0.2 on the right and p = 0.8 on the left. The chances of fixation are equal to the initial
allele frequency, a generalization that can be seen by examining a large number of replicates of genetic drift. Consistent with this
expectation, more replicates go to loss on the left and more reach fixation on the right. Even with the difference in initial allele
frequencies, the random trajectory of allele frequencies is apparent.
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The next section of the chapter will develop two
probability models of sampling error to provide more
rigorous evidence for the conclusions reached in 
this section and to reach additional generalizations
about the action of genetic drift.

3.2 Models of genetic drift

• An introduction to the binomial distribution and
Markov chains.

• The diffusion approximation of genetic drift.

The last section demonstrated the phenomenon of
genetic drift caused by sampling error and drew some
general conclusions based on the results of computer
simulations. Building on this foundation, this section
will introduce three probability models that can be
used to confirm these and other general properties 
of the process of genetic drift. The first model, the
binomial distribution, will be used to show that the
magnitude of genetic drift from one generation to 

the next depends on allele frequencies in the popula-
tion. The second model, the Markov chain, will be
used to show the rate of change of allele frequencies
under genetic drift. The third model, a continuous
time approximation to the Markov chain, will be
introduced to show how genetic drift can be modeled
as the diffusion of particles.

The binomial probability distribution

To develop the first model, let’s return to the micro-
centrifuge tube populations from the last section.
When sampling a tube from the beaker there are only
two outcomes, a blue tube or a clear tube, which 
are used to represent the two alleles at one locus. 
The tubes are a specific case of a Bernoulli random
variable (sometimes called a binomial random 
variable), or a variable representing a trial or sample
that can have only two outcomes. Coin flips with
either heads or tails outcomes are another example
of a Bernoulli random variable. What we often 

Genetic drift can be simulated with either Populus or PopGene.S2. Try using Populus and following
the instructions here.

Under the Model menu, select Mendelian Genetics and then Genetic Drift. Make sure the
Monte Carlo tab is selected. The simulation dialog has entry fields for Population Size (N) and
Number of Loci (or replicates). Number of generations shown in the graphs can be specified as 
3N or a fixed number of generations (Other:) with radio buttons (the program will automatically
set the number of generations if all loci go to fixation or loss before the fixed number is reached).
Set allele frequencies of all loci collectively. Press the View button to see the results graph. The
model can be rerun with the Iterate button in the results window.

• Set the parameters for 10 loci and an initial allele frequency of 0.5, and view the results for 800
generations so that all fixation/loss events are visible. Examine drift for population sizes of 4, 20,
50, and 100. Record the generation of fixation or loss for 40 replicates of each population size.
What is the average number of generations to fixation or loss? Are there equal numbers of
fixation and loss events?

• Progressively reduce (or increase) the initial allele frequencies by intervals of 0.1 for a single
population size. Record the generation of fixation or loss for 50 replicates of initial allele
frequency. What is the observed relationship between initial allele frequency and probability 
of fixation or loss? Do these averages change if the population size changes?

Hint: using a spreadsheet program like Microsoft Excel can speed the calculation of averages for a
list of values. Enter the values in columns and then use the average function (“=AVERAGE( )” with 
the range specified in the parentheses, such as “C1 : C10” to indicate the values of cells 1 through
10 in column C). A wide range of other useful functions is provided under Functions . . . in the 
Insert menu.

Interact box 3.1 Genetic drift
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want to know is, what are the chances of obtaining 
a given set of Bernoulli outcomes? For example, 
what are the chances of obtaining four heads when
flipping a coin four times? In our micro-centrifuge
tube samples, what are the chances of one of the 
possible outcomes (20 blue, 19, blue, 18 blue, . . . , 
0 blue) when sampling 20 tubes from the beaker?
Answers to these types of questions require a means
to estimate a probability distribution.

The binomial (literally, “two names”) formula
defines the probability distribution for the sum of N
independent samples of a Bernoulli variable:

(3.1)

The binomial formula gives the probability of sam-
pling i A alleles in a sample of 2N from a population
where the A allele has a frequency of p and the 
alternate a allele is at a frequency of q. The pi and 
q2N−i terms estimate the probability of observing i
and 2N − i independent events each with probability 

p and q, respectively. The term (pronounced 

“two N draw i”) serves as a way to enumerate the 
different ways (or permutations) of obtaining i As in
a sample of 2N.

Applying the binomial to the micro-centrifuge
tube sampling results from the last section will illus-
trate how the binomial provides the probability for a
specific sampling outcome. In the beaker, the blue and
clear tubes were both at a frequency of p = q = 1/2. In
the draws of N = 4, a result of two blue and two clear
tubes occurred in four out of 10 draws or 40% of the
time (Table 3.1). When drawing samples of tubes
there are 2N possible combinations. So, for samples of
N = 4 there are 24 = 16 combinations (like the num-
ber of genotypes in a Punnett square for four alleles
at a locus). Of these 16 combinations, there are
exactly six (bbcc, bcbc, bccb, cbcb, cbbc, ccbb) which
yield two blue and two clear tubes. This same result
can be obtained by using

(3.2)

to enumerate the number of possible permutations 
of outcomes of one type in a sample of 2N objects.
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The ! notation stands for factorial, and n! equals 
1 × 2 × 3 × . . . × n − 1 × n and 0! = 1. The other part
of the binomial formula calculates the probability 
of obtaining a sample of i blue tubes and 2N − i
clear tubes. The blue tubes are at a frequency of p
in the population, so the probability of sampling i
of them is pi since each is an independent event. 
The same logic applies to the clear tubes, whose 
frequency in the population is q and the number
sampled is the remaining sample size not made up of
blue tubes or 2N − i, to give a probability of q2N−i.
Bringing both of these components of the binomial
formula together,

(3.3)

gives the expected frequency of draws of two blue
and two clear tubes when sampling four tubes. This
expected value is very close to what was observed 
in 10 draws of four tubes in Table 3.1.

The binomial formula can be used to calculate 
the expected probability of observing each of the 
possible outcomes when drawing samples of 2N = 4
and 2N = 20 micro-centrifuge tubes from beaker
populations. These probability distributions (Fig. 3.5)
summarize what we would expect to find if we 
drew many independent samples and then tabulated
the results. The probability for each bar in the 
histograms of Fig. 3.5 was determined using the
binomial formula. For example, the expected fre-
quency of sampling 12 blue tubes in a total sample 
of 20 tubes is

(3.4)

These probability distributions explain why a fixation/
loss event was observed when 2N = 4 but not for 
2N = 20, since the former outcome is expected in 
one out of 16 draws but the latter only once in
1,048,576 draws. With knowledge of the binomial
probability distribution, the Wright–Fisher model 
of genetic drift (Fig. 3.2) makes a lot of sense. It was
constructed, in fact, to articulate the assumptions
that underlie the use of the binomial formula and
binomial probability distributions to model genetic
drift.
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Applying the binomial formula to determine expected
probabilities associated with particular sampling out-
comes is useful, and there is an even broader lesson
that can be learned from the binomial. The examples
up to this point have focused on the expected value.

Shifting our perspective, we can use the binomial to
explore how variable allele-frequency changes under
genetic drift should be. The variance of a Bernoulli or
binomial random variable is:

σ2 = pq (3.5)

This result is derived in Math Box 3.1 for those 
readers who would like to work through the details.
The maximum variability will occur when p = q = 1/2.
The standard deviation ( ) and standard
error of the allele frequency,

(3.6)

are also easy to obtain (see Appendix). The standard
error is the standard deviation of a mean, and the
mean in this case is the expected value or allele 
frequency p or q. For genetic drift under the Wright–
Fisher model, equally frequent alleles will give the
widest range of outcomes for a given sample size 
(Fig. 3.6). The variability in allele frequency caused
by genetic drift decreases as a population approaches
fixation or loss, causing pq to approach zero (Fig. 3.7).
This result makes intuitive sense. When alleles are
equally frequent, sampling error is equally likely 
to increase or decrease allele frequency and could 
produce an outcome anywhere along the spectrum
of possible allele frequencies. At the other extreme,
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Figure 3.5
Probability
distributions for
binomial random
variables based on
samples of N = 4 (left)
and N = 20 (right) 
from populations
where p = q = 0.5.
These distributions
describe the expected
probability of each of
the possible outcomes
of the micro-centrifuge
sampling experiment
described in the text.

Two independent laboratory populations 
of the fruit fly Drosophila melanogaster
were observed for two generations. The
populations each had a size of N = 24
individuals with an equal number of 
males and females. In the first generation,
both populations were founded with 
fA = p = 0.5. In the second generation, one
population showed fA = p = 0.458 and the
other fA = p = 0.521. What are the chances
of observing these allele frequencies after
one generation of genetic drift?

Problem box 3.1
Applying the binomial formula

Bernoulli or binomial random variable
A variable representing a trial or sample that
can have only two possible outcomes, such as
zero or one.
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when one allele is very nearly fixed except for one 

copy of the alternate allele ( and ), 

drift has a reasonable chance of only several sampling
errors, such as no, one, two, or three copies of the
low-frequency allele. Sampling error that causes 
fixation of the high-frequency allele is quite likely.
However, sampling error that results in greatly
increased frequencies of the low-frequency allele in
one generation would be very, very unlikely.

There is a graphical metaphor to summarize 
the consequences of initial allele frequency for the 
range of outcomes in allele frequency under genetic
drift. Figure 3.8 shows the range of possible allele 
frequencies (0–1) in a population and indicates the
effects of genetic drift by the width of the arrows 
and the vertical scale. The range of outcomes prob-
able under drift depends on the allele frequency in a
population. When both alleles are equally frequent
(pq = 0.25, its maximum), the sampling error is the
largest so that the rate of genetic drift in changing
allele frequencies is greatest. When the allele fre-
quency is closer to fixation or loss (pq < 0.25), the
sampling error is smaller and the rate of genetic 

  
q

N
=

1
2  

p
N

= −1
1

2

drift in changing allele frequencies is also smaller.
This explains the tendency of populations to go to
fixation or loss under genetic drift. The sampling effect
is greatest when the genetic variation is greatest 
but also weakest when genetic variation is least 
(Fig. 3.8). A population is most likely to experience
larger changes in allele frequencies, toward fixation
or loss, due to drift when both alleles are near equal
frequencies. However, a population with strongly
unequal allele frequencies is less likely to experience
genetic drift of a magnitude that would equalize
allele frequencies.
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Figure 3.6 The standard error of the allele frequency 

for a binomial random variable for a sample 

size of N = 10 for a range of allele frequencies. The standard
error of the allele frequency decreases as the allele frequency
approaches fixation or loss. In the same way, genetic drift 
is less effective at spreading out the distribution of allele
frequencies as alleles approach fixation or loss. The standard
deviation is 0 when the allele frequencies are 0 or 1 since
there is no genetic variation and any size sample will
faithfully reproduce the allele frequencies in the source
population.
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Figure 3.7 Probability distributions for binomial random
variables based on samples of N = 20 from populations 
where the allele frequency is 0.50, 0.75, or 0.95 (dark blue,
white, and light blue bars, respectively). The range of
probable outcomes with sampling depends on the allele
frequency. As allele frequencies approach the boundaries of
fixation or loss, there is a decreasing number of outcomes
other than fixation or loss that are probable due to 
sampling error.
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Figure 3.8 A schematic illustration of how the effects 
of genetic drift due to sampling error depend on allele
frequencies in a population. The horizontal axis represents
allele frequency and the width of the arrows represents the 

standard error of allele frequency at a given 

allele frequency. Larger standard errors for allele frequency
are another way of saying that sampling error will cause a
greater range of outcomes, equivalent to a larger effect of
genetic drift.
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Markov chains

The next step in understanding genetic drift is to 
consider its effects in a large number of replicate 
populations. Instead of focusing on allele frequency
in just a single population like in the last section, 
let’s now explore the case where there is a collection
of numerous independent but identical populations
(an infinite number of replicate populations is some-
times called an ensemble in physics and mathematics).
Using the approach of genetic drift in multiple finite
populations, this section will cultivate an under-
standing of how drift works on average among many
populations and will develop a prediction of how
rapidly genetic drift causes populations to reach
fixation and loss.

To get started, consider populations composed of 
a diallelic locus in a single diploid individual. Since
there are only two alleles in a population, there are
three possibilities for the numbers of one of the alleles:
zero, one, and two copies. Each of these possible states
in a population could be referred to by the number of
A alleles, 0 through 2, which can be summarized in

notation as P(0), P(1), and P(2). With this very basic
type of population, we can ask: what are chances
that a population starting out in one of these three
states ends up in one of these three states due to 
sampling error? For example, what is the chance of
starting out with two copies of A and ending up with
one copy of A with a sample size of one individual
(two gametes) between generations? This chance 
is known as the transition probability for allelic
states. The transition probability is determined with
the binomial formula:

(3.13)

where i is the initial number of alleles, j is the number
of alleles after sampling, and N is the sample size 

of diploid individuals. As before, 

enumerates the possible draws that yield j copies of
the allele and p jq2N−j is the probability of sampling j
copies of the allele given the allele frequencies in the
initial population.
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The variance in the outcome of binomial
sampling over many trials is surprisingly easy
to derive. Assuming a diallelic locus, let p be
the fraction of successes (such as sampling 
the A allele) and q be the fraction of failures
(such as failing to sample the A allele and
getting an a allele instead) so that p + q = 1. 
In the Appendix, a variance is defined as 
the average of the squared differences
between each estimate and the average. 
If 1 is used to represent a success and 0 a
failure and p and q are used to represent the
frequency of each outcome instead of the
sums used in the Appendix, the variance in
successes is:

σ2 = p(1 − U)2 + q(0 − U)2 (3.7)

The average of a binomial variable (U) is 
simply the probability of a success or p, 
just as when flipping a fair coin a large 
number of times the number of successes
would approach the expected value of 

one-half heads or tails. Substituting p for 
U gives:

σ2 = p(1 − p)2 + q(0 − p)2 (3.8)

which can then be simplified by substituting 
1 − p = q into the left-hand term:

σ2 = p(q)2 + q(0 − p)2 (3.9)

and multiplying out the right-hand term to
give

σ2 = pq2 + qp2 (3.10)

This result can then be rearranged by finding a
factor common to both terms:

σ2 = pq(q + p) (3.11)

which simplifies after noticing that q + p = 1:

σ2 = pq (3.12)

Math box 3.1 Variance of a binomial variable
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Equation 3.13 can be used to determine the expected
frequencies of populations with a given allelic state
in one generation based on the frequencies of popula-
tions in each allelic state in the previous generation.
To predict the frequency of populations with one
allelic state, we need to add up the chances that 
populations in all states in the previous generation
transition to this state. Let’s work through what is
essentially bookkeeping to see this. The expected fre-
quency of populations with two A alleles in generation
one is the sum of the probabilities that populations 
a generation before with zero, one, and two A alleles
become populations with two A alleles through 
sampling error. This can be stated in an equation as:

Pt=1(2) = (P2→2)Pt=0(2) + (P1→2)Pt=0(1)

+ (P0→2)Pt=0(0) (3.14)

for the case of populations of a single diploid indi-
vidual. In equation 3.14, the probability or frequency
of a given allelic state is indicated by P(x) with sub-
scripts to indicate the generation. In a population
with one A and one a allele, the chance of sampling
two A alleles, P1→2, is

(3.15)

using equation 3.13. For populations that are at
fixation or loss, sampling cannot change the allele
frequency. Therefore, populations initially fixed for
A (Pt=0(2)) all transition to populations fixed for A
(P2→2 = 1) but none of the populations initially lost
for A (Pt=0(0)) can transition to any other state, so
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P0→2 is zero. Lastly, the Pt=0(2), Pt=0(1), and Pt=0(0)
terms each represent the frequencies of populations
that possess a given allelic state. This means that the
transition probabilities are multiplied by the frequency
of populations in a given allelic state to determine the
expected frequency of populations with a given allelic
state in the next generation.

Using this same logic, the expected frequencies of
populations with zero, one, and two A alleles after one
generation of sampling error are shown in Table 3.2.
Using these transition probabilities, the expected popu-
lation frequencies over four generations of sampling
are shown in Fig. 3.9. The result of the equations in
Table 3.2 is a generation-by-generation prediction
for the average behavior of populations under genetic
drift when there is an infinite number of replicate
populations. This method of modeling the action of
genetic drift is known as a Markov chain model. It
is important to recognize that the outcome of genetic
drift for a single population cannot be predicted.
Rather, we can only know the probability that a 
single population experiences a given change in allele
frequency such as going from one to zero copies of
the A allele. If many replicate populations are experi-
encing genetic drift, then the Markov chain predicts
the proportion of populations that have a given
allelic state in each generation.

Figure 3.10 shows the first two steps in the Markov
chain for a population of two diploid individuals 
or four gametes, similar to the micro-centrifuge 
tube sampling experiment from the first section of
this chapter. With a slightly larger population size 
than in Fig. 3.9, there are a larger number of allelic 
state transitions to account for between generations.

Table 3.2 The equations used to calculate the expected frequency of populations with zero, one, or two 
A alleles in generation one (t = 1) based on the previous generation (t = 0). Frequencies at t = 1 depend 
both on transition probabilities due to sampling error (constant terms like 0, 1, or 1/2) and population 
frequencies in the previous generation (Pt=0(x) terms). The transition probabilities are calculated with the

binomial formula . Since sampling error cannot change the allele frequency of a

population at fixation or loss, P2→2 = 1 and P0→0 = 1, whereas the other possibilities have a probability of zero.

One generation later (t == 1) Initial state: number of A alleles (t == 0)

A alleles Expected frequency 2 1 0

2 Pt=1(2) = (P2→2)Pt=0(2) + (P1→2)Pt=0(1) + (0)Pt=0(0)

1 Pt=1(1) = (0)Pt=0(2) + (P1→1)Pt=0(1) + (0)Pt=0(0)

0 Pt=1(0) = (0)Pt=0(2) + (P1→0)Pt=0(1) + (P0→0)Pt=0(0)
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However, the transition probabilities from each pos-
sible allelic state to each possible allelic state are still
determined with the binomial formula in equation
3.13. To obtain the proportion of populations that
transition from one state to any state a generation
later, the binomial transition probability is multi-
plied by the proportion of populations in a given
allelic state. Using one of the transitions in Fig. 3.10
as an example, the chance that a single population
with one A allele at t = 1 transitions to the same state
of one A allele is

(3.16)
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The proportion of all populations with one A allele
at t = 1 is 4/16 or 0.25. Therefore, (0.422)(0.25) =
0.1055 is the proportion of many replicate popula-
tions that should transition from one A allele at t = 1
to one A allele at t = 2. Figure 3.10 shows how all
such transitions over three generations add together
to determine the overall proportions of populations
with each allelic state.
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Figure 3.9 The expected frequencies of populations with
zero, one, or two A alleles over five generations genetic 
drift. Initially, all populations have one A and one a allele 
(p = q = 0.5). Each generation two gametes are sampled from
each population under the Wright–Fisher model to found a
new population. This distribution assumes a very large
number of independent replicate populations.
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Figure 3.10 Genetic drift modeled by a Markov chain. In 
this case, the sample size is two diploid genotypes (2N = 2) or
four gametes per generation. Initial allele frequencies in all
populations are p = q = 0.5. In one generation, sampling
error shifts some proportion of the initial populations that
contain two copies of each allele to states of zero, one, two,
three, or four copies of one allele. Between generations one
and two, sampling error again shifts some proportion of 
the initial populations to states of zero, one, two, three, or 
four copies of one allele. However, in generation one there 
are populations present with all allelic states. The arrows
represent the possible allelic states produced by sampling
error in the third generation for each of the states in the
second generation. The bars in the histogram for the third
generation are divided by horizontal lines to show the
contributions of each second generation allelic state to the
total frequency of populations with a given allelic state 
(some contributions are very small and are difficult to see). 
As the Markov process continues, the frequency distribution
accumulates more and more of the populations at states of
zero and four alleles, eventually reaching fixation or loss 
for all populations.
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Markov chains are convenient to model genetic drift
because the frequency of populations in a given allelic
state depends only on the frequencies in the previous
generation (a quality called the Markov property).
Table 3.2 can be used as a matrix of transition prob-
abilities for any one generation of genetic drift, giving
the frequency populations in each allelic state based
on the transition probabilities for the number of alleles

sampled and the frequencies of populations in each
allelic state in the previous generation. Although a
population of one diploid individual is not very inter-
esting in biological terms, it is a convenient case to
study mathematically. Using techniques of matrix
algebra to determine eigenvalues for the matrix 
represented by Table 3.2 (see Roughgarden 1996 for
a fuller explanation), its is possible to show that the

··

PopGene.S2 can be used to simulate genetic drift with a Markov chain. Launch PopGene.S2 and 
click on the Drift menu and then select Markov Process. This simulation module requires that 
you enter parameter values one at a time, since values of some parameters affect the values that
other parameters can take.

Step 1 Start by entering 2 under Population size in the upper left corner of the simulation
window. This means that there are two diploid individuals or four alleles in each population.
Then click OK. The fields for the Transition matrix will now contain probabilities, with the
current state given in the left column and potential future states given in the row across the
top of the matrix. The Probabilities vector will also have a column of spaces appropriate
for a diploid population of the size specified. What does each of the numbers in the
Transition matrix mean in biological terms?

Step 2 Next, select the initial allele frequency in individual populations using the pop-out menu
above the Transition matrix. Each of the allele frequency values in the menu corresponds
to an integer number of copies of one allele in a population. For example, a frequency of
0.2500 means one of the four alleles in the population is A. From the pop-out menu select
0.5000 for the initial allele frequency and then click the OK button just below the menu.

Step 3 The histogram in the bottom right of the simulation window will now show the frequency
of the A allele in many replicate populations. Using the Generations to run field you can set
the number of generations that elapse between each view of the histogram as well as the
Transition matrix and Probabilities vector. Enter 1 in the Generations to run field to be
able to track changes each generation. Click the Start button once to simulate genetic 
drift in many populations over a single generation. Why did the transition matrix remain
constant? The histogram and the Probabilities vector both changed. They give different
views of exactly the same information: the proportion of populations out of many replicate
populations with a given state (the number of A alleles).

Step 4 Now press the Start button repeatedly, taking time at each generation of the simulation 
to view the histogram and the Probabilities vector. What is the ultimate fate of allele
frequencies in all of the replicate populations? How many generations elapse to reach this
equilibrium? (see generation counter under the Start button)

Reset the simulation using the Cancel/Restart button under Generations to run. Try the Markov
model with population sizes of 4, 20, 50, and 100 with initial allele frequencies of 0.5 and compare
the times to fixation and loss with those obtained in Interact box 3.1. Increase the value in the
Generations to run field to 10 or 20 so that the simulations will progress more rapidly to equilibrium.
Also try population sizes of 4, 20, 50, and 100 with initial allele frequencies of 0.1 and 0.9.

When you run the Markov model more than once for a given set of conditions what happens?
Why? In contrast, what happens when the simulations in Interact Box 3.1 are rerun with the same
initial conditions? Why?

Interact box 3.2 Genetic drift simulated with a Markov chain model
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rate at which genetic variation is lost from the collec-
tion of many populations is

(3.17)

This says that genetic drift reduces genetic variation
by an amount equal to the inverse of twice the effective
population size every generation, due to sampling
error. (This same conclusion can be reached using
the approach of consanguineous mating, as shown
in section 3.5.) This rate of loss of genetic variation
can clearly be seen in Fig. 3.9, where the frequency
of genetically variable populations (those with one A
allele) halves each generation since the population
size is one. This result applies to any population size
and shows us that the effects of genetic drift relate
directly to the size of a population.

  
1

1
2

−
N

Biological populations that closely mimic the 
ensemble population of Markov chain models are
relatively easy to construct and maintain given the
right choice of organism and some persistent effort.
In fact, the first studies of allele frequencies in many
identical replicate biological populations were carried
out in the 1950s (for example Kerr & Wright 1954;
Wright & Kerr 1954). The organisms of choice were
fruit flies (Drosophila species) since many individuals
can be raised in a small space, generation times are
short, and a population can be unambiguously defined
as one bottle (containing food) of flies. To rear flies,
males and females are put together in a bottle and
allowed to mate. The adults are removed from the
bottle after the females have time to lay eggs on the
food. The larvae that emerge from these eggs and
become mature flies can then be sampled to found a
new generation in a fresh bottle. Figure 3.11a shows
the results of one such classic experiment that followed
allele frequencies in 107 replicate populations for 
19 generations (Buri 1956). All of the populations

were constructed to have initial allele frequencies 
of p = q = 0.5 at a diallelic locus (alleles were wild
type and bw75). The distribution of allele frequencies
in the 107 populations quickly spread out from 
the initial frequency. Around the fifth generation a 
few populations have reached either fixation or loss
for the bw75 allele. As more generations elapse, the 
distribution becomes flatter with more and more
populations reaching fixation and loss.

The overall shape of the distribution of popula-
tion allele frequencies for the fly populations closely
matches the expected population frequencies accord-
ing to a Markov chain model of genetic drift for a 
population of 16 individuals shown in Fig. 3.11b. In
particular, the fly populations and the Markov chain
model both show a rapid spread from the initial 
frequency and an equal number of populations that
reach fixation or loss. However, notice that the fly
populations have a less even distribution of allele 
frequencies due to the relatively small number of
populations compared to the smoothly continuous

Markov chain A sequence of discrete random
variables in which the probability distribution
of states at time t + 1 depends only on the
states at time t.
Markov property Probability of a given
outcome in the next step or time interval
depends only on the present state and has 
no “memory” of states or events before the
present time.

Understanding Markov chains is easier 
with some practice constructing them. 
Try constructing the transition matrix for a
diploid population size of two (identical 
to the micro-centrifuge tube sampling
experiment with a sample size of four
tubes). Similar to Table 3.2, set up a matrix
where columns represent the initial allelic
state and the terms in rows add together to
determine the proportion of populations
with a given state one generation later.
Then use the binomial formula to calculate
the chance that a single population makes
each of the allelic state transitions. Indicate
the frequency of populations in the initial
generation (t = 0) with a given allelic state
by the variable Pt=0(x) where x is the
number of alleles.

Think about the problem before carrying
out any calculations. It is less work than it
may appear at first. Two columns have
probabilities of either zero or one. Two
other columns have the same probabilities
but in reversed order.

Problem box 3.2
Constructing a transition

probability matrix
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distribution of the model which assumes an infinite
number of populations. Another difference is that the
fly populations showed more rapid accumulation of
fixation and loss compared to the model predictions.
Even though the fly populations were founded with
eight males and eight females every generation, per-
haps not all individuals contributed to reproduction,
making the effective population size smaller than it
seemed. We will explore why the populations might
have behaved as though they were smaller than 16
individuals in the next section of the chapter.

The diffusion approximation of genetic drift

The Markov chain model has discrete allelic states
and time advances from the initial conditions in indi-
vidual, discrete generations, as is the case in actual
biological populations. This discrete step process can
be approximated using mathematical expressions
where time and allele frequency are continuous vari-
ables. This class of model is based on the processes of
molecular diffusion and so is termed the diffusion
approximation of genetic drift (often called the
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Figure 3.11 (a) Allelic states 
(or allele frequencies) for 107 D.
melanogaster populations where 16
individuals (eight of each sex) were
randomly chosen to start each 
new generation. Initially, all 107
populations had equal numbers of 
the wild-type and bw75 alleles (the
latter causes homozygotes to have a
red-orange and heterozygotes an
orange body color so genotypes can be
determined visually). The allelic states
of the population rapidly spread out
and many populations reached
fixation or loss by the nineteenth
generation. (b) The expected
frequency of populations in each
allelic state determined with a Markov
chain model for a population size of 16
with 107 populations that initially
have equal frequencies of two alleles. 
The experimental D. melanogaster
populations show a higher rate of
fixation and loss than the model
populations, suggesting that the
population size was actually less than
16 individuals each generation. 
The D. melanogaster data come from
Table 13 in Buri (1956).
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diffusion equation) first solved by Motoo Kimura
(1955). The diffusion approximation is based on partial
differential equations and advanced mathematical
techniques beyond the scope of this text. However,
the general principles behind diffusion equations can
be understood, especially with the aid of a physical
example. The goal of this section is to introduce the
situation that diffusion equations model using a 
particle metaphor and then to cover some of the con-
clusions about the process of genetic drift that have
been reached using the diffusion equation. This intro-
duction to the physical process of diffusion relies
heavily on Denny and Gaines (2000), to which readers
can turn for more details and biological applications.

Diffusion is the process where particles, moving 
in random directions, spread out and eventually
reach a uniform concentration within the physical
boundaries that limit their movement. For example,
imagine putting a drop of ink in the center of a Petri
dish filled with water. Initially, the concentration of
ink is very uneven but as time passes the ink will 
diffuse and eventually reach a uniform concentra-
tion everywhere in the Petri dish. The rate at which
the ink spreads out depends on what is called a 
diffusion coefficient. To understand the diffusion
coefficient, we have to examine random movement
of particles in some detail. This will hopefully lead 
to an improved understanding of genetic drift, so
please be patient.

Let’s modify the ink-diffusion example by sub-
stituting a special Petri dish. In this imaginary dish the

ink particles can move only to the left or to the right
from their current position, a situation diagrammed
in Fig. 3.12. The particles have a constant velocity,
so each will move the same distance in a fixed
amount of time. We can call this distance moved 
per unit time δ (pronounced “delta”) since it is the
change in position to the left or right. The direction of
particle movement is random, with equal probability
of moving to the left (p = 1/2) or right (q = 1/2) at any
moment in time. Let’s pick a point of reference some-
where along this axis of movement, call it x, and then
track the movement of the ink particles relative to
that point. First, what is the average movement of 
N particles between two time points? There are p of
the particles traveling toward x that each move the
distance +δ. There are also q of the particles traveling
away from x that each move the distance −δ. The
average movement of the particles is then

U = p(δ ) + q(−δ ) (3.18)

Since the particles have equal chances of moving left
or right (p = q = 1/2):

(3.19)

which means that the average or net movement 
of particles is zero. To relate this to genetic drift, if
populations are like the ink particles but moving
randomly in the one dimension of allele frequency,

  
U = − =

1
2

1
2

0( ) ( )δ δ

xx – δ x + δ
Particle position

or
allele frequency

0.0 1.0

Absorbing
boundary

Absorbing
boundary

Figure 3.12 An imaginary Petri dish that confines ink particles so that they can move only to the left or to the right from their
current position. The particles have a constant velocity, so each will move the distance δ in a fixed amount of time. If the direction
of particle movement is random (equal probability of moving left or right at any moment in time), the mean position of particles
does not change but the variance in particle position increases with time. The frequency of particles passing through an area, such
as the plane at x, depends on the net balance of particles arriving minus those that are leaving, called the flux of particles. The flux
is determined by both the rate of diffusion of particles and gradients in the concentration of particles (net movement of particles is
from areas of higher concentration to areas of lower concentration). If the left and right boundaries capture particles, then the
diffusion coefficient drops to 0 at those points and particles will accumulate. The process of diffusion for particles is analogous to the
process of genetic drift for allele frequencies in an ensemble population where allele frequencies “diffuse” because of sampling error.
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then we expect equal numbers of populations to
move toward fixation and toward loss. The average
change in allele frequency among all populations is
expected to be zero.

The next thing we could do is to describe the variance
in the position of ink particles over time, a measure of
how spread out the particles become. Intuition suggests
that even though the average is zero the variance
should not be zero: spreading out of particles is what
occurs during diffusion, after all. Equation A.2 in the
Appendix shows that the variance is the average
squared deviation from the mean. We just showed
the mean particle location is zero. So the variance in
the location of particles is then just the average square
of their positions after one time step. The location 
of one particle, call it particle i, at time t = 1 can be
expressed as its location at time t = 0 plus the amount
a particle moves during one time step:

xi(t=1) = xi(t=0) + δ (3.20)

To get an expression for the variance in particle 
location we need to start out by squaring this expres-
sion for particle location:

x2
i(t=1) = (xi(t=0) + δ)2 (3.21)

and expanding the right side to get

x2
i(t=1) = x2

i(t=0) + 2x2
i(t=0)δ + δ2 (3.22)

Using equation 3.22, which is the squared position
of one particle, we can average over all N particles to
get the variance in particle position:

(3.23)

This expression simplifies considerably. The value of
δ for a large number of particles should be zero, using
the same reasoning as when determining average
particle position, since an equal number are moving
left and right (δ2 is not zero because the squared
change in position will always be positive). The 
middle term in equation 3.23 then drops out since 
it is multiplied by zero. This leaves the variance in
particle position as

σ2(xi(t=1)) = U2
i(t=0) + δ2 (3.24)

The first term is the average of the squared particle
position at time t = 0. The second term is the square

σ δ δ2
1 0

2
0

2 2

1

1
2( )( ) ( ) ( )x

N
x xi t i t i t

i

N

= = =
=

= + +∑

of step length that particles take between time  points.
If a group of particles all started out at position zero
(meaning U2

i(t=1) = 0), then the variance in particle
position increases by δ2 every time interval. If t is the
number of time steps that have elapsed for particles
that started out at position zero, the variance in particle
position is tδ2. As intuition suggests after watching
things like ink diffuse in water, the variance in particle
position is not zero and increases with time.

Now we are ready to return to the diffusion co-
efficient. The diffusion coefficient (D) is defined as half
the rate at which the variance in particle position
changes as time advances. In symbols this is

(3.25)

The source of the factor of 1/2 can be seen in Fig. 3.12.
Only half of the particles near the point x (within δ
or one step of the plane) will be headed away and
increasing their dispersion while the other half will
be headed toward x and not dispersing. Half the vari-

ance in particle position, , is therefore the diffu-

sion coefficient for physical molecules. The diffusion
coefficient tells us how fast particles spread out around
some point due to random movement.

Allele frequency in an ensemble population has an
analog of the diffusion coefficient. Allele frequency
“diffusion” is the spreading out and flattening of the
allelic state distributions over time as seen in Markov
chain models (see Fig. 3.11). Recall from equation 3.6

that the standard error of the allele frequency is ,

which can also be thought of as the standard devia-
tion of the mean allele frequency. The variance of 
the mean allele frequency is then the square of the 

standard deviation or . This latter quantity is the 

variance per time period or per generation, which
could be expressed as

(3.26)

By substituting equation 3.26 into equation 3.25 
we obtain an expression for the diffusion coefficient
of allele frequency:

(3.27)
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along the one-dimensional axis of allele frequency.
By substituting q = 1 − p we obtain

(3.28)

The genetic diffusion coefficient depends on both 
the allele frequency and the size of the population.
Diffusion of allele frequency is greatest when 
p = q = 1/2 and declines to zero as p approaches zero
or one. Populations (as with particles) tend to diffuse 
to areas where the diffusion coefficient is lowest 
and then get stuck there since the rate of spread of
particles (the variance in position per time step) is
reduced. The rate of diffusion also depends on the 
size of the population, decreasing as N increases. 
For particles, this is due to more frequent collision
that reduces the ability to move as the concentra-
tion of particles increases (think of trying to walk 
in a straight line while in a large crowd of people). 
In biological populations, the diffusion coefficient
depends on N since the population size determines
the amount of sampling error from generation to
generation. It is satisfying that both of these features
of allele frequency diffusion agree with our previous
generalizations about genetic drift obtained with 
distinct approaches to the problem.

Next, we would like to keep track of the chance
that a particle is at a given location along the axis 
of diffusion. The resulting probability distribution
shows how many particles out of a large number
should be at each point along the axis, just as
Markov chain models show the expected number 
of populations at each allelic state. Making such a
probability distribution requires that we know the
flux or the net number of particles moving through 
a defined area per time interval. Let’s define the area,
call it A, where we will determine the flux through
the plane at the point x (Fig. 3.12). The particles that
will move through plane A in one time step must be
within plus or minus δ of x because a particle travels
the distance δ in one time step. The net number of
particles moving to the right through A is the same
thing as the difference in the number of particles
moving from the left and from the right:

Net N(R) = N(L) − N(R) (3.29)

where N represents the number of particles moving
left (L) or right (R) through A, and the 1/2 is because
only half of the particles on each side of x will move

 

1
2 

1
2

  
D

p p
N

=
− 2

4

toward x each time step. Factoring and rearranging
gives

Net N(R) = − [N(R) − N(L)] (3.30)

The flux is defined per area per time, so we need to
divide by area (A) and time (t):

(3.31)

where Jx represents the flux at point x. We can multiply
equation 3.31 by δ2/δ2 (or 1) and then rearrange it
to get

(3.32)

Now notice that the number of particles moving left
and moving right are both divided by an area times 
a distance along the axis of diffusion (Aδ). As you 
can see in Fig. 3.12, this defines a three-dimensional
volume. The number of particles per volume is
equivalent to a concentration, so we can use C to 
represent the concentration of particles. Also notice 

that is the diffusion coefficient for one time step 

(equation 3.25). Making these substitutions gives

(3.33)

If we say that the concentration of particles to 
the right of area A is taken at location x + δ [C(R) =
C(x + δ )] and the concentration of particles to the left
is actually taken at area A [C(L) = C(x)], the fraction
in equation 3.33 takes the form of a first derivative:

(3.34)

(A straightforward refresher on methods and inter-
pretations for derivatives can be found in Newby
(1980).) As the distance between x and δ shrinks
toward zero ( ), the flux at any point x becomes

(3.35)

In total, the flux is determined by the product of 
the rate at which particles spread out from a given
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point and the rate of change in concentration along
the axis of diffusion. The sign of the flux tells the
direction of net movement of particles. The flux is
positive, meaning the number of particles in the area
to the right of A will increase after one time step, if
more particles move in from the left than move out
going right. As we would expect, there is net move-
ment of particles from areas of higher concentration
into areas of lower concentration. For example, a
higher concentration of particles to the left of point x
in Fig. 3.12 will result in a positive flux, meaning
that after one time step of diffusion there will be 
an increase in the number of particles at point x. 
When the concentration of particles is the same
everywhere along the axis of diffusion, the flux must
be zero since the numbers that move into and out 
of any area are equal.

Let’s now take all the concepts of particle diffusion
and apply them to genetic drift in an ensemble 
population. We want to predict the change in the
chance that a population has a given allele frequency,
just as we did with the Markov chain model. In this
case allele frequency is a continuous variable and
the chance that a population has an allele frequency
between x and x + δ at a given time t is called the
probability density, symbolized by φ(x,t). (φ is pro-
nounced “phi”.) Probability density for populations
is just like concentration for particles, so φ(x,t) is the
analog of C(x,t). The probability density φ(x,t) at any
point along the axis of allele frequency will depend
on the net difference between populations which
drift into allele frequency x and those which drift 
out of allele frequency x. This is the flux in allele fre-
quency at point x and time t. To know the probability
at all points along the axis of diffusion, we need the
rate of change in the probability density with change
in allele frequency. This is the rate of change in the
flux of populations with change in allele frequency:

(3.36)
  

d
d

d
dx

x t
x

J x tφ( , ) ( , )= −

The derivation for particle flux hid one detail that 
we now need to reveal in order to continue. The flux
depends on both the mean movement and the net
movement of particles. Imagine for example that the
ink particles in Fig. 3.12 were positively charged 
and one of the boundaries was negatively charged.
The ink particles would diffuse but at the same time
the whole cloud of particles would be moving on
average toward the negatively charged boundary. In
such a case the flux at any point x would also need to
account for changes to the mean position of particles 

M(x), so that . This mean change 

was neglected earlier since the mean position is zero
if particles are moving left or right at random and 
are not influenced by some force changing the mean
location of all particles. Substituting this full version
of the flux (remember that C(x,t) is now φ(x,t)) gives

(3.37)

We can also substitute the flux in allele frequency
from equation 3.27 (using x to represent p and 1 − x
to represent q):

(3.38)

With only random sampling error acting to change
allele frequency, (M(x)dt = 0), this rearranges to the
diffusion equation for genetic drift:

(3.39)

The diffusion equation predicts the probability dis-
tribution of allele frequencies in many populations
over time and some examples are given in Fig. 3.13.
Compare Fig. 3.13 with Fig. 3.10 and it is apparent
that the diffusion equation and the Markov chain
model both make similar predictions for the outcome
of genetic drift. A final point is that the term diffusion
approximation implies that the diffusion equation
makes some assumptions. Noteworthy assumptions
are that the number of populations is very large,
approaching infinity, and the allele frequency dis-
tribution is continuous so that the distribution of
allele frequencies is a smooth curve (compare these
assumptions with the allelic state distribution in 
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Diffusion coefficient (D) Half the rate at
which the variance in particle position (or
allele frequency in a single population)
changes as time advances.
Flux ( Jx) The net number of particles (or
populations) moving through a defined area
(or allele frequency) per time interval.
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Figure 3.14 Average time that an allele segregates, takes to
reach fixation, or takes to reach loss depending on its initial
frequency when under the influence of genetic drift alone.
Alleles remain segregating (persist) for an average of 2.8N
generations when their initial frequency is 1/2. Fixation or 
loss takes up to an average of 4N generations when alleles are
initially very rare or nearly fixed, respectively. Since these are
average times, alleles in individual populations experience
longer and shorter fixation, loss, and segregation times. 
Time is scaled in multiples of the population size.

Fig. 3.11a with its discrete allelic states and finite
number of populations).

The diffusion equation has been used to arrive at 
a number of generalizations about genetic drift. 
A widely used set of generalizations is the average 
time to fixation for alleles that eventually fix in a 
population and the average time to loss for alleles
that eventually are lost from a population:

Zfix = and

(3.40)

where p is the initial allele frequency (Kimura & Ohta
1969a). (Note that the natural log of a number less
than one is always negative: ln(1) = 0 and ln(x) → −∞
as x approaches zero, so that the average time will
always be a positive number.) These two expressions
can be combined to obtain the weighted average time
that an allele segregates in a population (the allele is
neither fixed nor lost):

Zsegregate = −4N[p ln(p) + (1 − p)ln(1 − p)] (3.41)

The predictions from these equations quantify our
intuition about the action of genetic drift (Fig. 3.14).
Alleles close to fixation or loss do not take long to
reach fixation or loss. Alternatively, an allele initially
very close to fixation (or loss) would take a long time,
about 4N generations if N is large, if it were to reach

Zloss N
p p

p
= −

−
4

1
ln( )

N
p p

p
−

− −
4

1 1( )ln( )

the opposite condition of being very close to loss (or
fixation). Also, the closer an allele is to the initial 
frequency of 1/2, the longer it will segregate before
reaching fixation or loss up to a maximum of about
2.8N generations. The curves for times to fixation or
loss and segregation times have an identical shape
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Figure 3.13 Probability densities of allele frequency for many replicate populations predicted using the diffusion equation. The
initial allele frequency is 0.5 on the left and 0.1 on the right. Each curve represents the probability that a single population would
have a given allele frequency after some interval of time has passed. The area under each curve is the proportion of alleles that are
not fixed. Time is scaled in multiples of the effective population size, N. Both small and large populations have identically shaped
distributions, although small populations reach fixation and loss in less time than large populations. The populations that have
reached fixation or loss are not shown for each curve. For a color version of this image see Plate 3.13.
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no matter what the population size is. The popula-
tion size plays a role only in the absolute average
number of generations that will elapse.

If you have worked your way through this section
you deserve congratulations for your persistence.
The basis of the diffusion equation is definitely more
abstract than the basis of Markov chains, but the
overall results provided by the two models are very
similar. Those who would like to learn more about the
diffusion equation, its assumptions, and how it can
be extended to include processes such as mutation,
migration, and natural selection along with genetic
drift, can consult Roughgarden (1996) and Rice
(2004).

3.3 Effective population size

• Defining genetic populations.
• Census and effective population size.
• Example of bottleneck and harmonic mean to

demonstrate effective population size and census
size.

• Effective population size due to unequal sex ratio
and variation in family size.

Up to this point we have used the term population
size without much fanfare to indicate how many indi-
viduals a population contains. We now need to focus
additional attention on the idea of population size.
The number of individuals in a population seems like
a straightforward quantity that can be determined
easily. In the context of the Wright–Fisher model 
the population size is an unambiguous quantity.
Unfortunately, in most biological populations it is
difficult or impossible to determine the number of
gametes that contribute to the next generation. We
need another way to define the size of populations.

The definition of the population size in population
genetics relies on the dynamics of genetic variation
in the population. This definition means that the size
of a population is defined by the way genetic variation
in the population behaves. The notion that “if it walks
like a duck and quacks like a duck, it probably is a duck”
is also applied to the size of populations. The size of a
population depends on how genetic variation changes
over time. If a population shows allele frequencies
changing slowly over time under the exclusive influ-
ence of genetic drift, then the population has the dyn-
amics associated with relatively large size. It “quacks”
like a big population. In the same way, a population
with a large number of individuals might show rapid
genetic drift, indicating it is really a small population

from the perspective of genetic variation. It looks big
but its “quack” gives it away as a small population.

Making a distinction between the dynamics of
genetic variation in a population and the number of
individuals in a population suggests that there are
really two types of population size. One is the head
count of individuals in a population, called the census
population size, symbolized by N. The other is the
genetic size of a population. This genetic size is deter-
mined by comparing the rate of genetic drift in an
actual population with the rate of genetic drift in 
an ideal population meeting the assumptions of the
Wright–Fisher model. The population size in the model
that produces that same rate of genetic drift as seen
in an actual population is the genetic size of the actual
population. In comparing an actual population with
an ideal model population, we are asking about the
overall genetic effects of the census size. Thus, we also
recognize the effective population size, Ne, as the size of
an ideal population that experiences as much genetic
drift as an actual population regardless of its census
size. This concept was originally introduced by Sewall
Wright (1931), who is shown in Fig. 3.15. An
approximate way to think of the difference between
the two population sizes is that the census size is the
total number of individuals and the effective size is
the number of individuals that actually contribute
gametes to the next generation. We will refine this
definition throughout this rest of the chapter.

Let’s examine several biological phenomena that
cause effective population size and census popula-
tion size to be different. This will help to illustrate the
effective population size and make its definition more
intuitive.

Actual populations often fluctuate in the number
of individuals present over time. A classic example 
is rabbit/lynx population cycles due to predator/
prey dynamics, where census population sizes of
both species fluctuate over a fairly wide range on
about a 10 year cycle. Another category of example

Census population size (N) The number of
individuals in a population; the head count
size of a population.
Effective population size (Ne) The size 
of an ideal Wright–Fisher population that
maintains as much genetic variation or
experiences as much genetic drift as an actual
population regardless of census size.
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is the establishment of a new population by a small
number of individuals, called a founder event. One
well-documented founder event was the introduction
of European starlings in the New World. These birds,
now very common throughout North America, can
all be traced to approximately 15 pairs that survived
from a larger group released in New York’s Central
Park in 1890. What is now a very large population
descended from a sample of 60 alleles in the small
number of founding individuals, which were sampled
from a very large population of birds in Europe.

To model the genetic effects of this type of fluctua-
tion in population size over time, suppose a population
starts out with 100 individuals, experiences a reduc-
tion in size to 10 individuals for one generation, and
then recovers to 100 individuals in the third genera-
tion (Fig. 3.16). (Recall from earlier in the chapter
that this situation violates the constant population
size assumption of the Wright–Fisher model of genetic
drift.) This will cause an increased chance of fixa-
tion or loss of alleles (variance in allele frequency will
increase) and thereby increase the rate of genetic drift
in that one generation. But what is the effective size of
this population after it recovers to 100 individuals?
We can estimate the effect of fluctuations in popula-
tions on the overall effective size using the harmonic
mean:

(3.42)

where t indicates the total number of generations 
(all other assumptions of Wright–Fisher populations
are met). The harmonic mean gives more weight 
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Figure 3.15 Sewall Wright (1889–1988) with a guinea 
pig in an undated photograph taken during his years as a
professor at the University of Chicago. Starting in 1912 and
throughout his career, Wright studied the genetic basis of
coat colors and physiological traits in guinea pigs. Wright,
along with J.B.S. Haldane and R.A. Fisher, established many
of the early expectations of population genetics using
mathematical analyses. Many of the conceptual frameworks
in population genetics today were originated by Wright,
especially those related to consanguineous mating, genetic
drift, and structured populations. An often retold (although
mythical) story was that Wright, who would sometimes carry
a guinea pig with him, would on occasion absent-mindedly
employ the animal to erase the chalk board while lecturing.
Provine’s (1986) biography details Wright’s manifold
contributions to population genetics and his interactions
with other major figures such as Fisher. Photograph courtesy
of Special Collections Research Center, University of Chicago
Library. Archival Photofiles, Series 1, Wright, Sewall,
Informal #2.
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Figure 3.16 Schematic representation of a genetic
bottleneck where census population size fluctuates across
generations. The harmonic mean of census population size
(N) is 25 and provides an estimate of the effects of genetic drift
over three generations, or the effective population size (Ne). 
In other words, this population of fluctuating size would
experience as much genetic drift as an ideal Wright–Fisher
population with a constant population size of 25. The squares
represent alleles present in each generation. In the first
generation the alleles are equally frequent, but they end up 
at frequencies of 25 and 75%. Such an allelic state transition
would be extremely unlikely if 200 gametes were sampled 
to found generations two and three. However, the observed
allelic transition is expected 25% of the time in a sample of
four gametes.
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for mating access to individuals of the other sex. 
In such a situation the numbers of females and 
males that breed, or the breeding sex ratio, may not
be equal (even if the population sex ratio is equal).
The leads to increased genetic drift compared with
the case of a breeding sex ratio of 1 : 1, since the 
pool of alleles passed to the next generation will be
sampled from fewer individuals in one sex. Thus, the
less frequent sex becomes an allelic bottleneck of sorts.
The effective population size in such cases is:

(3.44)

where Nf is the number of females and Nm is the num-
ber of males breeding in the population and all other
assumptions of Wright–Fisher populations are met.
Equation 3.44 shows that the effective population
size approaches four when the rarer sex approaches
a single individual and that the effective size is max-
imized when there is a breeding sex ratio of 1 : 1.

Let’s look at an case where Nm does not equal Nf
to see the impact on the effective population size.
Elephant seals (Mirounga leonina) are a classic example
of highly unequal breeding sex ratios since the mating
system is harem polygyny. In one study of breeding
patterns on Sea Lion Island in the Falkland Islands,
about 550 females and 75 males were observed on
land where mating takes place (Fabiani et al. 2004).
Using genetic markers to ascertain the parentage of
pups, it was determined that only 28% of the males
fathered offspring during the course of two breeding
seasons. Therefore, the breeding sex ratio was about
Nm = 21 and Nf = 550. The effective population size
during each breeding season was:

(3.45)

or was equivalent to an ideal population of 40
females and 40 males where breeding sex ratio is 
1 : 1. The strongly unequal breeding sex ratio for 
elephant seals results in an effective population size
an order of magnitude less than the census size of
625 individuals.

A third factor that distinguishes the census and
effective population sizes is the degree to which adult
individuals in the population contribute to the next
generation. One of the assumptions of Wright–Fisher
populations is that all individuals contribute an equal
number of gametes to the infinite gamete pool. To
maintain a population that is not changing in size
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to small values by virtue of summing the inverses of
population size. It also serves as an approximation 

of , which we saw was the rate of decrease 

in genetic variation in Markov chain models of
genetic drift earlier in the chapter. In this example:

(3.43)

So, Ne = 1/0.04 = 25. Contrast this with the arith-
metic mean of the census population size, which 
is 70. Only those alleles that actually pass through 
the genetic bottleneck of 10 individuals are rep-
resented in later generations, regardless of how large
the census size is, so the mean census size is much 
too high to use to predict the behavior of allele fre-
quencies since it will underestimate genetic drift. In
this case, we expect allele frequencies in the popula-
tion to behave similarly to allele frequencies in an
ideal Wright–Fisher population with a constant size
of 25 over three generations. Like finite population
size, fluctuations in population size through time 
are a universal feature of biological populations.
Populations obviously vary greatly in the degree of
size fluctuations and the time scale of these fluctua-
tions, but Ne < N caused by temporal fluctuations in
N is a widespread phenomenon.
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Although the term bottleneck is usually associated
with sharp reductions in the overall population size,
there are other aspects of biological populations that
have the same impact by increasing the sampling
error in allele frequency across generations. Mating
patterns can have a major impact on effective popu-
lation size when individuals of different sexes make
unequal contributions to reproduction. This occurs
in populations where individuals of one sex compete

Founder effect The establishment of a
population by one or a few individuals,
resulting in small effective population size in a
newly founded population.
Genetic bottleneck A sharp but often
transient reduction in the size of a population
that increases allele frequency sampling error
and has a disproportionate impact on the
effective population size in later generations
even if census sizes increase.
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across generations, each individual must produce
one surviving progeny, on average, to replace itself.
In outcrossing species, when each pair of individuals
produces an average of two progeny, then the 
population will be stable in size over time. In terms of
the Wright–Fisher population, that means that each
individual contributes an average of two gametes to
the next generation from the infinite gamete pool.

There are many patterns of individual reproduction
within an outcrossing population that can achieve 
a mean rate of reproduction that results in a stable
population through time. It might be the case that 
all individuals produce exactly one progeny. Another
possibility is that a few parents produce no offspring,
whereas most parents produce two offspring, and 
a few parents produce four offspring that offset the
reduction in the average caused by the parents with
no progeny. In the extreme, one pair of parents could
produce all N offspring and all other pairs fail to repro-
duce successfully. The variance in family size can be
used to describe these different patterns of individual
reproduction. As variance in family size increases, the
alleles passed to the next generation come increas-
ingly from those parents producing more offspring.

The effective population size due to variation in
family size is:

(3.46)

where Nt−1 is the size of the parental population 
and k is the number of gametes that result in 
progeny, or family size for outcrossing organisms
(Crow & Denniston 1988). The equation shows that
for a stable population (Y = 2) when the variance in
family size is equal to the average family size, then
there is no “bottleneck” due to family size variation:
the population size of parents is the effective popula-
tion size. The Wright–Fisher model assumes that
production of progeny has exactly this quality of 
the mean family size being equal to the variance 
in family size. In essence the Wright–Fisher model
assumes that family sizes follow a Poisson distribu-
tion (the Poisson distribution is an approximation 
of the binomial distribution as the sample size grows
very large and the chance of a given outcome
becomes very small; see Denny & Gaines 2000 or the
appendix in Rice 2004).
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Figure 3.17 Distributions of family size. The variance equals the mean as expected for a Poisson distribution on the left. 
However, the center distribution has a few families that are very prolific while 75% of the families produce two or fewer progeny
with most individuals failing to reproduce. The distribution on the right has less variance in family size than expected for a 
Poisson distribution with most families of size two. The Poisson distribution is taken as the standard with an effective size of 100. 
By comparison, the center distribution has a smaller effective population size and the distribution on the right a larger effective
population size.
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We can explore the consequences of variance in
family size with some examples. Figure 3.17 shows
three hypothetical distributions of family size. The
first is an ideal Poisson distribution where the mean
family size is equal to the variance in family size. This
is the standard assumption used in the Wright–
Fisher model of genetic drift. The next distribution 
is an example of highly skewed family sizes where 
a relatively small proportion of the population con-
tributes most of the progeny. The final distribution
shows family size variation that is less than expected
for a Poisson distribution. If the Poisson distribution
is used as the standard, the other populations with
differing distributions of family size show more or less
genetic drift, respectively, due to modification of the
bottleneck-like effect of unequal family sizes. These
distributions also illustrate that the effective popula-
tion size based on variance in family size has the
unique quality that Ne can actually be larger than N
if the variance in family size is less than the mean of
family size. This stands in contrast to population size
fluctuations through time and unequal breeding sex
ratios, where Ne can only be less than or equal to N
but not greater than N.

These family size distributions are not just theoret-
ical entities. Many annual plants show variation in
reproductive success that exceeds the mean, demon-
strating that variation in family size contributes to
overall rates of genetic drift (Heywood 1986). In 
one study of salmon, the large variance in repro-
ductive success among anadromous males had a
greater impact on the effective population size than
breeding sex ratio ( Jones & Hutchings 2002). In 
contrast, Poisson-distributed male reproductive suc-
cess has been observed in laboratory populations of
D. melanogaster, partly supporting the effective popula-
tion size assumption behind many genetic experiments
that have used fruit flies reared in the laboratory
(Joshi et al. 1999).

In the last section of the chapter, we compared allele
frequencies over time in 107 Drosophila populations
to allele frequencies expected from the Markov chain
model (Fig. 3.11). The fly populations, founded each
generation with eight female and eight male flies,
experienced a faster rate of fixation or loss than
expected for an effective population size of 16. In fact,
the fly populations reached fixation and loss at a rate
comparable to a population with an effective size of
about 10 or 11 (this can be seen using PopGene.S2’s
Markov chain module as in Interact box 3.2). The
concepts in this section that distinguish between
census and effective population sizes can be used to

explain Buri’s results. Although there was a census
size of 16 flies in each bottle, an unequal breeding sex
ratio in each bottle could explain the higher rate of
fixation and loss. For example, a breeding sex ratio 
of eight females and six males due to failure of some
males to mate successfully each generation would
give an effective population size of Ne ≈ 14 using
equation 3.44. It is also possible that there was a 
relatively high degree of variation in reproduction
among the females. For example, if variance in family
size was 3.5 and was combined with the effects of 
the unequal breeding sex ratio (using 14 instead of
16 for Nt−1), equation 3.46 estimates that Ne ≈ 10. 
It might also be that in a few of the generations the
population size was smaller than intended due to mis-
takes when handling and transferring flies to new
bottles. However, equation 3.42 shows that the effect
of a population size of 14 for one generation out of 19
is slight (Ne = 15.88). Therefore, infrequent fluctuat-
ing population sizes would probably have had only 
a minor impact on the results. Thus, the difference

Imagine that a conservation biologist
approaches you asking for assistance in
estimating the genetic impacts of a recent
event in a captive population of animals
housed in a zoo. The zoo building where
the animals were kept experienced a fire,
killing some animals outright and requiring
the survivors to be relocated to a new
enclosure that is not ideal for breeding.
Before the fire, the population was stable 
at 30 males and 30 females for many
generations with an effective population
size of 60. After the fire there were 
15 females and 10 males. Due to the
disruption and relocation of the animals,
breeding behavior changed. Before the 
fire variation in family size was Poisson
distributed with a mean of 2.0. In the one
generation after the fire, family size has a
mean of 4.0 and variance of 6.5. What 
are the genetic impacts of the fire on the
effective population size? What are some 
of the assumptions specific to this case 
used in your estimate of Ne?

Problem box 3.3
Estimating Ne from 

information about N
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between the rate of fixation and loss in the Markov
chain model and in the actual fly populations can be
explained by several plausible factors that distinguish
the census and effective population sizes.

3.4 Parallelism between drift and inbreeding

• Autozygosity due to sampling in a finite gamete
population.

• The relationship between the fixation index (F)
and heterozygosity (H).

• Decline in heterozygosity over time due to genetic
drift.

• Heterozygosity in island and mainland populations.

The chapter up to this point has focused on population
size and genetic drift. This section will demonstrate
that finite population size can also be thought of as a
form of inbreeding. In large populations with random
mating, chance biparental inbreeding is unlikely to
occur often. However, in small populations the chance
of mating with a relative is larger since the number of
possible mates is limited. As populations get smaller,
the probability of chance matings between related
individuals should increase. Genetic drift also occurs
due to finite population size. Therefore, genetic drift
and the tendency for inbreeding are interrelated 
phenomena connected to the size of a population.
Both have the result of increasing the homozygosity
in a population over time.

Before we can reach the goal of showing that genetic
drift and inbreeding are really equivalent genetic pro-
cesses, it is necessary to develop a bit of conceptual
machinery. In Chapter 2, autozygosity was defined
as the probability that two alleles are identical by
descent and demonstrated using a pedigree. We now
need to revisit the autozygosity from the perspect-
ive of a finite population. Figure 3.18 shows three
possible ways that alleles could be sampled from a
finite population of gametes when constructing diploid
genotypes. This gamete population meets Wright–
Fisher assumptions with the exception that it is finite
and contains alleles that are identical in state but 
are not identical by descent. To make offspring in the
next generation, alleles are sampled with replace-
ment from the population of 2N gametes. What is the
probability that two alleles in a genotype in the next
generation are identical by descent? Given that one
allele has been sampled, say an A1 allele, what is the
probability of sampling the same allele on the next
draw? Since there is only one copy of this allele in
gamete population, there is only one of the 2N alleles

that are the same. Therefore the chances of sampling 

the same allele to make a genotype are , which 

is also the probability that the alleles in a genotype are
identical by descent or are autozygous. The probabil-
ity that two alleles in a genotype are not identical by 

descent or are allozygous is then 1 − . Through 

the process of random sampling, populations can
accumulate autozygous genotypes, as do populations
where mating takes place among relatives.

We can use the probability of autozygosity in a
finite population to define the fixation index (recall
that it was defined as expected heterozygosity minus
observed heterozygosity all over expected hetero-
zygosity in Chapter 2) as

(3.47)
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Figure 3.18 Autozygosity and allozygosity in a finite
population where identity by descent is related to the size of
the population. Finite populations accumulate genotypes
containing alleles identical by descent through random
sampling in a manner akin to mating among relatives. In this
example, alleles in the ancestral gamete pool identical in state
are not identical by descent. Sampling of alleles takes place to
form the diploid genotypes of the next generation. By chance,
the same allele can be sampled twice to form an autozygous 

genotype with probability . The chance of not sampling 

the same allele twice is the probability of all other outcomes 

or 1 − . Autozygous genotypes must be homozygous 

but allozygous genotypes can be either homozygous or
heterozygous.
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for generation t under the assumption that none of
the alleles in the gamete pool in generation t − 1 are
identical by descent. To make this more general, we
could also account for the possibility that some of the
gametes in the ancestral population of generation t − 1
have alleles that are identical by descent from past
inbreeding or random sampling. To do this we need to
reexamine the probability that alleles are allozygous.
Although two distinct alleles in the gamete pool of
Fig. 3.18 may be sampled to form what appears to be
an allozygous homozygote, it is possible that these
two alleles sampled are actually identical by descent.
That would mean that the gamete pool would be
inbred to some degree Ft−1 instead of containing only
allozygous alleles. The fixation index then becomes

(3.48)

where the first term is due to sampling between 
generations and the second term is the proportion of
apparently allozygous alleles in the gamete population
that are actually autozygous due to past sampling or
inbreeding.

By definition, F is the reduction in heterozygosity
as well as the increase in homozygosity compared to
Hardy–Weinberg expected genotype frequencies. If
F is proportional to the homozygosity and amount 
of inbreeding, then 1 − F is proportional to the
amount of heterozygosity and random mating. If we
are interested in predicting levels of heterozygosity, 
multiplying both sides of equation 3.48 by −1 and
then adding one to both sides gives

(3.49)

or an expression for one minus the expected homo-
zygosity due to random sampling from a finite gamete
population. To express this in terms of the heterozy-
gosity, we can use Ht = 2pq(1 − Ft−1) from equation 

2.20 to obtain 1 − Ft−1 = . Substituting this into 

equation 3.49 gives:

(3.50)

which after multiplying both sides by 2pq gives:
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Taking this relationship over an arbitrary number of
generations gives

(3.52)

where H0 is the initial heterozygosity and Ht is the
heterozygosity after t generations have elapsed.

There is a very general and biologically meaning-
ful relationship contained in equation 3.52. It shows 

that heterozygosity declines by a factor of 1 −

every generation caused simply by sampling from 
a finite population that results in some autozygous
genotypes every generation. Recall that this is exactly
the same result that was obtained for the rate of loss
of genetic variation with the Markov chain model. The
degree of sampling varies directly with the effective
population size, so that the rate of increase in auto-
zygous genotypes also depends directly on the effective
population size. The expected heterozygosity from
equation 3.52 is shown in Fig. 3.19 for four differ-
ent effective population sizes over 50 generations.
For comparison, heterozygosity in six independent 
replicate populations experiencing genetic drift are
also plotted. The random trajectories of heterozyg-
osity in these individual populations make clear that
equation 3.52 provides an expectation for average
heterozygosity taken across a large number of replicate
populations or numerous independent neutral loci if
applied to a single population.

There are two conclusions that can be drawn 
from the interrelationship between autozygosity and
the effective population size. First, genetic drift causes
populations to become more inbred in the sense 
that autozygosity and homozygosity increase even
though mating is random. An important distinction is
that genetic drift causes heterozygosity to decrease
due to the fixation and loss of alleles. In contrast,
consanguineous mating decreases heterozygosity by
changing genotype frequencies but does not impact
allele frequency. Genetic drift produces homozyg-
osity since ultimately one allele reaches fixation while
consanguineous mating produces homozygous geno-
types for all alleles in the population. Second, mating
systems where there is consanguineous mating cause
genetic variation in populations to behave, from 
the perspective of heterozygosity, as if the effective
population size were smaller than it would be under
complete random mating. For example, when a 
parent self-fertilizes, the alleles transmitted to its
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progeny are sampled from a gamete pool containing
only two possible alleles. Compare that with the case
of outcrossing between unrelated individuals, where
the alleles transmitted to progeny are sampled from a
pool of four possible alleles. The probability of auto-
zygosity is clearly higher with the smaller parental
gamete pool associated with consanguineous mating,
just as it is also higher in a smaller population where
mating is random.

The faster decrease in heterozygosity in small com-
pared to large populations can be seen in the wild.
One study used the reasoning that organisms restricted
to islands should have smaller census population sizes
than the same species found on adjacent mainland
areas (Frankham 1998). Based on the relationship
between autozygosity and effective population size
just derived, the expectation is that island popula-
tions should show lower levels of heterozygosity
than mainland populations. Although there were
some exceptions, the general pattern was that island

populations had lower levels of heterozygosity than
did mainland populations (Table 3.3). This is exactly
the pattern expected due to the faster rate of decrease
in heterozygosity in smaller populations even when
mating is random. The comparison assumed that 
the island and mainland populations remained very
similar in terms of the degree of consanguineous
mating as well as genetic parameters that influence
the input of genetic variation such as the migration
and mutation rates. Since the comparisons were
between populations of the same species that are there-
fore very closely related, these assumptions seem likely
to be met at least approximately.

3.5 Estimating effective population size

• Variance and inbreeding effective population size.
• Breeding effective population size in continuous

populations.
• Effective population sizes for different genomes.
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Figure 3.19 The decline in heterozygosity as a consequence of genetic drift in finite populations. The solid lines show expected 

heterozygosity over time according to . The decrease in heterozygosity can also be thought of as an increase in 

autozygosity or the fixation index (F) through time under genetic drift. The dotted lines in each panel are levels of heterozygosity
(2pq) in six replicate finite populations experiencing genetic drift. There is substantial random fluctuation around the expected
value for any individual population.
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Species Fe

Mammals
Wolf (Canis lupis) 0.552
Lemur (Lemur macaco) 0.518
Mouse (Mus musculus) −0.048 to 1.000
Norway rat (Rattus rattus) −0.355 to 0.710
Leopard (Panthera pardus) 0.548
Cactus mouse 

(Peromyscus eremicus) 0.445–0.899
Shrew (Sorex cinereus) −0.241 to 0.468
Black bear 

(Ursus americanus) 0.545

Birds
Singing starling 

(Aplonis cantoroides) 0.231–0.833
Chaffinch (Fringilla coelebs) −0.164 to 0.504

Reptiles
Shingleback lizard 

(Trachydosaurus rugosus) 0.069–0.311

Populus can be used to simulate genetic drift in a finite population and then track values of the
inbreeding coefficient over time. In Populus, click on the Model menu and select Mendelian
Genetics and then Inbreeding. A dialog box will open that has entry fields for the effective
population size and the initial level of the inbreeding coefficient for a diallelic locus. You can also 
set the number of generations to run the simulation. To get started, set Population = 30, Initial
Frequency = 0.0 and Generations = 120. A graph of the results will appear after entering the
simulation parameter values. Despite the name, Initial Frequency is actually the initial level of
inbreeding in the population. A value of zero means that the population is in Hardy–Weinberg
equilibrium. Pressing the View button in the model dialog will generate a new data set and 
redraw the graph.

The graph will show three types of inbreeding coefficients. Ft is the “theoretical” inbreeding 

coefficient based on the decline in heterozygosity over time (equation 3.52) or . 

The other two lines are both based on the observed frequency of homozygous genotypes in the
simulated population. Fa (the blue line) is the actual frequency of homozygous individuals in the
population (often called Fi outside of Populus). Ff (the green line) is the population homozygosity.
Fa and Ff can be different because the individual homozygosity tracks the combined frequency of
homozygotes for either allele while the population homozygosity tracks how close the population
is to fixation or loss (global homozygosity). When the population homozygosity is one there can be
only one homozygous genotype in the population.

Why do the individual and population homozygosity values fluctuate? Is the amount of fluctuation
related to the population size? Although the graph does not show the heterozygosity over time,
what would lines for the theoretical, and individual and population heterozygosities look like? Try
graphing each of these quantities on paper for a given run based on the three inbreeding coefficients.
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Interact box 3.3 Heterozygosity and inbreeding 
over time in finite populations

Table 3.3 Levels of heterozygosity
found in island and mainland
populations of the same species
demonstrates that small population 
size has effects akin to inbreeding.
Heterozygosity in island and mainland
populations is compared using the
effective inbreeding coefficient 

. Fe > 0 when the 

mainland  population(s) exhibit more
heterozygosity, Fe < 0 when the 
island population(s) exhibit more
heterozygosity, and Fe is 0 when levels of
heterozygosity are equal. Values given
are ranges when more than one set of
comparisons was reported from a single
source. Data from Frankham (1998).
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The concept of effective population size should now
seem comfortable. This section will focus on putting
models into practice in order to estimate the effective
population size. This requires a shift in perspective
from using models to develop expectations about allele
frequencies to using models to explain past patterns
in allele frequencies. Working through a detailed
example of estimating the effective population size will
highlight the distinctions between two definitions of
the effective population size. This section will also intro-
duce a new definition of the effective population size
used widely for species with continuous distributions
that lack discrete geographic population boundaries.
In addition, the effective population sizes of nuclear
and organelle genomes will be compared.

Different types of effective population size

Just as there are several models constructed on 
different foundations used to describe how genetic
variation changes due to finite population size, there
are several ways to define the effective population
size such that it can be estimated. This is because the
effective population size is really defined as a con-
sequence of the models constructed to predict the
behavior of genetic variation in populations. To see
this, let’s consider the inbreeding and variance
effective population sizes.

In an ideal finite population (under the infinite alleles
model), the chances of sampling two copies of the
same allele depend on the size of the population and 

are (see section 3.3). This is the same as the 

probability that two alleles are identical by descent
(IBD) in a pedigree (see section 2.6). So we have:

(3.53)P
Ne

i
( )IBD =

1
2

  

1
2Ne

i

which can just as easily be restated as:

(3.54)

The first equation is used to determine what to
expect for the packaging of alleles into genotypes.
The expected value of the probability of identity 
by descent depends on the size of the population. 
The flip side of this same coin is that we can deter-
mine what to expect for the effective population size 
based on the probability of identity by descent in a
population, as shown in the second equation. In big
populations the chances that two alleles are ident-
ical by descent is low whereas in small populations
the chances of identity by descent are high. When
the effective population size is defined by reference to
autozygosity or inbreeding, the result is the inbreed-
ing effective population size.

The change in allele frequencies in many replic-
ate populations over generations was the focus of 
the Markov and diffusion models of genetic drift 
(section 3.2). The range of change in allele frequency
in these models among many populations could 
also be expressed as a variance. Earlier in the chap-
ter (equation 3.6) the standard error of the mean 
allele frequency among replicate populations was
derived. This leads to the variance in the change in
allele frequencies from one generation to the next
(Δp = pt−1 − pt) taken among replicate populations:

(3.55)

where p and q are allele frequencies at a diallelic locus
and the subscripts indicate the generation. As we 
did above, this equation can be restated by solving
for the effective population size:

(3.56)

Here again we see that the first equation shows 
that the variance in allele frequencies among many 
identical replicate depends in the effective population
size. By turning the equation around, we can then
define how big the effective size is by quantifying the
variance in the change in allele frequencies among 
a group of replicated populations. This definition
provides the variance effective population size.

Why make a big deal about distinguishing between
the inbreeding and variance effective population sizes?
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Inbreeding effective population size (Ne
i )

The size of an ideal population that would
show the same probability of allele copies
being identical by descent as an actual
population.
Variance effective population size (Ne

v) The
size of an ideal population that would show
the same sampling variance in allele frequency
as an actual population.
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In the beginning of the section, the effective population
size was defined by how genetic variation in a popula-
tion behaves over time. In ideal populations that are
not changing much in census size over time, the dif-
ferent effective sizes are usually equivalent. In some
situations, however, the different types of effective
population size are not equivalent since they measure
different aspects of genetic variation (Ewens 1982;
Crow & Denniston 1988; Crandall  et al. 1999).

A good way to understand the variance and inbreed-
ing effective population sizes is to employ them with
genetic data taken from a finite population experi-
encing genetic drift. Figure 3.20 shows the allele 
frequencies, change in allele frequencies, and change
in heterozygosity in 10 simulated populations over
four generations. The effective population sizes
fluctuated from 100 to 10 to 50 and then back to
100 over four generations. Using equation 3.42, we
would expect the genetic variation in this simulated
population to exhibit the same amount of genetic
drift over four generations as a population with a
constant size of about 28 or 29 individuals.

The heterozygosities and allele frequencies in the
10 simulated populations are given in Tables 3.4
and 3.5. The change in heterozygosity can be used 
to estimate the inbreeding effective population, since
the heterozygosity can be thought of as one minus

the autozygosity. The decline in heterozygosity with
time (equation 3.52) can be approximated by:

(3.57)

Taking the natural log of both sides

(3.58)

and then solving in terms of the effective population
size

(3.59)

gives an expression that can be applied to the simula-
tion data. Table 3.4 shows the computational steps
required to estimate L i

e for the 10 replicate popula-
tions. In a similar fashion, Table 3.5 works through
the computations necessary to estimate L v

e for the
10 replicate populations using equation 3.56.

The estimates of L v
e and L i

e are close to each other
but both are an order of magnitude lower than the
expected population size of 28 or 29. What happened?
The estimates are poor for a number of reasons that
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Figure 3.20 Simulated allele frequencies in 10 replicate populations that experienced effective population sizes of 100, 10, 50,
and 100 individuals across four generations. The variance in the change in allele frequency (Δp) can be used to estimate the
variance effective population size. The inbreeding effective population size can be estimated from the change in heterozygosity
through time.
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all stem from using models to describe actual popula-
tions as opposed to making idealized predictions. 
The model assumptions, which seem reasonable in
the abstract, have become critical now when faced
with a realistic sized data set. It reminds us again of
the difference between a parameter and a parameter
estimate. The data we used to make the estimates
probably do not fit the model assumptions well.

Using only 10 replicate populations to estimate the
effective population size is clearly not enough given
that the Markov model assumed an ensemble popula-
tion that approaches infinite size. In some cases the
heterozygosity actually increased between genera-
tions, although the expectation in equation 3.52 is
that it should only decrease. The average Δp was not
zero even though with many replicate populations 

Table 3.4 Data from simulated allele frequencies in Fig. 3.20 used to estimate the effective population size.
Here, the ratio of heterozygosity in generations three and four is used to estimate inbreeding effective
population size (Le

i) according to equation 3.59. Initial allele frequencies were p = q = 0.5, so Ht=1 = 0.5. One
generation of genetic drift took place, hence 1 is used in the numerator of the expression for Ne

i . The average
Ne

i excludes the negative values.

Ht==3 Ht==4

0.4987 0.4504 −0.1018 4.91
0.4866 0.4594 −0.0575 8.69
0.4813 0.3474 −0.3259 1.53
0.4998 0.4376 −0.1329 3.76
0.4546 0.3772 −0.1864 2.68
0.4884 0.4999 0.0232 −21.58
0.4920 0.4566 −0.0747 6.69
0.4413 0.4856 0.0957 −5.22
0.4715 0.3578 −0.2761 1.81
0.4995 0.4550 −0.0932 5.36

Average Le
i = 4.43

\ e
i

t

t

H
H

== −−
⎛⎛

⎝⎝
⎜⎜⎜⎜

⎞⎞

⎠⎠
⎟⎟⎟⎟

==

==

1
2

1

4

3

ln  
ln

H
H

t

t

==4

3==

⎛⎛

⎝⎝
⎜⎜⎜⎜

⎞⎞

⎠⎠
⎟⎟⎟⎟

Table 3.5 Data from simulated allele frequencies in Fig. 3.20 used to estimate the effective population size.
Here, the change in allele frequency between generations three and four is used to estimate variance effective
population size (Le

v) according to equation 3.56. Allele frequencies in the third generation were used to
estimate pq.

pt==4 ΔΔp = pt==4 −− pt==3 pq

0.6574 0.1825 0.2494 0.0186 6.71
0.3575 −0.0606 0.2433 6.55
0.2238 −0.1795 0.2406 6.47
0.3234 −0.1668 0.2499 6.72
0.2523 −0.0970 0.2273 6.12
0.4940 −0.0819 0.2442 6.57
0.6473 0.0842 0.2460 6.62
0.4153 0.0866 0.2207 5.94
0.7667 0.1473 0.2357 6.34
0.6499 0.1343 0.2498 6.72

Average Le
v = 6.48
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it is expected to be. The estimates also only utilized a
single generation of genetic drift while the expectation
for a fluctuating populations was over four genera-
tions. It seems that the change in allele frequencies
and heterozygosity in the simulated populations were
disconcertingly random! All this serves to remind us
that assumptions like “many populations” or “over
long time periods” may not be biologically realistic
because a data set or organisms themselves may not
play by the same rules. Violation of model assump-
tions often leads to poor or imprecise estimates of
parameters, just as we have seen in this example.

There are an array of methods that have been
employed to estimate effective population size 
from genetic data using various estimators of the
variance and inbreeding effective population sizes. 
Table 3.6 provides some estimates of the ratio of the
effective population size to the census size. A general

conclusion is that the effective population size is
often one-tenth or less, sometimes much less, of the
census population size. See Waples (1989) for more
details on estimating effective population size from
changes in allele frequency through time. In addi-
tion, the effective population size can be estimated
with gametic disequilibrium (equation 2.31; Waples
1991; Slatkin 1994), heterozygote excess in small
populations of self-incompatible individuals due to
random allele-frequency differences between popula-
tions of male and female breeders (Balloux 2004),
and gene diversity of DNA sequences or other mole-
cular marker loci.

Breeding effective population size

Up to this point, an implicit assumption has been
that a population is an easily recognized and dis-
crete entity. In species where individuals are more or 
less continuously distributed over large areas, there 
are no obvious physical or geographic boundaries
that define populations. Instead, populations can 
be defined by average mating and dispersal patterns
among individuals that result in limits to the move-
ment of gametes each generation. Based on the size of
the breeding and dispersal area there is the breeding
effective population size, which is particularly suit-
able for populations where individuals may occur
relatively uniformly over large areas and not form
discrete aggregations. Imagine a large, continuous
plant population that covers many hectares (plants
are a good example since they stay in the same place
over time, but the concept applies to all organisms).
Now imagine examining all of the successful mating
events for many individuals. The distances of mating

Use the data provided in Table 3.5 to
estimate Li

e over four generations for 
each of the 10 replicate populations.
Heterozygosity in the first generation was
0.5 in all populations since initial allele
frequencies were p = q = 0.5. Does the
average estimate of Li

e better match what is
expected for a fluctuating population of
100–10–50–100?

Problem box 3.4
Estimating Ne from observed

heterozygosity over time

Table 3.6 Estimates of the ratio of effective to census population size for various species based on a
wide range of estimation methods and assumptions.

Species Reference

Leopard frog (Rana pipiens) 0.1–1.0 Hoffman et al. 2004
New Zealand snapper (Pagrus auratus) (0.25–16.7) × 10−5 Hauser et al. 2002
Red drum (Sciaenops ocellatus) 0.001 Turner et al. 2002
White-toothed shrew (Crocidura russula) 0.60 Bouteiller and Perrin 2000
Flour beetle (Tribolium castaneum) 0.81–1.02a Pray et al. 1996
Review of 102 species 0.10b Frankham 1995

aRatios declined as census population sizes increased.
bMean of 56 estimates in the “comprehensive data set” that included impacts of unequal breeding sex ratio, variance in
family size, and fluctuating population size over time.
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events would show a frequency distribution like that
of Fig. 3.21. The critical feature of the distribution is
that the frequency or chance of mating drops off on
average as the physical distance between individuals
increases. This is a widely observed phenomenon
called isolation by distance (Wright 1943a). With
enough distance separating them, two individuals
have a low probability of mating and can be considered
members of distinct genetic populations even if they
are not located in geographically distinct populations.
The distance required for reproductive isolation by
distance may be on the order of meters or thousands
of kilometers depending on the species.

Estimating the breeding effective population size
depends on the probability distribution of gamete
dispersal in space and can be approximated by a 
normal distribution (other distributions can be used
as well). Recall that two standard deviations on either
side of the mean contains about 95% of the observa-
tions in a normal distribution (see the Appendix).
The standard deviation in dispersal, which is the

square root of the variance in dispersal, can then be
used to describe the probability that a gamete dis-
perses in one dimension (Fig. 3.21). Extending this to
gamete dispersal into two dimensions, the dispersal
area can be thought of as a circle with the average
individual at the center. Since the circle describes a
probability distribution, a radius of twice the standard
deviation in dispersal in a generation will sweep an
area containing about 95% of the observations in 
a two-dimensional normal distribution (Fig. 3.22).
This two-dimensional normal distribution model 
of gamete dispersal probability combined with the
average density of individuals is used to quantify 
the breeding effective population size. Since the area
of a circle is πr2 where r is two standard deviations
(or twice the square root of the dispersal distance
variance):

(3.60)

which simplifies to

N b
e = 4π(dispersal SD)d (3.61)

where d is the average density of individuals. The
area described by equation 3.61 is known as the
genetic neighborhood in continuous populations.
Multiplying the genetic neighborhood (an area) by
the density of individuals (individuals per unit area)
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Figure 3.21 Isolation by distance is characterized by the
declining probability of gamete dispersal with increasing
geographic distance. The specific shape of the gamete
dispersal by distance curve may vary (top), but it is often
modeled using a normal distribution (bottom). In a normal
distribution, about 95% of observations are expected to fall
within two standard deviations from the mean. Empirical
estimates of mating and progeny movement in a generation
can be used to estimate the variance and thereby the standard
deviation of overall dispersal in gametes in order to estimate
the area of a genetic neighborhood.
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Figure 3.22 An ideal two-dimensional normal distribution
used to model the size of genetic neighborhoods and to
estimate the breeding effective size (N b

e ) of demes within
continuous populations. The radius of the distribution is
twice the standard deviation in total gamete dispersal 
in a generation. The actual physical dimensions of the
distribution could range from just a few meters to hundreds 
or thousands of kilometers.
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gives the breeding effective population size in indi-
viduals (see Wright 1943a; Crawford 1984).

··

In a classic study, Schaal (1980) estimated the breed-
ing effective population size in Texas bluebonnets
(Lupinus texensis). This species is pollinated by 
bumblebees and occurs in large continuous popula-
tions that cover many hectares (see color images 
on the text web page in the section for Chapter 3). 
An experimental population was constructed using 
91 plants with known genotypes at the phospho-
glucose isomerase-1 enzyme locus (Pgi-1). Mating
distances were estimated from seven central plants
(homozygous for the Pgi-1 fast allele) by genotyping
progeny from plants without the Pgi-1 fast allele 
in the experimental population. Since gametes are 
also dispersed in seeds every generation, the passive 
dispersal of seeds was tracked as well. Dispersal 
distances were very limited, with gametes moving
via pollen an average of 1.82 m and seeds moving an
average of 0.58 m. The genetic neighborhood size
for the experimental population of L. texensis was
estimated as 6.3 m2, containing a breeding effective
population size of 95.4 individual plants.

The term deme, the largest area or collection of
individuals where mating is (on average) random, is
often applied to continuous populations and is closely
connected with the concepts of breeding effective
population size and genetic neighborhoods. The bond
orbital in chemistry serves as a metaphor for the deme
in population genetics. A bond orbital describes the
probability that an electron will be found at some
location in space. Similarly, a deme describes the prob-
ability that an average individual will move its gametes
some distance in space by mating or dispersal in a
generation. Members of the same deme are considered
able to mate at random whereas members of two dif-
ferent demes have a low probability (< 5%) of mating

and are therefore members of separate populations.
It is important to distinguish demes, or genetically
defined population demarcations, from geographically
defined populations. From the perspective of effec-
tive population size and predicting the behavior of
genetic variation, deme is a more useful definition for
populations than geographic or spatial definitions.

Effective population sizes of different genomes

Plastid genomes (mitochondria and chloroplasts)
are an example where the effective population size 
is lower than that of the nuclear genome of the same
organism. The effective population size of plastid
genomes is reduced by two independent factors. First,
these genomes are haploid (one copy of the genome
per plastid) compared to the two homologous copies
of each diploid nuclear chromosome. In addition,
most plastids are inherited by offspring from one 
parent only via the gamete cytoplasm (uniparental
inheritance). In species with two equally frequent
sexes, uniparental inheritance causes plastid genomes
to have half the effective population size of genomes
inherited from all possible parents. These two factors
combined cause animal mitochondrial genomes and
plant mitochondrial and chloroplast genomes to
have one-quarter of the effective size of the diploid,
biparentally inherited nuclear autosomes. Thus, loci
in these genomes experience a higher rate of genetic
drift compared to loci in the nuclear genome. Genetic
marker studies frequently take advantage of this fact,
using plastid genome marker loci to study phenomena
such as recent population divergence due to genetic
drift where nuclear marker loci would show much less
divergence because of a larger effective population size.

3.6 Gene genealogies and the coalescent
model

• Modeling the branching of lineages to predict the
time to the most recent common ancestor.

At this point in the chapter we need an interlude in
the discussion of genetic drift and effective popula-
tion size to develop a new approach based around
lineage branching or gene genealogy. Initially, it is
necessary to introduce some basic terminology and
concepts used in this approach. Although it may not
be evident at first, the lineage-branching approach to
population genetics has a great deal in common with
the material in the first two sections of this chapter.
The immediate goal of this section is to establish 
and motivate the building blocks necessary to model 

Breeding effective population size (Nb
e )

The number of individuals found in a genetic
neighborhood defined by the variance in
gamete dispersal.
Deme The largest area or collection of
individuals where mating is (on average)
random.
Genetic neighborhood An area or subunit of
a population within which mating is random.
Isolation by distance Decrease in the
probability of mating and dispersal of gametes
as physical distance increases.

9781405132770_4_003.qxd  1/16/09  5:14 PM  Page 87



88 CHAPTER 3

··

lineage branching events. The next section of this
chapter will then show how the concept of effective
population size applies in genealogical branching
models. A major advantage of coalescent models is
that the action of population genetic processes (genetic
drift, gene flow, and natural selection) on the branch-
ing pattern of lineages is independent of the allelic
states of the lineages. Details about the lineages
themselves are developed in Chapter 5, but bear in
mind that each lineage represents an independent
copy of an allele or DNA sequence. Once both the
branching processes and the mutation processes
that change on allelic states are brought together,
the coalescent approach serves to make testable pre-
dictions for the evolution of DNA sequences under 
a combination of population genetic processes.

Tracing the pattern of ancestry for allele copies in
a pedigree provides a means to understand the pre-
sent patterns in those allele copies (see section 2.6).
For example, the pedigree in Fig. 2.14 shows the
equivalence of homozygosity in the present and the
probability that two allele copies descended from 
a single ancestor in the past. Given the known indi-
viduals at each generation in that pedigree, we traced
ancestor–descendant relationships forward in time
to predict autozygosity in the most recent genera-
tion. Thus, that pedigree is an example of using a
prospective or time-forward model, using knowledge
of ancestors back in time and basic probability to
work forward in time to predict the autozygosity at
the most recent point in time.

Another type of analysis of ancestor–descendant
relationships is possible based on a retrospective 
or time-backward model. Imagine that we have a 
sample of individuals taken in the present time, 
analogous to individual G in Fig. 2.14, but we have
no knowledge of their parents or grandparents or
any of their genealogical relationships. Would it be
possible to learn something about the past popula-
tion genetic events that lead up to that sample of
individuals? The answer is yes, if we have models of
ancestor–descendant relationships (genealogy) that
allow us to predict identity by descent in the past
based only on knowledge of the present. With such
models, we look at patterns among the individuals
available to us in the present and try to reconstruct
versions of events such as inbreeding, gene flow, or
natural selection in the past that could have lead 
to the individuals in the present. These models are
referred to collectively as coalescent theory since
the perspective of the models is to predict the prob-
ability of possible patterns of genealogical branching

working back in time from the present to the point 
of a single common ancestor in the past. When 
two lineages trace back in time to a single ancestral 
lineage it is said to be a coalescent event, hence the
term coalescent theory.

A central concept in coalescent theory is connect-
ing a group of lineages in the present back through
time to a single ancestor in the past. This single
ancestor is the first ancestor (going backward in
time) of all the lineages in a sample of lineages in the
present time and is referred to as the most recent
common ancestor or MRCA. Section 3.2 develops
a time-forward model of genetic drift that predicts
that a sample of alleles (or lineages) will eventually
arrive at fixation or loss. Fixation is reached by 
random sampling that expands the numbers of a
given lineage or allele in the population. The lineage
that reaches fixation can be traced back to a single
ancestor at some point in the past. In the process of
reaching fixation, a population loses all lineages
except one, the one that was fixed by genetic drift.
This same genetic drift process can be viewed from 
a time-backward perspective. A sample of lineages 
in the present must eventually be the product of 
a single ancestral lineage at some point back in the
past that happened to become more frequent under
random sampling. The coalescent model turns the
random sampling process around, asking: what is
the probability that two lineages in the present can
be traced back to a single lineage in the previous 
generation? Answering this question relies on the
same probability tools that were used earlier in the
chapter to describe the process of genetic drift.

Before moving on with a more formal descrip-
tion, let’s consider a metaphor for the coalescence
process to set the stage. Imagine a sealed box full of
bugs. Each bug moves around the box at random.
Whenever two bugs meet by chance, one of them
(picked at random) completely eats the other one 
in an instant. When a bug is eaten the population 
of bugs decreases by one and the remaining bugs
continue to move about the box at random. The 
time that elapses between bug meetings tends to get
longer as the number of bugs in the box gets smaller.
This is because chance meetings between bugs
depend on the density of bugs in the box. Eventually,
the entire box that was full of bugs initially will 
wind up holding only a single bug after some time
has passed. Each bug is analogous to a lineage and
one bug eating another is analogous to a coalescent
event. The very last bug is analogous to the lineage
that is the most recent common ancestor.

9781405132770_4_003.qxd  1/16/09  5:14 PM  Page 88



Genetic drift and effective population size 89

··

A schematic representation of the ancestor–
descendant process for two generations can be seen
in Fig. 3.23a for a set of haploid lineages. Using 
rules of random sampling based around the Wright–
Fisher model (and its assumptions) we can develop 
a prediction for the number of generations back in
time until two lineages “find” their MRCA or coalesce
to a single lineage. Consider a random sample of two
of the 2N total lineages in the present generation.
Given that one of these two sampled lineages finds 
its ancestor in the previous generation, what is the
probability that the other lineage also shares that
same common ancestor such that a coalescent event
occurs? Given that one of the lineages has a given
common ancestor, for coalescence to occur the other
lineage must have the same ancestor among the 2N
possible ancestors in the previous generation. Thus 

the probability of coalescence is for two lineages 

whereas the probability that two lineages do not
have a common ancestor in the previous generation 

is 1 − .

The coalescent sampling process just developed for
haploid lineages can also be extended to approximate
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Figure 3.23 Haploid (a) and diploid (b) reproduction in the context of coalescent events. In a haploid population, the probability 

of coalescence is (dashed lines) whereas the probability that two lineages do not have a common ancestor in the previous 

generation is (solid lines). In a diploid population, the two gene or allele copies in one individual in the present time have 

one ancestor in the female population (Nf) and one ancestor in the male population (Nm). Coalescent events in the diploid
population arise when the gene copies in males and females are identical by descent. The haploid model with 2N lineages is
routinely used to approximate the diploid model with N = Nf + Nm diploid individuals.
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Coalescence or coalescent event The point
in time where a pair of lineages or genealogies
trace back in time to a single common
ancestral lineage (to coalesce literally means 
to grow together or to fuse).
Genealogy The record of ancestor–
descendant relationships for a family or 
locus.
Lineage A line of descent or ancestry for 
a homologous DNA sequence or a locus
(regardless of whether or not copies of the
locus are identical or different).
Most recent common ancestor (MRCA) The
first common ancestor of all lineages (or gene
copies) at some time in the past for a sample
of lineages taken in the present.
Gene copy or allele copy A replicated DNA
sequence that has passed from an ancestor to
a descendant; used synonymously with the
term lineage.
Waiting time The mean or expected time
back in the past until a single coalescence
event in a sample of lineages.
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the process of reproduction for diploid lineages. In
diploid reproduction, each offspring is composed of
one allele copy inherited from a female parent and
another allele copy from a male parent (Fig. 3.23b).
In a time-backward view, this can be thought of as
reproduction where one allele copy finds its ancestor
in the male population of the last generation while
the other allele copy finds its ancestor in the female
population of the last generation. For a given male 
or female parent, each of their two allele copies has 
a probability of 1/2 of being the ancestral copy. As 
long as the number of males and females in a diploid 
population is equal and the haploid and diploid popula-
tion sizes are large, the predictions of the coalescent
model are very similar for haploid and diploid popula-
tions containing an identical total number of gene
copies. The haploid model is more straightforward and
so it is used throughout this section. In practice, the
predictions that follow from the haploid coalescent
model can be applied to samples of lineages (usually
DNA sequences) from diploid organisms.

Like Markov chains, the probability of coalescence
displays the Markov property since it is an inde-
pendent event that depends only on the state of the
population at the point of time of interest. Because of
this, the basic probabilities of coalescence and non-
coalescence between two generations can be used 
to describe the probability of coalescence over an
arbitrary number of generations. If two randomly
sampled lineages do not coalesce for t − 1 generations,
then the probability that they do coalesce to their
common ancestor in generation t is:

(3.62)

For example, in a population of 2N = 10 the chance
that two randomly sampled lineages coalesce in four
generations is the product of the probability of three 

generations of not coalescing ( )  

and the chance of coalescing between any two genera-
tions (1/10), which gives a probability of coalescence
of 0.0729. The distribution of the probabilities of a
coalescent event occurring for two lineages in each
of 30 generations for the case of 2N = 10 is shown 
in Fig. 3.24. It is important to note that only a single
coalescent event is possible each generation since 
we are only considering two lineages.

In practice, the probabilities of coalescence are
approximated using an exponential function (see Math
box 3.2). As we have seen, the exact probability of 

coalescence for a pair of lineages is and the prob-

ability of not coalescing is 1 − each generation. 

The exponential approximation gives the
cumulative probability of a pair of lineages coalesc-
ing at or before generation t. This probability is 
symbolized as P(TC ≤ t) where TC is the generation of
coalescence and t is the maximum time to coalescence
being considered. Let’s use an example of the prob-
ability of coalescence at or before four generations
have passed in a population of 2N = 10,000. The
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Figure 3.24 The distribution of the
probabilities of coalescence over time 

predicted by (top) for 

a population of 2N = 4. The bottom
panel shows the approximations 
of these coalescence probabilities
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distributions with a probability of
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exact probability is the sum of the probabilities of
coalescence in each generation, P(TC ≤ 4) = P(TC = 1)
+ P(TC = 2) + P(TC = 3) + P(TC = 4). Substituting in
expressions for the exact probability of coalescence
at each of these four time points gives P(TC ≤ 4)

= +

+ +

= 0.0004. Using the exponential approximation 

instead, = 0.00039992 as the chance 
that a pair of lineages experiences a coalescence at 
or before four generations elapses. Thus, the exact
probability and the approximation are in close agree-
ment. The exponential approximation of the exact
probability improves as the population size increases.
See Hein et al. (2005) and Wakeley (2008) for a
more detailed discussion of the relationship between
population size and the error of the exponential
approximation of coalescence probabilities.

Approximating probabilities of coalescence with
the exponential distribution makes computing more
practical and also yields several generalizations about
the coalescence process. In particular, the geometric
and exponential probability distributions can be used
to obtain an approximate average and variance for
coalescence times. It turns out that for both types of
distribution the mean time to an event is simply the
inverse of the probability of an event occurring. In
the coalescence process, the probability of coalescence

for a pair of lineages is so the average time that 

elapses until coalescence is 2N when the coalescence
process is approximated with the exponential dis-
tribution. The average time to a coalescent event is
often called the waiting time. Another generaliza-
tion is that the range of individual coalescence times
around that average is quite large. Based on the
exponential distribution, the variance in the waiting
time is 4N2 so that range of coalescence times around
the mean grows rapidly as the size of the population
increases. Thus, the length of branches connect-
ing lineages to their ancestors will be highly variable
about their mean value. This can be seen in Fig. 3.25,
which shows six independent realizations of the 
coalescent tree for six lineages.

It is possible to determine the average time for
more than two lineages to find their MRCA. Suppose
we want to determine the waiting time for k lineages,
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where k is less than or equal to the total number 
of lineages sampled from a population of 2N. To 
see the problem in detail, let’s consider the case of 
k = 3 lineages. When no coalescence events occur,
one lineage finds its ancestor among any of the 
2N individuals in the previous generation. That
means the next lineage must find its ancestor 
among 2N − 1 individuals in the previous genera-
tion and the final lineage must find its ancestor
among 2N − 2 possible parents. Thus the probability
of non-coalescence is

(3.63)

If the number of lineages sampled is much smaller
than the total number of lineages in the population
(2N) then the probability of non-coalescence for k
lineages can be approximated by
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Figure 3.25 Six independent realizations of the coalescent
tree for six lineages. All six trees are drawn to the same scale.
Each genealogy exhibits coalescent events between random
pairs of lineages. The differences in the height of the trees is
due to random variation in waiting times. Because of this
random variation, average times to coalescence for a given
number of lineages are only approached in a large sample of
independent trees. Because genealogies are drawn sideways
here, tree “heights” are actually width, from left to right.
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(3.64)

where enumerates the different ways to 

uniquely sample pairs of lineages from a total of k
lineages. (Note that the number of unique pairs of
lineages can also be determined with “k draw 2” or 

.) The probability of a coalescence for 

any one of the unique pairs of the k lineages is then

(3.65)

Bringing these two probabilities together into an equa-
tion like 3.62 gives the probability that k lineages
experience a single coalescent event t generations
ago:
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Since this probability also follows an exponential 

distribution ( ), the average time to 
coalescence for k lineages in a population of 2N is 

. For example, if k = 3 and 2N = 10, the aver- 

age time to coalescence is 31/3 generations. This is one-
third of the average waiting time for two lineages since
each of the three unique pairs of lineages (1–2, 1–3,
and 2–3) can independently experience coalescence.
Figure 3.26 shows the average coalescence times 
for six lineages based on this same logic. The general
pattern is that coalescence times decrease when more
lineages are present since there are a larger number
of lineage pairs that can independently coalesce.
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Figure 3.26 A schematic coalescent tree the shows average coalescence times and the relationship between time scales in 

continuous units and units of 2N generations. With a sample of k lineages, the expected or average time to coalescence is 

since each of the independent pairs of lineages can coalesce. Dividing continuous time in generations (j) by 2N yields a 

continuous time scale (t = j/(2N)) that can be used to describe coalescent trees. Multiplying the continuous time scale by 2N gives
time to coalescence in units of population size. E refers to expected and T refers to time to coalescence so that E(Tn) is the expected or
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The series of failures (non-coalescence) until a
success (coalescence) in the genealogical
process can be modeled where time is
continuous (a real number) rather than discrete
(an integer). The exponential distribution
describes situations in which an object initially
in one state can change to an alternative state
with some probability that remains constant
through time. The exponential distribution
could be applied to the time until one of many
light bulbs fails, for example, as well as to the
time until a coalescent event in a population 
of lineages (see Fig. 3.24). The exponential
distribution is described by

Probability of change = ae−at (3.67)

where a is the constant probability of changing
states in a time interval of one, t is time, and e is
the mathematical constant base of the natural
logarithm (e = 2.71828 . . . ). The exponential
distribution has a mean of

(3.68)

and a variance

(3.69)

Under the assumption that the effective
population size 2N is large (and constant) such 

that the probability of coalescence ( ) is small, 

the probability that a coalescent event occurs,

(3.70)

can be approximated using the exponential
distribution

(3.71)

for two lineages where t is time in generations.
Notice that the constant in the exponential
expression (equivalent to the a in equation 3.67)
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is . That means that the average time to 

coalescence is and the variance in 

time to coalescence is . Setting 

the exact probability of coalescence
approximately equal to the exponential 
gives an expression

(3.72)

that can be simplified by canceling the 

constant term on both sides

(3.73)

Therefore, the exponential distribution
approximates the probability of non-
coalescence at each time t.

To determine the chances that a
coalescence event occurred at or before some
time, call it TC ≤ t where TC is the time to
coalescence and t is time scaled in units of 
2N generations, the cumulative exponential
distribution is used. The cumulative distribution

(3.74)

effectively adds up the probabilities of
coalescence (as one minus the chance of 
non-coalescence) as time increases to express
the probability of a time interval passing
without experiencing a coalescent event. The
cumulative distribution approaches one as time
increases since the chance of non-coalescence
decreases toward zero with increasing time.
The probability of coalescence increases more
rapidly toward one for larger numbers of
lineages k. This cumulative distribution is used
to determine the waiting times needed to
construct coalescent trees.
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Math box 3.2 Approximating the probability of a coalescent 
event with the exponential distribution
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(1.4)(20) = 28 generations in the past. Aside from
the practical matter of interpreting a specific time
value, the use of a continuous time scale makes 
an important biological point about the effects of
population size on the coalescence process. The basic
nature of the coalescent process is identical for all
populations no matter what their size. For example,
in populations of any size a single coalescent event
will occur faster on average when there is a larger
number of lineages sampled than when just a pair 
of lineages is sampled. Population size just serves 
to scale the time required for coalescent events to
occur. Coalescent events occur more rapidly in small
populations compared to bigger populations, a con-
clusion analogous to that reached for genetic drift
earlier in the chapter.

When approximating the probability of coalescent
events with the exponential distribution, it is standard
practice to put coalescence times on a continuous
scale of units of 2N generations. To see how this 
continuous time scale operates, let j be time meas-
ured as a real number (e.g. 1.0, 1.1, 1.2, 1.3 . . . j) 
in generations. The time to coalescent events t can 
then be expressed as t = j/(2N). As an example,
imagine that a coalescence event occurred at t = 1.4
on the continuous time scale. That coalescence event
could also be thought of as occurring (1.4)(2N) =
2.8N generations in the past (see Fig. 3.26). If the 
population size was 2N = 100 lineages, then that
coalescent event was (1.4)(100) = 140 generations
in the past. However, if the population size was 
2N = 20 lineages, then that coalescent event was

Building a few coalescent trees can help you to understand how the exponential distribution is put
into practice to estimate coalescence times as well as give you a better sense the random nature of
the coalescence process. You can use a Microsoft Excel spreadsheet at the textbook website that
has been constructed to calculate the quantities necessary to build a coalescent genealogy. The
spreadsheet contains the cumulative exponential distributions for a time interval passing without
experiencing a coalescent event (see equation 3.74) for up to six lineages. To determine a
coalescence time for a given number of lineages, k, a random number between zero and one is 

picked and then compared with the distribution when lineages can coalesce. The time 

interval on the distribution that matches the random number is taken as the coalescence time.

Step 1 Open the spreadsheet and look over all the quantities calculated. Click on cells to view 
the formulas used, especially the cumulative probability of coalescence for each k. This 
will help you understand how the equations in this section of the chapter are used in
practice. View and compare the cumulative probability distributions graphed for k = 6 
and k = 2.

Step 2 Press the recalculate key(s) to generate new sets of random numbers (see Excel help if
necessary). Watch the waiting times until coalescence change. What is the average time 
to coalescence for each value of k? How variable are the coalescence times you observe 
in the spreadsheet when changing the random numbers with the recalculate key?

Step 3 Draw a coalescence tree using the coalescence times found in the spreadsheet (do not
recalculate until step 6 is complete). Along the bottom of a blank sheet of paper, draw 
six evenly spaced dots to represent six lineages. Starting at the top of the random number
table, pick two lineages which will experience the first coalescent event. Label the two 
left-most dots with these lineage numbers. Then, using a ruler, draw two parallel vertical
lines as long as the waiting time to coalescence (e.g. if the time is 0.5, draw lines that are
0.5 cm). Connect these vertical lines with a horizontal line. Assign the lineage number 
of one of the coalesced lineages to the pair’s single ancestor, at the horizontal line. 
Record the other lineage number on a list of lineages no longer present in the population
(skip over these numbers if they appear again in the random number table). There are 
now k − 1 lineages.

  

k k( )− 1
2

Interact box 3.4 Build your own coalescent genealogies
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This section will conclude by considering several
measures of coalescent trees useful to summarize
general patterns of the coalescence process. The total
time from the present to the point in the past where
all k sampled lineages find their MRCA is called the
height of a coalescent tree. The height of a tree 
for k sampled lineages is just the sum of the coales-
cence waiting times as coalescent events reduce the
number of lineages from k to k − 1 to k − 2 down to
one. The mean or expected value of the height of a
coalescent tree is then

(3.75)

where time is in continuous units of multiples of 
2N. Thus, the average height in continuous time 
of a coalescent tree starts at 2(1 − 1/2) = 1 for a pair 
of lineages and approaches 2 as k grows very large. 
In time units of 2N generations, the average tree
height starts at 2N and increases to 4N as k grows.
The average total waiting time for all lineages to 
coalesce is heavily influenced by the average waiting
time for the last pair of lineages to coalesce. Stated
another way, average waiting times are shorter when
k is larger and increase as lineages coalesce and k
gets smaller. This result makes sense since there are
fewer and fewer independent pairs of lineages that 
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can coalesce as k decreases (think of as k

decreases to 2).
The variance in the height of a coalescent tree 

is the sum of the variances in the coalescence time 
for each set of coalescent events since all coalescent
events are independent:

(3.76)

The variance rapidly approaches the value of about
1.16 as the number of lineages sampled, k, increases
to large values. The finite maximum value of the
variance and the fact that the variance in tree height
for k = 2 lineages is 1.0 highlights the major impact
of the coalescence time of the last pair of lineages on
the overall height of a coalescence tree. Figure 3.27
illustrates the variance in the total height of geneal-
ogies by displaying the time to MRCA for 1000 
replicate genealogies each starting with k = 6. The
range of time to MRCA is large and the distribution
has a very long tail representing a small proportion
of genealogies that take a very long time for all 
coalescence events to occur.

Another useful measure is the total branch length
of a coalescent genealogy of k lineages or Lk. The 
total branch length is the sum of the waiting times
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Step 4 Use the random-number table to get the next pair of lineages that coalesce. Remember
that the single ancestor of lineage pairs that have already coalesced will eventually coalesce
with one of the remaining lineages. If one of the lineages of this random pair matches a
previous pair’s ancestor, begin at the horizontal line indicating that pair’s coalescence, and
draw a vertical line toward the top of the paper that is the length of the coalescence time
for the number of lineages remaining. Draw a vertical line from lineage n to an equal height
and connect the two vertical lines with a horizontal line (the line from lineage n will be as
long as the sum of all coalescence times to that point). If neither number matches a
previous pair’s ancestor, draw the branches as in step 3, beginning at the baseline, but 
this time adding this pair’s particular coalescence time to the sum of previous coalescence
times to find the vertical branch height.

Step 5 Repeat the process in step 4 until all lineages have coalesced.
Step 6 Then add together all of the times to coalescence to obtain the total height of the

coalescent tree and sum the height of all of the branches to obtain the total branch length
of the tree. How do these compare with the average values for a sample of six lineages?

Step 7 Press the recalculate key combination to obtain another set of coalescence times and 
repeat steps 3 through 5 to create another coalescence tree. Draw several coalescence 
trees to see how each differs from the others. You should obtain coalescence trees like 
those in Fig. 3.25. Your trees will differ from these, because the random coalescence times
vary around their average, but the overall shape of your trees will be similar.
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represented along each lineage in the tree. If the
branches represented a system of roadways, then 
the sum of the distances traversed when driving 
over each segment of road once would be analogous
to the total branch length. For example, if a pair of 
lineages has a waiting time x until coalescence, then
the total waiting time is x + x = 2x. The average total
branch length of a genealogical tree is then just twice
the sum of the average waiting times (using continu-
ous time) for each coalescence event:

(3.77)

For example, with k = 2 lineages i = 1 in equation 3.77
gives an expected total branch length of two. This
result makes sense because two lineages are expected
to coalesce in 2Ne generations or one time unit on
the continuous time scale. Multiplying this expected
time to coalescence by two for the two independ-
ent lineage branches gives a total branch length 
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of two. The expected total branch length starts at
two, increasing with greater k and never reaching 
a maximum. However, the expected total branch
length of a genealogy grows more and more slowly
as k increases since the expected time to coalescence
decreases with increasing k.

This section defines how coalescent theory
describes the probabilistic events associated with 
lineage branching for a single population. This 
basic model can be extended to include the influ-
ence of numerous population genetic processes on
coalescence. Later sections and chapters will explore
how changes in population size (the next section),
subdivided populations that experience gene flow
(Chapter 4), mutation (Chapter 5), and natural selec-
tion (Chapter 7) influence patterns of coalescence.
The application of coalescent theory to DNA sequence
data, including examples based on empirical data,
will be covered in Chapter 8.

3.7 Effective population size in the 
coalescent model

• The coalescent model of effective population size.
• Coalescent genealogies and population bottlenecks.
• Coalescent genealogies in growing and shrinking

populations.

This section will explore the meaning of effective
population size in the coalescent model. As in the
models of genetic drift developed previously in this
chapter, effective population size also plays a critical
role in coalescence models. In the context of the 
coalescent model, the effective population size deter-
mines the chance that two gene copies descend from
the same ancestor when working back in time 
from the present to the past.

In the coalescent model, two randomly sampled 

gene copies have the probability of finding their 

MRCA in the previous generation. If we call this 
the probability of coalescence, PC, then for a diploid 
population:

(3.78)

This equation can be rearranged:

(3.79)N
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Figure 3.27 The distribution of times to a MRCA (or
genealogy heights) for 1000 replicate genealogies starting
with six lineages (k = 6). The distribution of total coalescence
times has a large variance because the range of times is large
and also asymmetric with a long tail of a few genealogies that
take a very long time to reach the MRCA. The genealogies
shown above the distribution are those for the tenth, fiftieth,
and ninetieth percentile times to MRCA. In this example 
Ne = 1000.
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to give the inbreeding effective population size for the
coalescent model over one generation. The effective
size of a haploid population is defined identically
except that the population contains N instead of 2N
gene copies. (The reasoning used is parallel to that
used to arrive at the inbreeding effective population
size in equations 3.53 and 3.54 based on the prob-
ability of identity by descent in a finite population.)

We can apply the coalescent definition of the effective
population size to the case of the breeding sex ratio 
in a population. For the coalescent model, it helps 
to think of the two sexes as two separate popula-
tions where gene copies can find their ancestors 

(see Fig. 3.24). In a diploid population with two 
sexes and a 1 : 1 breeding sex ratio, half of the gene
copies reside in females and half reside in males. 
A coalescence event requires that two gene copies
descend from a single ancestor, either a single male
or single female individual. The total probability that
two randomly sampled gene copies coalesce in the
previous generation, PC, is the sum of the probability
that the coalescence was in the population of females
and the probability that the coalescence was in the
population of males, or

PC = PC(female population) + PC(male population)
(3.80)

Regardless of whether or not the two gene copies
come from the male or female population, the prob-
ability of coalescence is the chance of sampling the
same gene copy twice in the previous generation, or 

. To take the populations of the two sexes into 

account, notice that the probability that a gene copy
is sampled from either the female or male popula-
tion is 1/2. The probability that both gene copies 
are sampled from the population of the same sex is 
therefore (1/2)(1/2) = 1/4. Putting these probabilities
together into equation 3.78 gives

(3.81)

where the effective size of the female and male popula-
tions sum to the total effective size (Ni

e = N i
ef + N i

em).
Based on the definition of the effective population size
as the probability of coalescence in equation 3.63,

(3.82)

which after some rearrangement, looks like

(3.83)

(3.84)

This leads to an expression for the inbreeding effective
population size in terms of the number of males and
females. This equation shows us that the effective size
of a diploid population with two sexes and an equal
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Simulating lineage branching events
forward in time for populations of different
sizes is a direct way to understand how
sampling leads to patterns of lineage
coalescence. Use the link on the text web
page to reach a simulation to model lineage
branching events in finite populations.

Start by simulating populations of N : 4
and N : 10. Before pressing the run button
(the arrow that points to the right),
determine the expected time for all of the
gene copies in the present to find a single
most recent common ancestor. Use your
answer to intelligently set the number of
generations (the G: entry field) to run the
simulation to be able to see most of the
lineage coalescence events (note that the
maximum number of generations is 30).
Run 25 simulations for each population size
and tabulate the number of generations for
all lineages in the present to find their most
recent common ancestor. What does the
distribution of coalescence times look like?

Use 100% for a Speed value to carry 
out replicate runs rapidly. The “untangle”
button (the leftmost button at the bottom)
rearranges the lineages so that the branches
do not overlap and is very useful when
tracing individual genealogies to visualize
common ancestors.

Interact box 3.5
Simulating gene genealogies 
in populations with different

effective sizes
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breeding sex ratio (Ni
ef = N i

em) is equivalent to an
ideal random-mating Wright–Fisher population and
also gives a means to express the effective popula-
tion size when the breeding sex ratio is not equal. 
We also see that the coalescence model allows us 
to reach exactly the same result that was obtained
using the identity by descent approach (equation 3.44
and section 3.4).

The probability that two randomly sampled gene
copies do not coalesce, PNC, over some number of
generations can be used to show the overall effective
population size when the population size is not con-
stant. As the basis of modeling coalescent times with
the exponential distribution (the continuous time 

coalescent), is used to approximate as 

long as Ne does not get too small. This means that PNC
can be approximated by an exponential function:

(3.85)

where t is the number of generations. Imagine that a
population fluctuates in size over three generations
as considered in section 3.3. In such a situation the
probability of two randomly sampled gene copies 
not experiencing a coalescence event over the three 
generations could be approximated by

(3.86)

where each term in the exponent of e is distinct 
since the population sizes fluctuate over time. The
exponential terms of e can be solved for the effective
population size by taking the natural log of both sizes
to eliminate e:

(3.87)

and then multiplying both sides by 1/t and then −2
to get

(3.88)

The term on the right side is the harmonic mean of the
effective population size as given in equation 3.42.
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Again, the identity by descent and coalescence
approaches lead to the same conclusions about 
effective population size.

Coalescent genealogies and population
bottlenecks

Let’s examine the distribution of coalescence times 
in a population that experiences a bottleneck to see
how genealogical branching patterns are affected.
The situation in Fig. 3.28 is analogous to that in 
section 3.3 where a population starts out with 100
individuals, is reduced to 10 individuals for one 
generation, and then returns to a size of 100 indi-
viduals in the third generation (see Fig. 3.16). For a
bottleneck of 100–10–100 over three generations,
equations 3.85 and 3.86 can be used to determine
the probability of coalescence events. A 100–10–100
population is equivalent to a population of 25 that 
is constant in size. Therefore, the average probability 
of two randomly sampled gene copies not finding
their common ancestor over the three generations
spanning the bottleneck is:

(3.89)

giving a chance of coalescence of 1 − PNC = 1 −
0.9418 = 0.0582. This probability is equivalent to 

for three generations of 100–10–100 or 

PNC = (0.995)(0.95)(0.995) = 0.9405 to give 1 −
PNC = 1 − 0.9405 = 0.0595. (Note the close agree-
ment of the two answers even though a population
of 10 is very small and violates the assumption that 

is a good approximation of .)

Compare the probability of coalescence 
PC = 1 − 0.995 = 0.005 for a population of 100 and
PC = 1 − 0.95 = 0.05 for a population of 10. During
the bottleneck there is a 10-fold greater chance each
generation that two lineages find their ancestor or
coalesce than before or after the bottleneck, leading
to shorter branch lengths (times to coalescence). Thus,
the bottleneck causes increased sampling of lineages
and a greater chance that ancestral lineages are lost
to sampling. After the bottleneck, the probability of
coalescence returns to the same probability as in the
first generation. However, the lineages present after
the bottleneck are now much more likely to be recently
related so the overall probability of coalescence is like
that in a smaller population of constant size.
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After a population recovers from a bottleneck, it 
is possible that the lineages present will all descend
from a most recent common ancestor during the 
bottleneck period. If this occurs, it is equivalent to
saying that a single lineage among those present 
in the pre-bottleneck population becomes the most
recent common ancestor of all lineages during the
bottleneck. The chance that this occurs increases 
as the bottleneck exhibits a smaller population size 
or persists for a longer period of time. The expected
height of a coalescent tree (the sum of all the time
periods between coalescence of pairs of gene copies
until there is a single lineage, equation 3.75) can be
used to show this effect quantitatively. In the con-
tinuous coalescent the expected height in units of 

2N generations is where k is the number of 

gene copies in the present. Figure 3.28 shows k = 10
so the expected height of each coalescent tree is
(1.8)(2Ne) = 3.6Ne generations. Before the bottle-
neck, a sample of 10 gene copies from a population 
of Ne = 100 would coalesce to a single lineage in an
average of 360 generations. The same sample of 
10 gene copies taken from a population of Ne = 10
would coalesce to a single lineage in an average of 36
generations. At the time point closest to the present
in Fig. 3.28, the population has an effective size of
about 25 based on the harmonic mean as well as the
probability of coalescence over three generations.
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Therefore, the expected height of the coalescent tree
is 90 generations.

Coalescent genealogies in growing and 
shrinking populations

In a population growing in size over time, the proba-
bility of a coalescent event is least near the present
because the population is at its largest size. Working
back in time from the present to the past, the size of
the population is continually shrinking. This means 

that the probability of a coalescence event ( ) 

must also be continually increasing as we move back
in time toward the MRCA, since N is shrinking. The
result is that genealogies in growing populations do
not follow the rule that the final coalescence time from
two lineages to the MRCA is the longest on average
in a genealogy established in the last section for 
populations of constant size. Instead, genealogies in
growing populations tend to have longer times between
coalescent events toward the present and shorter times
between coalescent events in the past (Fig. 3.29).
Genealogies from rapidly growing populations there-
fore tend to have longer branches toward the present
and shorter branches deep in the tree.

In a population shrinking in size over time, the
probability of a coalescent event is greatest near the
present because the population size is at its smallest.
The effect on genealogies is that coalescent waiting
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Figure 3.28 The effects of a population bottleneck on gene genealogies. During the bottleneck the chance that two randomly 

sampled gene copies are derived from one copy in the previous generation increases. This can also be thought of as a 

reduction in the overall height of a genealogical tree caused by the bottleneck since lineages that find their ancestors during the
bottleneck lead to short branches. The overall effect of a bottleneck on coalescence among gene copies sampled in the present
depends on the reduction in the effective population size and the duration. The arrows indicate the point in time when gene copies
were sampled from the population.
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times in the present are even shorter than they would
be under constant population size. Similarly, when
population size is shrinking coalescence times in 
the past are relatively greater than under constant 
population size because the probability of a coales-
cence event was greater (Fig. 3.29).

A common way to model growing or shrinking
populations is to assume that population size is
changing exponentially over time. Under exponential
growth, the population size at time t in the past is a
function of the initial population size in the present
N0 and the rate of population growth r according to

N(t) = N0e−rt (3.90)

Examples of population size over time under expon-
ential population growth are shown in Fig. 3.29.
With exponential growth, population size tends to
change very rapidly.

The generalizations above regarding coalescent
waiting times depend on rapid and sustained changes

in population size over time such as under expon-
ential population growth with a constant rate (r). In
populations that are changing in size slowly over time,
it is possible that coalescence waiting times differ very
little from those expected under constant popula-
tion size. Increases in population size over time cause 
the probability of coalescence to decrease toward the
present. At the same time, the chance of a coalescence
event increases toward the present simply due to a
larger number of lineages (increasing k) available to
coalesce. Only in populations with rapidly changing
population size will the reduction in the probability
of coalescence be great enough to overcome the effect
of an increasing number of lineages available to 
coalesce toward the present. In addition, the vari-
ance in coalescence waiting times with constant N is
large so that only very rapid and sustained change in
population size will noticeably impact the distribu-
tion of coalescence waiting times.

Changing population size over time complicates
finding the distribution of coalescent times. In the
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Figure 3.29 The effects of exponential population growth or shrinkage on coalescent genealogies. The upper panels show
change in population size over time with exponential growth according to N(t) = N0e−rt with r = ±0.1, yielding relatively slow
exponential population growth. The two genealogies illustrate examples of waiting times that might be seen under strong
exponential population growth (left) and shrinkage (right). With strong exponential population growth coalescent times are
longest in the present when the population is the largest, leading to genealogies characterized by long branches near the present
and very short branches in the past around the time of the MCRA. With exponential population shrinkage, coalescence times are
greatest in the past near the MRCA when the population was larger and shortest near the present when the population is at its
smallest size. The genealogy on the left was obtained using equation 3.91 with r = 100.
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previous section, the exponential distribution of 
coalescence waiting times was obtained by relying
on the fact that the probability of non-coalescence, 

or where k is the number of lineages 

available to coalesce, was a constant since N remains
the same over time. If N is instead changing rapidly
over time, then the probability of non-coalescence also
changes rapidly over time. The result is that the dis-
tribution of coalescent times cannot be exponentially
distributed when population size is changing over
time as it is when population size is constant over
time. The waiting time between coalescent events 
in an exponentially growing population is obtained
from the equation:

(3.91)

where U is a uniformly distributed random variable
between zero and one, N0 is the initial population
size, r is the rate of population growth, and τi is the
sum of all the past coalescence waiting times up to
the current number of lineages k that have not yet
coalesced according to

(3.92)

as shown by Slatkin and Hudson (1991). In equa-
tion 3.91 time is scaled in units of r since τ = rt. As 
τi gets larger then more time has elapsed, meaning
that the size of the population has changed more.
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Note that equation 3.91 only applies to populations
growing though time. In populations shrinking in size
toward the present, there is a chance that there will
never be coalescence to a MRCA since the probabil-
ity of coalescence approaches zero as the population 
size approaches infinity going back in time from the
present to the past.

Chapter 3 review

• In finite populations, allele frequencies can change
from generation to generation since the sample of
gametes that found the next generation may not
contain exactly the same number of each allele as
the previous generation. The chances of a large
change in the number of alleles decreases as the
number of gametes sampled increases. Sampling
error in allele frequency causes genetic drift, the
random process whereby all alleles eventually
reach fixation or loss.

• The Wright–Fisher model is a simplification of the
biological life cycle used to model genetic drift. It
makes assumptions identical to Hardy–Weinberg
in addition to assuming that each generation is
founded by sampling 2N gametes from an infinite
pool of gametes. The binomial distribution can 
be used to predict the probability that a Wright–
Fisher population goes from some initial number
of alleles to any number of alleles in the next 
generation.

• The action of genetic drift in a very large number
of identical replicate populations can be modeled
with a Markov chain model (based on the binomial
distribution). The model tracks the probabilities

The coalescent process can be simulated for populations experiencing exponential growth in
population size through time. The simulation displays a genealogy based on values for the number
of lineages (n:) and the growth rate of the population (exp:). The growth rate parameter
corresponds to the rate of exponential population growth and is therefore the key variable in this
simulation. Click the Recalc button to begin a new simulation. The resulting genealogy can be
viewed as an animation going back in time (click Animation tab at top left and use playback
controls at bottom) or as a genealogy (click Trees tab at top left).

Set the growth rate parameter to 0 and click Recalc. View the resulting genealogy. Then set 
the growth rate parameter to 128 and click Recalc and view the results. How do the genealogies 
in growing populations compare with genealogies when population size is constant over time? 
Re-run the simulation a few times for both values of the growth rate parameter. Also try other less
extreme values of the growth rate parameter, such as 4, 8, and 32.

Interact box 3.6 Coalescent genealogies in populations with changing size
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of a population with any number of copies of a
given allele transitioning to all possible numbers
of copies of the same allele in the next generation.
Markov models predict that the chances of fixa-
tion or loss are equal when p = q = 1/2 and that 

genetic drift reduces genetic variation by 1 −

every generation.
• The process of genetic drift in many replicate 

populations can be thought of as analogous to 
the diffusion of particles in space. This leads to 
the diffusion approximation of genetic drift, where
the rate at which individual populations reach
fixation or loss depends on the diffusion coefficient:
a function of population size and allele frequency.
The diffusion equation predicts that an allele at a
initial frequency of 1/2 will remain segregating for
an average of about 2.8N generations.

• The size of a population is defined by the behavior
of allele frequencies over time. The effective popula-
tion size (Ne) is the size of an ideal Wright–Fisher
population that shows the same allele frequency
behavior over time as an observed biological 
population regardless of its census population
size (N).

• Finite population size and consanguineous mating
are analogous processes since both lead to increas-
ing homozygosity and decreasing heterozygosity
over time. The distinction is that genetic drift in
finite populations causes changes in both geno-
type and allele frequencies (alleles are lost and
fixed) while consanguineous mating changes only
genotype frequencies.

• Numerous models predict dynamics of genetic
variation based on the effective population size (Ne).
As a consequence, there are several definitions 
of Ne, including the variance effective population
size, the inbreeding effective population size, and
the breeding effective population size. The effect-
ive population size can be estimated from direct
observation of genetic variation over time and Ne
is often less than N in actual populations.

• The average time for a pair of lineages to coalesce
is the same as the population size or 2Ne with a large
expected range around this average (the variance
is 4N 2

e ). In a sample of k lineages the average time
to the first coalescent event is 2Ne divided by the 

number of unique pairs of lineages ( ).

• Most coalescent events for a sample of lineages
occur in the recent past with only a few lineages
having long times to coalescence.

  

k k( )− 1
2

  

1
2N

• The effective population size (Ne) can be defined
for lineage branching models by reference to 
the probability of two randomly sampled gene 
copies descending from the same ancestral copy.
This probability decreases as the effective size of
populations grows larger. The coalescent model
leads to definitions of the inbreeding effective 
population size that are identical to those obtained
using autozygosity.

• Exponential population growth changes the 
distribution of coalescence times relative to a 
population with constant population size. When
population size is growing, lineages nearest the
present tend to have the longest coalescence
waiting times because the probability of coales-
cence grows steadily smaller toward the present.
When population size is shrinking rapidly, the
probability of coalescence grows steadily greater
toward the present causing lineages nearest the
present to have the shortest coalescence waiting
times.

Further reading

For an intriguing account of the role of chance in
everyday affairs, see:

Mlodinow L. 2008. The Drunkard’s Walk: How Random-
ness Rules Our Lives. Pantheon Books, New York, 
NY.

For more mathematical detail on Markov chains and
the diffusion equation, see:

Ewens WJ. 2004. Mathematical Population Genetics. I.
Theoretical Introduction, 2nd edn. Springer-Verlag,
New York.

To learn more about the diffusion equation, its
assumptions, and how processes such as mutation,
migration, and natural selection can be combined
with genetic drift, consult:

Roughgarden J. 1996. Theory of Population Genetics and
Evolutionary Ecology: an Introduction. Prentice Hall,
Upper Saddle River, NJ.

Rice SH. 2004. Evolutionary Theory: Mathematical and
Conceptual Foundations. Sinauer Associates, Sunder-
land, MA.

For further information on methods used to estimate
the effective population size, see:

Caballero A. 1994. Developments in the prediction of
effective population size. Heredity 73: 657–79.
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More extensive background on coalescence theory
along with many examples and a comprehensive list
of references can be found in:

Hein J, Schierup MH, and Wiuf C. 2005. Gene Genea-
logies, Variation and Evolution. Oxford University Press,
New York.

For a discussion of the coalescent effective population
size, see:

Sjödin P, Kaj I, Krone S, Lascoux M, and Nordborg M.
2005. On the meaning and existence of an effective
population size. Genetics 169: 1061–70.

Problem box 3.1 answer

In the first generation both populations have 24
A alleles and 24 a alleles. After one generation,
however, there are (0.458)(48) = 22 A alleles
in one population and (0.521)(48) = 25 alleles
in the other. The chances of observing these
allele frequencies can be determined with the
binomial formula under the assumptions of
the Wright–Fisher model:

= 2.7386 × 1013(2.3841 × 10−7)(1.4901 × 10−8)

= 0.0973

= 3.0958 × 1013(2.9802 × 10−8)(1.1921 × 10−7)

= 0.110

In both populations, the chance of observing
the allele frequency changes under genetic
drift is about 10%. The chances of observing
these allele frequency changes in both
populations is only 0.0107 since the

  
PA= =25

25 2348
25 23

0 5 0 5
!

!( )!
( . ) ( . )

  
PA= =22

22 2648
22 26

0 5 0 5
!

!( )!
( . ) ( . )

Problem box 3.3 answer

This captive population has experienced a
reduction in population size due to three

One generation later (t = 1) Initial state: number of A alleles (t = 0)
State Expected 0 1 2 3 4

frequency
0 Pt=1(0) = (1.0000)Pt=0(0) + (0.3164)Pt=0(1) + (0.0625)Pt=0(2) + (0.0039)Pt=0(3) + (0.0000)Pt=0(4)
1 Pt=1(1) = (0.0000)Pt=0(0) + (0.4219)Pt=0(1) + (0.2500)Pt=0(2) + (0.0469)Pt=0(3) + (0.0000)Pt=0(4)
2 Pt=1(2) = (0.0000)Pt=0(0) + (0.2109)Pt=0(1) + (0.3750)Pt=0(2) + (0.2109)Pt=0(3) + (0.0000)Pt=0(4)
3 Pt=1(3) = (0.0000)Pt=0(0) + (0.0469)Pt=0(1) + (0.2500)Pt=0(2) + (0.4219)Pt=0(3) + (0.0000)Pt=0(4)
4 Pt=1(4) = (0.0000)Pt=0(0) + (0.0039)Pt=0(1) + (0.0625)Pt=0(2) + (0.3164)Pt=0(3) + (1.0000)Pt=0(4)

probability of two independent events is the
product of their individual probabilities.

Problem box 3.2 answer

Each of the values in the transition matrix is
obtained using the binomial formula. The
chance that a population at fixation or loss
transitions to an allele frequency different than
1 or 0, respectively, is always 0. The chance 
of transitioning from one to four A alleles is
identical to the chance of transitioning from
three to no a alleles, since the number of 
A alleles is four minus the number of a alleles.
Using this symmetry permits two columns 
to be filled out after performing calculations
for only one of the columns (see table below).
The transition probabilities are a function of
the sample size only and so are constant each
generation. The total frequency of populations
in a given allelic state in the next generation
depends on initial frequencies of populations
in each state (Pt=0(x)). The expected
frequencies of populations in each allelic state
therefore changes each generation. This
Markov chain model is available as a Microsoft
Excel spreadsheet on the textbook website
under the link to Problem Box 3.2.

factors. This case can be thought of as a triple
bottleneck. First, the breeding sex ratio
became unequal. The effective size based on
the number of males (10) and females (15) is:

Problem box answers
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from equation 3.44. The mean family size
among the 15 females was four, returning 
the population back to a census size of 60.
However, the variance in family size was 6.5
and thus greater than expected for a Poisson
distribution. The effective population size
based on the variance in family size is:

from equation 3.46. Notice that the effective
population size used in the numerator is 24, as
determined for the unequal sex ratio. In total,
the population has fluctuated from Ne = 60
before the fire, to census sizes of 25, and then
60 over three generations. The effective size 
in generation two was 24 due to unequal sex
ratio. The effective size in generation three 
was five (after rounding) due to a growing
population with high variance in family size.
Therefore, the effective population size over
three generations is:

1 1
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0.50 0.4594 −0.0847 5.90
0.50 0.3474 −0.3641 1.37
0.50 0.4376 −0.1332 3.75
0.50 0.3772 −0.2816 1.78
0.50 0.4999 −0.0001 3471.97
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or Ne = 11.6. Thus the fire caused a major
reduction in the overall effective population
size. The population experienced about the
same amount of genetic drift over these 
three generations as an ideal Wright–Fisher
population with an effective size of 12
individuals. One assumption is this analysis is
that these animals approximate organisms
that breed only once during their lifetimes.
This assumption is often unmet for animals
and additional reductions in the effective
population size can arise if mating occurs
between members of overlapping generations
since related individuals can mate (see 
Nunney 1993 and an application in Ollivier 
& James 2004).

Problem box 3.4 answer

We can use a table format just like that of
Table 3.5 to set up the calculations (see
below). In this case three generations of
sampling have elapsed so that t = 3 in the
numerator of the formula for L i

e . The mean 
is now much higher than we expect if we
include the sixth replicate, or 5.2 if we exclude
this value. Either way, the estimate of L i

e has 
not improved much. We are still limited by 
too little elapsed time or too few replicate
populations.
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4.1 Genetic populations

• Genetic versus geographic organization of 
populations.

• Isolation by distance and divergence of 
populations.

• Gene flow and migration.
• Direct and indirect measures of gene flow.

The expectation that genotypes will be present in
Hardy–Weinberg frequencies, covered in detail in
Chapter 2, depends on the assumption of random
mating throughout a population. Implicit is the 
view that a population is a single entity where pro-
cesses such as mating and movement of individuals
are uniform throughout, a condition often called
panmixia. Several processes and features at work 
in actual populations make this initial perspective 
of population uniformity unlikely to hold true for
many populations. It is often the case that within
large populations the chances of mating are not uni-
form as assumed by Hardy–Weinberg. Instead, the
chance that two individuals mate often depends on
their location within the population. This leads to
what is called population structure, or hetero-
geneity across a population in the chances that 
two randomly chosen individuals will mate. The 
first section of this chapter will introduce biological 
phenomena that contribute to population structure
in mating and migration that can lead to differ-
ences in allele and genotype frequencies in different 
parts of a population. The goal of the entire chapter 
is to develop expectations for the impact of popula-
tion structure on genotype and allele frequencies
along with methods to measure patterns of popula-
tion structure.

To get an initial idea of how a population might be
divided into smaller units that behave independently,
consider the hypothetical population in Fig. 4.1.
Initially, all individuals in the population have equal
chances of mating regardless of their location. Since
mating is random, genotype frequencies in the 

entire population match Hardy–Weinberg expecta-
tions and allele frequencies are equal on both sides of
the creek. Then imagine that the creek bisecting the
population changes permanently into a large river
that serves as a barrier to movement of individuals
from one side to the other side. Although some indi-
viduals still cross the river on occasion, the rate of
genetic mixing or gene flow between the two sub-
populations bisected by the river is reduced. Lowered
levels of gene flow mean that the two subpopulations
have allele and genotype frequencies that tend to be
independent through time. At the later time points in
Fig. 4.1, the two subpopulations have increasingly
different allele frequencies over time due to genetic
drift, even though there are Hardy–Weinberg expected
genotype frequencies within each subpopulation. In
the last time period in Fig. 4.1, the allele frequencies
in the subpopulations separated by the river are quite
different and the genotype frequencies in the total
population no longer meet Hardy–Weinberg expecta-
tions. In this example, a reduction in gene flow allows
the two subpopulations to be acted on independently
by genetic drift, ultimately resulting in population
differentiation of allele frequencies. The appear-
ance of a geographic barrier that restricts gene flow
among populations like that in Fig. 4.1 is sometimes
called a vicariance event. Subpopulations – entities
recognized with names such as herds, flocks, prides,
schools, and even cities – can be formed by a wide
range of temporal, behavioral, and geographic barriers
that ultimately result in subpopulation allele fre-
quencies that differ from the average allele frequency
of the total population.

Another cause of population structure is more
subtle, but easy to understand with a thought experi-
ment. Think of one common species of animal or
plant that you encounter regularly at home or work.
Think of individuals of this species seeking out mates
completely at random. Where would individuals likely
find mates? They would probably find mates among
the other individuals nearby rather than far away. 
I thought of the trees that are near my home and also

CHAPTER 4

Population structure and gene flow
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on the university campus where I work. When these
trees flower and mate via the movement of pollen, it
seems likely to me that trees that are closer together
are more likely to be mates. I would not expect two
trees that are tens or hundreds of kilometers apart to
have a good chance of mating. Imagine the species
that you thought of and the distances over which
mating events might take place. Even if individuals
can find mates very far away, there is usually some
spatial scale at which the chances of mating are 

limited. This varies with the species and could be 
distances as small as a few meters or as large as 
thousands of kilometers depending on the range of
movement of individuals and their gametes.

This phenomenon of decreasing chances of mat-
ing with increasing distance separating individuals
is termed isolation by distance (Wright 1943a,
1943b, 1946). Sewall Wright was motivated by data
on the spatial frequencies of blue and white flowers
of the plant Linanthus parryae (Fig. 4.2) to develop

= AA genotype= Aa genotype= aa genotype

Time

Figure 4.1 An example of population structure and allele-frequency divergence produced by limited gene flow. The total
population (large ovals) is initially in panmixia and has Hardy–Weinberg expected genotype frequencies. Then the stream that
runs through the population grows into a large river, restricting gene flow between the two sides of the total population. Over 
time allele frequencies diverge in the two subpopulations through genetic drift. In this example, you can imagine that the two
subpopulations drift toward fixation for different alleles but neither reaches fixation due to an occasional individual that is able 
to cross the river and mate. Note that there is random mating (panmixia) within each subpopulation so that Hardy–Weinberg
expected genotype frequencies are maintained within subpopulations. However, after the initial time period genotype frequencies
in the total population do not meet Hardy–Weinberg expectations.

Figure 4.2 The plant Linanthus parryae, or desert snow, is found in the Mojave Desert region of California. (a)  L. parryae can
literally cover thousands of hectares of desert during years with rainfall sufficient to allow widespread germination of dormant
seeds present in the soil. This tiny plant has either blue or white flowers. (b) In some locations most plants have blue or most have
white flowers whereas in other locations more equal frequencies of the two flower colors are found. Reproduced with permission of
Barbara J. Collins. For a color version of this image see Plate 4.2.

(a) (b)
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Population structure has profound implications for
genotype and allele frequencies. Subdivision breaks
up a population into smaller units that are each
genetically independent to some degree. One con-
sequence is that each subpopulation has a smaller
effective population size than the effective size of the
entire population if there were random mating. The
genetic variation found in a single large panmictic
population and a population subdivided into many
smaller demes is organized in a different manner.
Think of the simple case of a diallelic locus. A single
large population may take a very long time to 
experience fixation or loss due to genetic drift and
thus maintain both alleles. In a highly subdivided 
population each deme may quickly reach fixation or
loss, but both alleles can be maintained in the over-
all population since half of the subpopulations are
expected to reach fixation and half loss for a given
allele. Processes that cause population structure can
also be thought of as both creative and constraining
in evolutionary change (Slatkin 1987a). The genetic
isolation among demes caused by subdivision can
prevent novel and even advantageous alleles from
spreading throughout a population. But, at the same
time, genetic isolation allows subpopulations to evolve
independent allele frequencies and maintain unique

Population structure and gene flow 107

expectations for populations experiencing isolation by
distance. The patchwork spatial pattern of flower color
frequencies in L. parryae was considered by Wright
as a prime example of the consequences of isolation 
by distance in continuous populations. However, as
flower-color frequencies were followed over more
and more years, the interpretation that flower-color
frequencies were primarily due to genetic drift made
possible by isolation by distance has been challenged
(e.g. Turelli et al. 2001). Wright carried out a series
of detailed analyses of L. parryae data (Wright 1978)
but the nature of the processes that affect the spatial
distributions of L. parryae flower colors is a contro-
versy that has continued for more than 50 years (see
Schemske & Bierzychudek 2001). Regardless of the
specific situation in L. parryae, the phenomenon of
isolation by distance is ubiquitous in natural popula-
tions. One biologist described isolation by distance 
as a given in the genetics of natural populations,
likening it to the force of gravity in physics, with the
only question being the geographic scale at which 
it impacts genotype and allele frequencies.

Computer simulations are a convenient way to
explore how isolation by distance influences allele
and genotype frequencies. Figure 4.3 shows two
simulated populations where each point on a grid
represents the geographic location of a diploid 
individual. In one case, the population exhibits 
panmixia and indviduals find a mate at random 
from all individuals within a 99 × 99 individual 
mating area. In the contrasting case where there is
strong isolation by distance, each individual mates
at random within a much smaller 3 × 3 individual
area. Both populations start off looking very similar,
with Hardy–Weinberg expected genotype frequencies
and randomly scattered locations of the three geno-
types. After 200 generations the population with a
99 × 99 individual mating area (Fig. 4.3a) still shows
random locations of the three genotypes. However,
the population with a 3 × 3 mating area (Fig. 4.3b)
has distinct clumps of identical genotypes and fewer
heterozygotes (represented by blue squares). One
effect of isolation by distance is clearly local changes
in allele frequency in a population, with local 
regions approaching fixation or loss, akin to the
impact of reducing the effective population size (see
the breeding effective population size in section 3.5).
Alternatively, isolation by distance can be thought 
of as a form of inbreeding, since restricted mating dis-
tances cause homozygosity within subpopulations to
increase. The patterns of genotypes in the simulated
populations bear this out, with an obvious decline 

in the overall frequency of heterozygotes over time
with isolation by distance (Fig. 4.3b) but no such
decline when there is panmixia (Fig. 4.3a).

··

Isolation by distance Decreasing chances 
of mating or gene flow as the geographic
distance between individuals or populations
increases.
Gene flow The successful movement 
of alleles into populations through the
movement of individuals (migration) or the
movement of gametes.
Panmixia Random mating, literally meaning
“all mixed.”
Population structure Heterogeneity in allele
frequencies across a population caused by
limited gene flow.
Subpopulation A portion of the total
population that experiences limited gene flow
from other parts of the total population so 
that its allele frequencies evolve independently
to some degree; synonymous with deme.
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Generation = 1(a)

Generation = 200
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Figure 4.3 Isolation by distance causes spatial structuring of allele and genotype frequencies. In these pictures, a population is
represented in two dimensions with each point on a grid representing one diploid individual. The colors represent an individual
with a heterozygous (blue) or homozygous (black and white) genotype at each point. In (a) there is random mating over the 
entire population (the mating neighborhood is 99 × 99 squares) whereas in (b) there is strong isolation by distance (the mating
neighborhood is 3 × 3 squares). The population with isolation by distance (b) develops and maintains spatial clumping of
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genotypes and therefore spatial clumping of allele frequencies. There is no such spatial structure in the population with 
random mating (a). In the simulation that produced these pictures, the grid is initially populated at random with genotypes 
at Hardy–Weinberg expected frequencies and p = q = 1/2. Each generation every individual chooses a mate at random within 
its mating neighborhood and replaces itself with one offspring. The offspring genotypes are determined by Hardy–Weinberg
probabilities for each combination of parental genotypes.
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How can genetic variation in space be described
to look for evidence of isolation by distance or
other processes that cause spatial genetic
differentiation in populations? The general
approach is to compare pairs of individuals or
populations, looking at both the similarity of
their genotypes and how far apart they are
located. Isolation by distance is a form of
inbreeding due to non-random mating, so it
causes individuals that are located near to
each other to be more related on average.

One classic statistic used to estimate spatial
genetic structure is a correlation measure
called Moran’s I:

(4.1)

where k represents a distance class (e.g. all
populations two distance units apart) so 
that wij equals one if the distance between
location i and j equals k, and zero otherwise.
Within a distance class k, n is the number of
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populations, y is the value of a genetic variable
such as allele frequency for location i or j, V is
the mean allele frequency for all populations,
and Wk is the sum of the weights wij or 2nk.
The numerator is larger when pairs of
populations have similar allele frequencies that
both show a large difference from the mean
allele frequency.

The formula for Moran’s I might be a bit
daunting at first, but the results it produces are
easy to understand and interpret biologically.
Like correlations in general, Moran’s I takes on
values from −1 to +1 when calculated with a
large number of samples. A positive value of 
I means that that allele frequencies between
pairs of locations are similar on average while 
a negative value means that allele frequencies
between pairs of locations tend to differ on
average. A value of zero indicates that
differences in subpopulation allele frequencies
are not related to the distance between
locations or that genetic variation is randomly
distributed in space. The spatial locations of
genotypes like those shown in Fig. 4.3 are the
perfect situation to use Moran’s I (see Fig. 4.4).

Method box 4.1
Are allele frequencies random or clumped in two dimensions?
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(continued)
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alleles as is required for genetic adaptation to local
environments under natural selection, for example.

It is worth noting that there are some important
biological distinctions between gene flow and migra-
tion. Migration is simply the movement of individuals
from one place to another. As such, migration may
or may not result in gene flow. Gene flow requires
that migrating individuals successfully contribute
alleles to the mating pool of populations they join 
or visit. Thus, migration alone does not necessarily
result in gene flow. Similarly, gene flow can also occur
without migration of individual organisms. Plants
are a prime example, with gene flow that takes place
via movement of pollen grains (male gametes) but
individuals themselves cannot migrate except as seeds.
Gene flow can also occur without easily detected
migration of individuals, such as cases where indi-
viduals move briefly to mate and then return to their
original geographic locations. To confuse matters,
the variable m (for migration rate) is almost univer-
sally used to indicate the rate of gene flow in models
of population structure. Even though models do not
normally make the distinction, it is wise to remember
the biological differences between the processes of
migration and gene flow in actual populations.

This chapter is devoted to expectations for allele
and genotype frequencies in subdivided populations.
The next section will cover so-called direct measures
of gene flow that can be used in natural populations
to determine the extent of population subdivision
based on patterns of parentage determined with
genetic markers. Then in the third section, we will
return to the fixation index (or F) from Chapter 2 and
extend it for the case of structured populations in
order to serve as a measure of population subdivision.
The fourth section will consider how genotype fre-
quencies are impacted by population structure. The
fifth section will return to fixation index estimates to
show how they can be compared with an idealized
population model to arrive at an indirect measure of
historical gene flow. The final section of the chapter
incorporates population subdivision into coalescent
models.

4.2 Direct measures of gene flow

• Genetic-marker-based parentage analysis.

This section of the chapter will introduce and explain
the use of molecular genetic markers to identify the
unknown parent or parents of a sample of progeny 
or juveniles and thereby describe the patterns of 
mating that took place among the parents. Parentage
analyses are considered direct measures of gene flow
since they reveal and measure the pattern of gamete
movement at the scale over which the candidate 
parents are sampled. Parentage analyses are also
commonly used to test hypotheses about what factors
influence patterns of mating among individuals. 
For example, animal parentage studies can test for
correlations between mating success and phenotypes
or behaviors. Parentage analysis is most often per-
formed in the case where one parent is known and
the other parent is unknown and could potentially
be any one of a number of individuals or candidate
parents. Genetic analyses that attempt to identify
unknown fathers or unknown mothers from a popula-
tion of candidate parents are called paternity analysis
or maternity analysis, respectively (see Meagher
1986; Dow & Ashley 1996; Devlin & Ellstrand 
1990; reviewed by Jones & Ardren 2003). Although
not detailed here, it is also possible to attempt to 
infer both unknown parents within a population of 
candidate parents to estimate the minimum number
of parents that contributed to a group of progeny 
(see Jones & Arden 2003). This section will review
some of the basic concepts required to understand
the methods and results of parentage analyses by
means of an example paternity analysis. One focus in
particular will be the distinction between identify-
ing the true parent of an offspring and identifying a
candidate parent that appears to be the true parent
due to chance.

To understand the steps carried out in parent-
age analysis, let’s work through an example based
on genotype data from the tropical tree Corythophora
alta, a member of the Brazil nut family (Fig. 4.5). All

··

Figure 4.4 (opposite) Moran’s I for simulated populations like those in Fig. 4.3. To estimate Moran’s I, the 100 × 100 grid
was simulated for 200 generations and was then divided into square subpopulations of 10 × 10 individuals. The frequency
of the A allele within each subpopulation is yi and the mean allele frequency over all subpopulations is V in equation 4.1.
The distance classes are the number of subpopulations that separate pairs of subpopulations. As expected, the simulations
with strong isolation by distance (3 × 3 mating neighborhood) show correlated allele frequencies in subpopulations that are
close together. However, the simulations with panmixia (99 × 99 mating neighborhood) show no such spatial correlation
of allele frequency. The fluctuation of I at the largest distances classes in both figures is random variation due to very small
numbers of individuals compared. Each line is based on an independent simulation of the 100 × 100 population.
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Figure 4.5 An
individual Corythophora
alta tree found at the
Biological Dynamics 
of Forest Fragments
Project field sites north 
of Manaus, Brazil. 
The plot shows the
relative locations of the
individual trees that
make up the candidate
parent population
within a 9 ha forest plot
at Cabo Frio. All trees
can be both maternal
parents and candidate
paternal parents 
since the trees are
hermaphrodites capable
of self-fertilization.

Table 4.1 Microsatellite genotypes (given in base pairs) for some of the 30 mature individuals of the tropical
tree Corythophora alta sampled from a 9 ha plot of continuous forest in the Brazilian Amazon. Progeny are
seeds collected from known trees. Missing data are indicated by a 0.

Genotype

Microsatellite locus . . . A B C D E

Candidate parents
684 333 339 97 106 169 177 275 305 135 135
989 330 336 97 106 165 181 275 275 135 153

1072 315 333 103 106 169 179 296 302 138 138
1588 318 327 106 106 165 167 272 293 135 150
1667 324 333 0 0 165 185 275 284 141 159
1704 318 327 103 106 0 0 284 296 144 147
1836 333 339 97 97 181 183 275 296 138 144
1946 327 333 91 106 167 187 284 287 135 147
2001 321 336 0 0 177 181 284 302 138 144
2121 318 333 100 106 179 181 284 302 144 144
2395 327 333 103 103 179 187 275 296 150 159
3001 324 333 91 106 167 183 284 302 147 159
3226 327 327 103 106 163 181 275 275 135 144
3237 324 324 91 103 179 187 284 305 144 159
3547 321 321 103 106 177 179 275 296 0 0
4112 327 327 97 106 169 181 296 302 144 144
4783 321 327 0 0 183 185 290 308 144 156
4813 327 333 106 106 177 179 284 302 135 138
4865 321 327 106 106 167 179 284 296 144 153
4896 315 333 100 106 181 189 275 284 162 162
5024 318 327 100 103 165 167 275 284 147 147

Seed progeny
989 seed 1-1 327 336 91 106 165 185 275 287 153 153
989 seed 2-1 327 330 103 106 165 181 275 275 135 135
989 seed 3-1 330 336 97 106 165 181 0 0 135 153
989 seed 25-1 321 330 106 106 167 181 275 296 135 153
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C. alta individuals 10 cm in diameter or greater at
breast height were sampled from a 9 ha area inside of
a large tract of continuous forest. These trees 10 cm
in diameter or greater at breast height are the can-
didate parents. A sample of seeds was also collected
from some of these trees. The genotypes of both the
trees and the seeds were determined for 10 nuclear
microsatellite loci (see Box 2.1 for an introduction to
this type of genetic marker). A subset of these data 
is shown in Table 4.1. The goal of the parentage
analysis in this case is to determine the fathers of the
seeds given the known mothers in order to estimate
the proportion of seeds that resulted from pollen
transport within the sampled plot compared with
pollen transport from outside the sampled plot.

The first step in a parentage analysis is to examine
the genotypes of an individual progeny and its known
parent for allelic matches. C. alta seed genotypes are
grouped with their known parent in Table 4.2. For
example, in Table 4.2 the genotype of seed 1-1 from
tree 989 is given in the first row and the genotype of
the known maternal parent tree (989) is given in the
second row. At each locus, one (or sometimes both)
of the alleles found in the known parent genotype is
observed in the progeny genotype. For seed 1-1 from
tree 989, the known parent contributed the 336
allele at locus A, the 106 allele at locus B, the 165
allele at locus C, the 275 allele at locus D, and the

153 allele at locus E. Given those alleles came from
the known parent, the true father must have con-
tributed alleles 327, 91, 185, 287, and 153 at loci A
through E. This set of single alleles at each diploid
locus is called the paternal haplotype. We can now
scan the genotypes of the candidate parents to see
whether there is any individual with a haplotype
that contains all of those alleles (this is normally
done with the assistance of a computer program). All
candidate parents that have a matching haplotype
are possible fathers of seed 1–1 from tree 989. In this
case, tree 1946 is the only individual with the required
haplotype and so 1946 is possibly the father while 
all of the other candidate parents are excluded as
fathers due to a genetic mismatch at one or more 
loci in the paternal haplotype. Repeating this process
for the next two seeds also excludes all but a single
individual as the father.

With the exclusion of all but a single candidate
parent, it would seem like certain identification of the
true parent has been accomplished. Unfortunately, it
is always possible that any non-excluded candidate
parent is not the actual parent. There is the possibil-
ity, by chance alone, that an individual possesses a
genotype with the same haplotype as the true parent.
Evaluating the chance that a non-excluded candid-
ate parent (sometimes called an inclusion or an
included parent) is not the true parent requires 

··

Table 4.2 Seed progeny genotypes (top row of every three) given with the known maternal parent genotype
(middle row of every three) along with the genotype of the most probable paternal parent (bottom row of
every three) from the pool of all possible candidate parents. Alleles in the seed progeny that match those in
the known maternal parent are underlined. The known maternal parent is also a candidate paternal parent
since this species can self-fertilize. Missing data are indicated by zero.

Genotype

Microsatellite locus . . . A B C D E

989 seed 1-1 327 336 91 106 165 185 275 287 153 153
989 330 336 97 106 165 181 275 275 135 153
1946 327 333 91 106 167 185 284 287 135 147

989 seed 2-1 327 330 103 106 165 181 275 275 135 135
989 330 336 97 106 165 181 275 275 135 153
3226 327 327 103 106 163 181 275 275 135 144

989 seed 3-1 330 336 97 106 165 181 0 0 135 153
989 330 336 97 106 165 181 275 275 135 153
989 330 336 97 106 165 181 275 275 135 153

989 seed 25-1 321 330 106 106 167 181 275 296 135 153
989 330 336 97 106 165 181 275 275 135 153
4865 321 327 106 106 167 179 284 296 144 153
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one to determine the chance of such a random
match. Let the frequency of an allele in the matching
haplotype be pi where i indicates the locus. At each
locus the chance of matching at random is simply
the probability that an individual is either homo-
zygous (p i

2) or heterozygous (2pi(1 − pi)) for the allele
in question. Thus, the total probability of a random
match for one locus is:

P(random match) = p2
i + 2pi(1 − pi) (4.2)

under the assumptions of random mating and 
panmixia. Assuming that all of the loci used in a
parentage analysis are independent, the probability
of a random match for all loci in a given haplotype 
is the product of the locus by locus frequency of a
random match, or:

P(multilocus random match)

= (pi
2 + 2pi(1 − pi)) (4.3)

where Π indicates chain multiplication over all loci.
Returning to our C. alta example, we can calculate

the chances of a random match for each of the 
paternal haplotypes. The haplotypes, allele frequen-
cies (see Table 4.3), probability of a random match 
at each locus, and probability of a random match 
at all five loci are given in Table 4.4. Focus first on 
the haplotype for tree 1946. Given that allele 327 at

i

loci

=
∏

1

locus A has an observed frequency of 0.2703 in the
population of candidate parents (which is an estimate
of the allele frequency in the entire population), the
chance of any genotype having one copy of this allele
is (0.2703)2 + 2(0.2703)(1 − 0.2703) = 0.4675. We
therefore expect 46.75% of individuals in the popula-
tion to have a genotype with either one or two copies
of the 327 allele. This is the same as the probability
that an individual taken at random from the popula-
tion (and not necessarily included in the sample of
candidate parents) could provide the correct haplo-
type to be included as a possible father of seed 989
1–1 in Table 4.2. The chances of a random match at
each of the five loci is calculated in the same fashion.
We see that a genotype that would compliment 
the known parent’s haplotype and explain the seed
genotype is expected to occur between about 2 
and 47% of the time for any single locus. When these
probabilities are combined across all five loci the
expected frequency of a random match becomes very
small. As shown in Table 4.4, the expected fre-
quency of a random match at all five loci is between
44 in 1000 and 66 in 1,000,000 genotypes under
the assumption of random mating. This is a demon-
stration of the general principle that the ability to 
distinguish true parentage from apparent parentage
due to random matches depends on both the allele
frequencies at each locus as well as the total number
of loci available. Random matches become less likely
as allele frequencies decrease and as the number of
independent loci increases.

··

Table 4.4 The chance of a random match for the included fathers in Table 4.2. The probability of a random
match at each locus is p2

i + 2pi(1 − pi). The combined probability of a random match for all loci in the
haplotype is the product of the probabilities of a random match at each independent locus. Paternal
haplotype data are treated as missing (0) for the purposes of probability calculations when progeny genotype
data are missing. In the cases where the paternal haplotype has multiple possible alleles at some loci, the
highest probability of a chance match is given. The allele frequencies for each locus are given in Table 4.3.

Microsatellite haplotype
P(multilocus 

Included father A B C D E random match)

1946 (seed 1-1) 327 91 185 287 135
Allele frequencies 0.2703 0.0735 0.0435 0.0119 0.2917
P(random match) 0.4675 0.1416 0.0851 0.0237 0.4983 0.0000665

3226 (seed 2-1) 327 103 106 181 275 135
Allele frequencies 0.2703 0.0735 0.3971 0.2065 0.4167 0.2917
P(random match) 0.4675 0.1416 0.6365 0.3704 0.6598 0.4983 ≤0.03624

989 (seed 3-1) 330 336 97 106 165 181 0 135 153
Allele frequencies 0.1892 0.1216 0.3088 0.3971 0.2283 0.2065 1.0 0.2917 0.1250
P(random match) 0.3426 0.2284 0.5222 0.6365 0.4045 0.3704 1.0 0.4983 0.2344 ≤0.0440
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We can express the probability that an individual
taken at random from a population would be ruled
out as a parent due to genetic mismatch. Equation 4.2
gives the probability of a random match at a single
locus, or the probability that a genotype has a match-
ing allele by chance alone. If a genotype does not
match by chance then it is excluded from possibly
being the parent. This means that the exclusion
probability for a single individual sampled at random
from a population is just one minus the probability of
a random match:

P(exclusion) = 1 − P(random match) (4.4)

If more than one candidate parent is sampled from 
a population, the probability of exclusion for each
individual is independent (the genotype of each indi-
vidual represents a random sampling of the alleles
present in the population). Therefore, the total prob-
ability of ruling out or excluding all candidate parents
is the product of the exclusion probabilities for each
individual. For a sample of n individuals from a 
population, the total probability of exclusion is then:

P(exclusion for n individuals)
= (1 − P(random match))n (4.5)

This means that the chance of exclusion decreases 
as more individuals are sampled from a population.
This is the same as saying that the chances of samp-

ling an individual that matches a parental haplotype
just by chance increases as more candidate parents
are sampled.

Based on the exclusion probability in a population
of n candidate parents, we can estimate the chances
that a random match does occur. Since the exclusion
probability is the chance of not matching at random,
the probability of a haplotype match between a 
candidate parent and an offspring in a population of
n individuals is just one minus the probability of
exclusion for n individuals, or

P(random match in n individuals)
= 1 − P(exclusion for n individuals) (4.6)
= 1 − (1 − P(random match))n

This is the probability that a haplotype matching the
true parent will occur at random in a sample of n
candidate parents.

The probability of a random match in a sample of 
n candidate parents (equation 4.6) can be thought 
of as the chance that a candidate parent is mis-
takenly assigned as the true parent since its geno-
type provides the matching haplotype by chance,
while the true parent is not identified since it is not
included in the sample of candidate parents. This
phenomenon is referred to as cryptic gene flow
in paternity analysis since the true gene flow event 
is not identified, even though a parent has been 
mistakenly inferred for the progeny. If the true 
parent was not included in the sample of candidate
parents because it was outside the sampling area,
incorrectly inferred parentage results in an under-
estimate of gene flow distances. Equation 4.6 shows
that the probability of incorrectly assigning parent-
age due to random matches increases as the number
of candidate parents increases for a given expected
genotype frequency.

Returning to the C. alta example in Table 4.2, we
can determine the chances that one of the candidate
parents is incorrectly inferred to be a father while 
the true father remains undetected as well as the
chances of paternity exclusion with the 30 candidate
parents in the study. For seed 3-1 the maternal and
paternal parents are the same (Table 4.4), indicat-
ing a self-fertilization event. Based on the paternal 
parent haplotype expected frequency, the chance of
paternity exclusion is (1 − 0.044)30 = 0.259 and the
probability of a random match is therefore 0.741.
Since the four-locus inferred paternal haplotype is
expected to occur very frequently (74% of the time)
by chance in a sample of 30 candidate parents, there
is also a good chance that the seed could appear 

Candidate parent An individual in the pool of
possible parents that shares one or both alleles
found in an offspring genotype at all loci .
Cryptic gene flow Gene-flow events
incorrectly assigned to candidate parents but
actually due to unobserved parents outside
the area where candidate parents were
sampled, leading to an underestimate of 
gene-flow distances.
Exclusion Rejection of an individual as a
possible parent due to genetic mismatch
(neither allele in the individual’s genotype is
identical to one of the alleles in the progeny
genotype).
Exclusion probability The chance that 
an individual can be rejected as a candidate
parent due to genetic mismatch; depends 
on allele frequencies and increases with the
number of loci and the numbers of alleles per
locus employed in a parentage analysis.
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self-fertilized even though it was actually sired by 
an individual not in the sample of candidate parents.
For seed 989 1–1 where tree 1946 was the only
included candidate parent, the chance of paternity
exclusion is (1 − 0.0000665)30 = 0.9980 and the
probability of a random match is therefore 0.0020.
The five-locus inferred paternal haplotype for seed
989 1-1 is expected to appear by chance in only 
two of 1000 samples of 30 candidate parents given
the estimated allele frequencies.

There are four general outcomes for each offspring–
known-parent pair in parentage analysis, as follows.

1 A single candidate parent is identified as the 
parent. Such single parentage assignments need
to be interpreted in light of the exclusion prob-
ability or likelihood of parentage.

··

In planning a parentage analysis study, it is necessary to determine whether a set of genetic
markers will have a sufficiently small probability of exclusion (this is called the power of the 
genetic markers). As shown in equation 4.4, the exclusion probability will depend on the 
expected genotype frequency for a single parental haplotype. This expected genotype frequency 
is in turn a function of the number of alleles and the allele frequencies at each locus. Since there 
are many possible genotypes for a locus with three or more alleles, the average probability of
exclusion is used to estimate the power of a set of genetic markers to demonstrate nonpaternity
(see Chakraborty et al. 1988; Weir 1996).

You can use an Excel spreadsheet that has been set up on the textbook website to calculate the
average probability of exclusion (abbreviated as PE in the spreadsheet) for a case of one locus with
six alleles and one locus with 12 alleles. The spreadsheet uses the allele frequencies (that you can
modify) to calculate (i) the expected frequencies of each maternal-parent–offspring genotype
combination and (ii) the exclusion probabilities for the paternal haplotype(s) for each maternal
parent–offspring genotype combination. The average exclusion probability is then the average of
the exclusion probabilities where each exclusion probability is weighted by the expected frequency
of the maternal-parent–offspring genotype combination. The spreadsheet follows the derivation
for a locus with three alleles given in Table 1 of Chakraborty et al. (1988). The maximum average
exclusion probability occurs when all alleles at a locus have identical allele frequencies (e.g. each
allele has a frequency of 1/6 when there are six alleles). The maximum average exclusion probability
is computed in each spreadsheet according to:

Max.prob.exclusion = (4.7)

where k is the number of alleles at the locus (Selvin 1980).
Compare the average probability of exclusion for cases where the frequencies of each allele are

very similar to cases where one or a few alleles are very common and the remaining alleles are rare.
How does the evenness of the frequencies for the alleles influence the average exclusion probability?
How do you combine the average exclusion probabilities for multiple loci? What is the average
exclusion probability of two loci with 12 alleles or two loci with six alleles when allele frequencies
are all equal for each locus? How many independent loci with 12 equally frequent alleles would be
required for a probability of exclusion of 90% when there are 50 candidate parents?

− − − +( )( )k k k k
k

1 2 33 2

4

Interact box 4.1 Average exclusion probability for a locus

The seed 25-1 from maternal tree 989 shows
exact haplotype matches with candidate
paternal tree 4865 (see Table 4.2). Using
the allele frequencies provided in Table 4.3,
calculate the probability of a random match
for the paternal haplotype. Then use this
probability of a random match to calculate
the exclusion probability for the sample of
30 candidate parents. What loci are most
and least useful in determining paternity for
these two seed progeny? Why?

Problem box 4.1
Calculate the probability of a
random haplotype match and 

the exclusion probability
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2 Multiple candidate parents are identified for a
single progeny. In these cases one commonly
used criterion is to assign as parent the candidate
parent with the lowest probability of matching
by chance. Additional criteria might also include
spatial separation from the known parent, degree
of reproductive overlap with the known parent,
or reproductive dominance, if such information
is available.

3 None of the candidate parents have a genotype
that could have combined with the known par-
ent to yield the progeny genotype. In this case the
actual parent may not be present in the sample 
of candidate parents. Such an outcome is often
used to infer that the gene-flow event leading 
to that progeny was from a relatively long dis-
tance from a parent outside the sample area of
candidate parents (so-called off-plot gene flow).
However, it is also possible that the actual parent
is in the population of candidate parents but has
a genetic mismatch at one or more loci due to 
a genotyping error or mutation. An additional
alternative is that the actual parent was inside
the sampling area of candidate parents when
mating took place, but the individual either died
or migrated before sampling of the candidate
parents was carried out.

4 Parentage is assigned to a candidate parent but
the true parent is an individual not included in
the sample of possible parents. When making
paternity assignments, the chance of incorrectly
assigning paternity within a group of sampled
individuals when the father is actually outside
the population, or missing a “cryptic gene flow”
event, will be related to the expected frequency of
a given multilocus genotype.

Parentage analyses measure gene flow by inferring
numerous mating events within the population of
candidate parents that lead to each sampled progeny
or juvenile in a population. This provides estimates
of quantities such as the average distance between
parents or the number of matings where both parents
were within a sample area compared to the number
of matings where a parent was outside that area.
This means that resulting estimates of gene flow 
do not rely on any model of population structure or
gene flow other than the assumptions that are used
to construct the parentage assignments themselves.
The resulting estimates of gene flow are therefore
considered “direct.” The clear strength of parent-
age analyses is that much can be learned about 

patterns of mating since parental pairings that lead
to a specific offspring can often be identified with
medium to high confidence.

Parentage analyses have been a critically import-
ant tool used to learn about mating and relatedness
patterns in wild populations. An example is the
numerous studies of parentage among bird nestlings
that overturned the long-held idea that birds were
usually monogamous breeders. Instead, birds have
variable and complex mating patterns where mating
outside of nesting pairs by both females and males
can be common and juveniles in the nest may not be
related to one or both of the nest-attendant “parents”
(Westneat & Stewart 2003). Parentage analyses
have also been used in a wide variety of plant and
animal species to produce detailed descriptions of
mating and gene-flow patterns.

Although the term direct has connotations of pre-
cision and ready insight, it is important to recognize
that parentage analyses do have limitations when
used to infer patterns of gene flow. A major limita-
tion stems from the fact that most parentage studies
cover a time scale of only a few generations at most.
In all organisms with population sizes that are stable
through time, each parent produces just one offspring
on average that survives to reproduce successfully.
The other progeny die or do not reproduce. This
means that many, perhaps even most, of the pro-
geny included in parentage studies ultimately do 
not reproduce. This problem is particularly acute 
in long-lived organisms, where parentage studies
examine only a very small fraction of progeny pro-
duced over a period much less than the average 
individual lifetime. Gene flow can be thought of as
the long-term average of the matings that lead to
individuals that survive and contribute progeny to
the next generation. How effective parentage studies
are at estimating longer-term patterns of gene flow
then depends on the sampling duration of parentage
studies relative to generation time and how variable
parentage patterns are over the short term compared
to their long-term averages.

4.3 Fixation indices to measure the pattern of
population subdivision

• Extending the fixation index to measure the 
pattern of population structure through FIS, FST,
and FIT.

The first section of the chapter reviewed the processes
that contribute to the formation of allele frequency
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differences among populations. Given that these 
processes might be acting, it is necessary to develop
methods to measure and quantify population struc-
ture. The parentage analyses such as those described
in the last section can be carried out when genotype
data are available both for a sample of candidate 
parents and a sample of progeny. An alternative 
situation is where genotype data are determined 
for individuals sampled within and among a series 
of geographic locations. This type of sampling is 
very commonly carried out in empirical studies and
requires methods to quantify the pattern of popula-
tion structure present among the subpopulations 
as well as the genotype frequencies found within
subpopulations. It would be advantageous if such
measures could be readily compared to reference 
situations, as is expected with no population structure.
This was our approach when comparing observed
and expected heterozygosity using the fixation index
(F) in Chapter 2. We can now extend the fixation
index to apply to cases where there are multiple 
subpopulations. In this more complex case there 
can be deviations from Hardy–Weinberg expected
frequencies of heterozygotes at two levels: within
each subpopulation due to non-random mating and
among subpopulations due to population structure.
This section of the chapter will develop and explain
fixation-index-based measures of departure from
expected heterozygosity commonly used to quantify
population structure.

Let’s look in detail at the case where we can meas-
ure the genotypes at a diallelic locus for a sample of
individuals located in several different subpopula-
tions. Recall that the heterozygosity in a population
is just one minus the homozygosity (H = 1 − F) so the 
heterozygosity can be related to the fixation index.

With such genotype data it is possible to compute 
the observed and expected frequencies of the hetero-
zygote genotype in several ways (Table 4.5). The first
way is to simply take the average:

(4.8)

where K is the observed frequency of heterozygotes in
each of the n subpopulations. We could call this K
since it is the average of the observed heterozygote
frequencies in all subpopulations. This is just the
probability that a given individual is heterozygous 
or the average observed heterozygosity. As shown 
in Chapter 2, the heterozygosity within populations
can be increased or decreased relative to Hardy–
Weinberg expectations by non-random mating.

Next, we can determine the expected heterozy-
gosity assuming each subpopulation is in Hardy–
Weinberg equilibrium. This assumption means 
that the frequency of the heterozygous genotype is
expected to be 2pq for a locus with two alleles. The
average expected heterozygosity of subpopulations
is then

(4.9)

where pi and qi are the allele frequencies in subpopu-
lation i and there are n subpopulations. We could use
the notation since the expected heterozygosity
is determined for each subpopulation and then aver-
aged. Here the observed allele frequency is used to
estimate the Hardy–Weinberg expected heterozygos-
ity for each subpopulation.

2pq

H
n

p qS i
i

n

i=
=
∑1

2
1

H
nI i

i

n

=
=
∑1

1

K

··

Table 4.5 The mathematical and biological definitions of heterozygosity for three levels of population
organization. In the summations, i refers to each subpopulation 1, 2, 3 . . . n and pi and qi are the frequencies
of the two alleles at a diallelic locus in subpopulation i.

The average observed heterozygosity within each subpopulation.

The average expected heterozygosity of subpopulations assuming random mating within
each subpopulation.

HT = 2HI The expected heterozygosity of the total population assuming random mating within
subpopulations and no divergence of allele frequencies among subpopulations.

H p qS i
i

n

i=
=
∑1

1
n

2

HI i
i

n

=
=
∑1

1
n

k
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At the most inclusive level in a subdivided popula-
tion, we can calculate the expected heterozygosity of
the total population:

HT = 2HI (4.10)

where H and I are average allele frequencies for 
all the subpopulations. The average allele frequency 
for all subpopulations is equivalent to combining 
all alleles for all subpopulations into a single popula-
tion and then simply estimating allele frequencies. 
In other words, it is the allele frequency for the total
population without any divergence among sub-
populations taken into account. HT is therefore the
Hardy–Weinberg expected frequency of heterozygotes
in the entire population if there were no population
structure of allele frequencies.

These different levels of observed and expected
heterozygosity are diagrammed in Fig. 4.6 for the
case of a total population composed of two subpopu-
lations that each contain 10 diploid individuals. 
In both subpopulations, three of the 10 individuals
are heterozygotes giving observed heterozygote 

frequencies of and . Together 

these yield an average observed heterozygosity of

. To determine the aver-

age expected heterozygosity of the subpopulations
requires observed allele frequencies for each sub-
population. In subpopulation one 13 of the 20 
alleles are white and seven of the 20 alleles are blue. 
If p is the frequency of the white allele and q the 
frequency of the blue allele, then p1 = 13/20 = 0.65
and q1 = 1 − p1 = 0.35. In subpopulation two the 
situation is the exact opposite with p2 = 7/20 =
0.35 and q2 = 1 − p2 = 0.65. The average expected 
heterozygosity in the two subpopulations is then 

HS = [2(0.65)(0.35) + 2(0.35)(0.65)] = 0.455. In

the total population average allele frequencies are 

H = (0.65 + 0.35) = 0.50 and I = (0.35 + 0.65)

= 0.50. (Notice that obtaining the average of the 
subpopulation allele frequencies is equivalent to
combining all the alleles in the total population 
and then estimating the allele frequency, as in 

H = = 0.50.) The expected heterozygosity of

the total population is then HT = 2(0.5)(0.5) = 0.5.
After calculating the different observed and

expected heterozygosities in Fig. 4.6, it is apparent
that they are not all equivalent. There are differences
between the observed and expected heterozygosities
at the different hierarchical levels of the population.
Recall from section 2.5 that the difference between
observed and Hardy–Weinberg expected genotype
frequencies was used to estimate the fixation index
or F. In that case there was only a single population
and we were only concerned with how alleles com-
bined into diploid genotypes compared with the
expectation under random mating. The fixation index
can be extended to accommodate multiple levels of
population organization, thereby creating measures
of deviation from Hardy–Weinberg expected geno-
type frequencies caused by two distinct processes.
With multiple subpopulations there is a possible
excess or deficit of heterozygotes due to non-random
mating within subpopulations and a possible deficit
of heterozygotes among subpopulations compared
to panmixia. In the latter case the fixation index will
show how much allele frequencies have diverged
among subpopulations due to processes that cause
population structure compared with the ideal of 
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Figure 4.6 Illustration of the hierarchical nature of 

heterozygosity in a subdivided population. and 

to give an average observed heterozygosity of 

. If p is the frequency of one allele 

(open circles) and q the frequency of the alternate allele 
(filled circles), then p1 = 13/20 = 0.65 and q1 = 1 − p1 = 0.35
while p2 = 7/20 = 0.35 and q2 = 1 − p2 = 0.65. The average
expected heterozygosity in the two subpopulations is then 
HS = 1/2[2(0.65)(0.35) + (2(0.35)(0.65)] = 0.455. In 
the total population the average allele frequencies are 
H = 1/2(0.65 + 0.35) = 0.50 and I = 1/2(0.35 + 0.65) = 0.50
giving an expected heterozygosity in the total population 
of HT = 2HI = 2(0.5)(0.5) = 0.5.
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uniform allele frequencies among subpopulations
expected with panmixia.

Accounting for non-random mating and diver-
gence of subpopulation allele frequency necessitates
several new versions of the fixation index. The
definitions of these new fixation indices are shown 
in Table 4.6. Let’s employ and interpret each of 
these versions of the fixation index for the example 
in Fig. 4.6. FIS compares average observed hetero-
zygosity of individuals in each subpopulation and
the average Hardy–Weinberg expected heterozygos-
ity for all subpopulations (the I stands for individuals
and the S for subpopulations). FIS is identical to the
single-population F used in section 2.5 except that it
is now an average for all subpopulations. Using the
heterozygosities determined above,

(4.11)

This is a result that makes biological sense since
there are fewer heterozygotes in each subpopulation
than would be expected under random mating given
the subpopulation allele frequencies. Thus, there is
more homozygosity or fixation within the two sub-
populations than expected under random mating.
The subpopulations on average have a deficit of 
heterozygosity as expected if there is consanguineous
mating taking place.

The next level in the hierarchy is the average
expected heterozygosity for subpopulations compared
with expected heterozygosity for the total population
or FST (the S stands for subpopulations and the T for

FIS =
−

=
0 455 0 30

0 455
0 341

. .
.

.

the total population). Based on the heterozygosities
determined previously,

(4.12)

This result says that there is somewhat less hetero-
zygosity on average for the two subpopulations com-
pared with the heterozygosity expected in the ideal
case where the entire population is panmictic. This 
is consistent with the fact that the two subpopula-
tions have slightly different allele frequencies and
each has an expected heterozygosity of slightly less
than 1/2. However, the total population would have
a heterozygosity of 1/2 (the maximum) if there was
no allele frequency divergence between the two 
subpopulations.

The final level in the hierarchy is FIT, the com-
parison of the average observed heterozygosity for
subpopulations with the heterozygosity expected for
the total population:

(4.13)

This gives the combined departure from Hardy–
Weinberg expected genotype frequencies due to 
the combination of non-random mating within sub-
populations and divergence of allele frequencies among
subpopulations. For this example, homozygosity is
40% greater or heterozygosity 60% less than would
be expected in an ideal, randomly mating panmictic
population with the same allele frequencies.

FIT =
−

=
0 50 0 30

0 50
0 40

. .
.

.

FST =
−

=
0 50 0 455

0 50
0 09

. .
.

.

··

Table 4.6 The mathematical and biological definitions of fixation indices for two levels of population
organization.

The average difference between observed and Hardy–Weinberg expected heterozygosity
within each subpopulation due to non-random mating. The correlation between the
states of two alleles in a genotype sampled at random from any subpopulation.

The reduction in heterozygosity due to subpopulation divergence in allele frequency. 
The difference between the average expected heterozygosity of subpopulations and the
expected heterozygosity of the total population. Alternately, the probability that two
alleles sampled at random from a single subpopulation are identical given the probability
that two alleles sampled from the total population are identical.

The correlation between the states of two alleles in a genotype sampled at random from
a single subpopulation given the possibility of non-random mating within populations
and allele frequency divergence among populations.

F
H H

HIT
T I

T

=
−

F
H H

HST
T S

T

=
−

F
H

HIS
S I

S

=
− /
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The individual, subpopulation, and total population
heterozygosities are identical in populations after
compensating for the degree to which observed and
expected heterozygosities are not met at different levels
of population organization. The average observed
heterozygosity is greater or less than the average
expected heterozygosity for subpopulations:

HI = HS(1 − FIS ) (4.14)

to the extent that there is non-random mating (FIS ≠
0). Similarly, the average expected heterozygosity
for subpopulations is less than the expected hetero-
zygosity of the total population under panmixia:

HS = HT (1 − FST ) (4.15)

to the extent that subpopulations have diverged
allele frequencies (FST > 0). The total deviation 
from expected heterozygosity within and among
subpopulations is then

HI = HT(1 − FIT) (4.16)

Although equations 4.14–4.16 can be considered
as rearrangements of equations 4.11–4.13, they also
represent a different way to articulate and think of
the biological impacts of allele frequency divergence
among subpopulations and non-random mating
within subpopulations. Each fixation index expresses
the degree to which random mating expectations 
for the frequency of heterozygous genotypes are not
met. Using these equations it is also possible to show
how the total reduction in heterozygosity relates to
the combined fixation due to non-random mating
and subpopulation divergence:

1 − FIT = (1 − FST)(1 − FIS) (4.17)

Since using the fixation index to measure allele fre-
quency divergence among subpopulations is the novel
concept in this section, let’s consider an additional
example that focuses exclusively on FST. Figure 4.7
shows allele frequencies for a diallelic locus in 
two populations that are both composed of six sub-
populations. The pattern of allele frequencies among 
the subpopulations is very different. On the right 
all subpopulations have the same allele frequencies,
while on the left each subpopulation is at either com-
plete fixation or complete loss for one allele. In both
sets of populations HT = 2(0.5)(0.5) = 0.5. The only
difference between the two sets of populations is how
allele frequencies are organized, or HS. In the right-
hand population, all six subpopulations have allele
frequencies of 1/2, giving HS = (6(2)(0.5)(0.5))/6 = 0.5.
In the left population, three subpopulations have 
an allele frequency of zero and three subpopulations
have an allele frequency of one. This pattern gives 
HS = (3(2)(1.0)(0) + 3(2)(0)(1.0))/6 = 0.0. Using these
expected heterozygosities for the subpopulations 
and total population gives FST = 0.0 on the right and 
FST = 1.0 on the left.

The average allele frequency in the total popula-
tion is the same in both cases. However, there is a
major difference in the way that allele frequencies
are organized. On the right all the subpopulations
have identical allele frequencies, as would be expected
if the subpopulations were really not subdivided at all.
On the left the subpopulations are highly diverged in

Levin (1978) used allozyme electrophoresis
to estimate genotype frequencies for the
phosphoglucomutase-2 gene (Pgm-2) in
Phlox cuspidata, a plant capable of self-
fertilization. Genetic data were collected
from 43 populations across the species
range in southeast Texas. Using starch gel
electrophoresis, the frequencies of two alleles
(fast and slow running) and the frequencies
of the heterozygous genotype were recorded
for each population. A portion of the data 
is given in the table below (population
numbers match Table 2 in Levin (1978)).

Subpopulation
1 9 43 68

Frequency of 
Pgm-2 fast 0.0 0.93 0.17 0.51
Frequency of 
Pgm-2 slow 1.0 0.07 0.83 0.49
Heterozygote 
frequency 0.0 0.14 0.34 0.40

Using the heterozygote and allele
frequencies, compute the hierarchical
heterozygosities HI, HS, and HT and use
these to calculate FIS, FST, and FIT. Is there
evidence that P. cuspidata individuals
engage in selfing? Are the populations
panmictic or subdivided?

Problem box 4.2
Compute FIS, FST, and FIT
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allele frequencies as expected with strong population
subdivision. Therefore, the different values of FST reflect
the different degrees of allele frequency divergence
among the sets of subpopulations. When all of the
subpopulations are well mixed and have similar allele
frequencies, HS and HT are identical. Biologically, an
FST value of zero says that all subpopulations have
alleles at the same frequencies as the total population
and any single subpopulation has as many hetero-
zygotes as any other subpopulation. As the populations
diverge in allele frequency due to whatever process, HS
will decrease and FST will approach one. Biologically,
an FST value of one says that the genetic variation 
is partitioned completely as allele-frequency differ-
ences among the subpopulations with an absence of
segregating alleles within subpopulations.

An alternative way to think about the pattern 
of population differentiation in allele frequency is
using the variance in allele frequency relative to 
the amount of genetic variation in the total popula-
tion to estimate FST. The estimate of allele-frequency 
differentiation among subpopulations is then

(4.18)

where the variance in allele frequency among n

subpopulations is and therevar( ) ( )p
n

pi
i

n

= −
=
∑1 2

1

H

F
p

ST =
var( )

HI

are a very large number of subpopulations (Wright
1943a). If there is more variance in allele frequency
then subpopulations differ more in allele frequency
and the resulting FST is larger. For example, in 
Fig. 4.7 the average allele frequency or H in both sets
of six subpopulations is 0.5. On the left the vari- 

ance in p is while

on the right the variance in p is . 

The leads to FST = 1.0 on the left where there is 
maximum variance in allele frequencies among the
subpopulations given the allele frequencies, and 
FST = 0.0 on the right where there is no variance 
in allele frequencies among the subpopulations.
Measuring the variance in allele frequencies among
subpopulations is the basis of several widely em-
ployed methods used to estimate JST from actual
genetic marker data (see Method box 4.2).

The relationship between the allele frequencies of
subpopulations, the hierarchical measures of hetero-
zygosity, and the fixation indices can be seen in a
simulation of gene flow and genetic drift in a subdivided
population (Fig. 4.8). When gene flow is relatively
strong and maintains similar allele frequencies in
the subpopulations, the expected heterozygosity of
the subpopulations and the total population are also
similar and result in low values of the fixation indices
(Fig. 4.8a). When gene flow is weaker and the 
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Figure 4.7 Allele frequencies at a diallelic locus for populations that consist of six subpopulations. Allele frequencies within
subpopulations are indicated by shading. On the left, individual subpopulations are either fixed or lost for one allele. On the right,
all subpopulations have identical allele frequencies of p = q = 0.5. In both cases, the total population has an average allele
frequency of H = 0.5 and an expected heterozygosity of HT = 2HI = 0.5. In contrast, the average expected heterozygosity for 
subpopulations is HS = = 0.5 on the right and HS = = 0.0 on the left. FST = 1.0 on the left since the subpopulations 
have maximally diverged allele frequencies. FST = 0.0 on the right since the subpopulations all have identical allele frequencies.
Divergence of allele frequencies among subpopulations produces a deficit of heterozygosity relative to the Hardy–Weinberg
expectation based on average allele frequencies for the total population.

2pq2pq
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subpopulations diverge in allele frequency, the expected
heterozygosity of the subpopulations is less than the
expected heterozygosity of the total population, result-
ing in high values of the fixation indices (Fig. 4.8b).
An additional point is that FST can vary consider-
ably among independent replicate loci sampled in 
an identical fashion from the same subpopulations.
Figure 4.9 shows the range of FST values obtained for
1000 independent loci in a simulation of the finite
island model (see section 4.5) where genetic drift 
and gene flow among subpopulations were the pro-
cesses acting to change allele frequencies. The range
of FST values for individual loci under the influence 
of identical population genetic processes is due to 
the random nature of genetic drift. Each locus has
experienced random fluctuations in allele frequen-
cies that has resulted in a range of allele frequency
variance among subpopulations. This random vari-
ation in FST due to genetic drift seen in the simulation
underscores the need for estimates of FST to be obtained
from the average of multiple loci.

4.4 Population subdivision and the 
Wahlund effect

• Genetic variation can be present as heterozygosity
within a panmictic population or as differences in
allele frequency among diverged subpopulations.

The last section of the chapter showed how depar-
tures from Hardy–Weinberg expected frequencies 
of heterozygotes can be used to quantify departures
from random mating within demes and allele-
frequency divergence among demes. This section will
further explore heterozygosity within and among
several demes, with two main goals. The first is to
explore the consequences of population subdivision
on expected genotype frequencies. The second is to
show why FST functions to estimate allele frequency
divergence among demes.

Consider the case of a diallelic locus for two ran-
domly mating demes. The expected heterozygosity
for each deme is:

Throughout this section a single locus with
two alleles has been used to demonstrate
hierarchical heterozygosities and fixation
indices. These conditions are highly idealized,
meaning that this section is really presenting
the conceptual derivation of a parameter. In
practice, there are numerous details involved
in obtaining fixation-index parameter
estimates JIS, JST, and JIT. Loci commonly have
more than two alleles, so each allele provides a
different estimate of the fixation index that is
averaged within a locus. Multiple loci are also
used, requiring computation of a multilocus
average. It is also common that sample sizes
are variable among subpopulations and that
some genotype data may be missing at 
some loci for some individuals. Additionally,
different types of genetic markers may require
adjustments for dominance (inability to
distinguish dominant homozygotes and
heterozygotes) or patterns and rates of
mutation that can be incorporated into
fixation-index estimators. Finally, empirical
studies may have more than three levels 
of hierarchy, may wish to test for variation 
in allele frequency associated with

subpopulations as well as other variables, 
and require statistical estimates of uncertainty
in parameter estimates such as confidence
intervals.

GST is an estimator based on multilocus
versions of the observed and expected
heterozygosities or gene diversities 
(Nei 1973). θ or θST (pronounced “theta”;
Weir 1996) and ΦST (Excoffier et al. 1992) 
are estimators based on analysis of variance 
of allele frequencies within and among
subpopulations. The estimator ρST
(pronounced “roe”) or RST is frequently used
with microsatellite or simple sequence repeat
(SSR) loci to account for high rates of stepwise
mutation that can obscure population
structure (Slatkin 1995; see Chapter 5). 
An estimator of FST is also available for DNA
sequence data based on mean number of
pairwise differences between sequences taken
either from the same subpopulation or from
different subpopulations (Hudson et al. 1992).
Many commonly employed estimators are
implemented in computer programs or
software applications that can be obtained
over the internet.

Method box 4.2 Estimating fixation indices
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HI = 2pi qi (4.19)

where i indicates a single subpopulation. The average
heterozygosity of the two demes is based on taking
the heterozygosity within each subpopulation and
then averaging:

(4.20)

In contrast, the heterozygosity in the total popula-
tion is

HT = 2HI (4.21)

  
H

p q p q
S =

+2 2
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Figure 4.8 Allele frequencies, hierarchal heterozygosities, and fixation indices from a simulation of a subdivided population. 
Each subpopulation contained 10 individuals. The rate of gene flow was m = 0.2 in (a) and m = 0.01 in (b). The allele frequencies
are shown for six randomly chosen subpopulations out of the 200 subpopulations in the simulation. The heterozygosities and
fixation indices were calculated from all 200 subpopulations.

9781405132770_4_004.qxd  1/16/09  5:39 PM  Page 125



126 CHAPTER 4

··

based on the product of subpopulation average 
allele frequencies. HT and HS both cannot exceed 0.5,
the maximum heterozygosity for a diallelic locus. 
In addition, HS is an average of H1 and H2, so when
subdivided populations have different allele fre-
quencies HS will always be less than the expected
heterozygosity of the total population. These con-
ditions assure that HT ≥ HS when there is random
mating within the subpopulations. This relationship
between HT and HS is shown graphically in Fig. 4.10.
This phenomenon is called the Wahlund effect after
the Swedish geneticist Sten Gosta William Wahlund
who first described it in 1928. One result is that FST
will be greater or equal to zero since the numerator
in the expression for FST is HT − HS.

The Wahlund effect can also be shown in another
fashion that more clearly connects it to variation in
allele frequencies among subpopulations. The goal
will now be to show that the difference between the
expected heterozygosity in the total population (HT)
and the average expected heterozygosity of the sub-
populations (HS) depends on the variance in allele
frequencies among the subpopulations.

The variance in allele frequencies among a set of
subpopulations is

(4.22)

where pi is the allele frequency in subpopulation i. It
also turns out that for a diallelic locus, var(p) equals
var(q) since p = 1 − q. This result will be used later.

The average expected heterozygosity of the 
subpopulations,

(4.23)

can also be expressed as

(4.24)
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Figure 4.9 The distribution of FST values for 1000 replicate
neutral loci in a finite island model of 200 subpopulations
where each subpopulation contains 10 individuals and the
rate of gene flow is 10% of each subpopulation (m = 0.10). 
In the distribution, 95% of the replicate loci show FST values
between 0.1459 and 0.2002 whereas the average of all 
1000 replicate loci is 0.1586 (based on the average of HT and
HS then used to calculate FST). Replicate loci exhibit a range 
of FST values since allele frequencies among subpopulations
are partly a product of the stochastic process of genetic drift.
In an infinite island model with Nem = 1.0 the expected value
of FST is 0.2.

0 1
0

0.5

H
et

er
oz

yg
o

te
 fr

eq
u

en
cy

p2 p1p

HT

H1

H2

HS =
H1 + H2

2

0.4

0.3

0.2

0.1

Allele frequency (p)

Figure 4.10 A graphical demonstration of the Wahlund
effect for a diallelic locus in two demes. If there is random
mating within subpopulations (H1 and H2) and in the 
total population (HT), the heterozygosity of each falls on 
the parabola of Hardy–Weinberg expected frequency. The
average heterozygosity of subpopulations (HS) is at the 
mid-point between the deme heterozygosities. Therefore, 
HS can never be greater than HT based on the average allele
frequency (the mid-point between the deme allele frequencies
p1 and p2). Greater variance in allele frequencies of the demes
is the same as a wider spread of deme allele frequencies in 
the two-deme case.

Wahlund effect The decreased expected
frequency of heterozygotes in subpopulations
with diverged allele frequencies compared
with the expected frequency of heterozygotes
in a panmictic population of the same 
total size with the same average allele
frequencies.
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by noticing that pi qi = pi (1 − pi) = pi − p i
2 since 

p = 1 − q. This equation can be rearranged to

(4.25)

The right-hand term inside the parentheses is ident-
ical to a term in the expression for the variance in
allele frequency. Rearranging equation 4.22 so that 

and then substituting gives

(4.26)

This too can be simplified by noting that is just 

the average allele frequency, or H, and then making
the substitution so that

HS = 2(H − H2 − var(p)) (4.27)

The next step is again to use the fact that p = 1 − q
to replace H − H2 with its equivalent expression HI
and multiply the terms inside the parentheses by 2 
to finally obtain

HS = 2HI − 2 var(p) (4.28)

Recall from equation 4.21 that HT = 2HI. Making
this substitution gives

HS = HT − 2 var(p) (4.29)

Using an equivalent set of substitutions and algebraic
rearrangements, it is also possible to show that the
expected frequencies of homozygote genotypes in
the total population are

Freq(AA)T = H2 + var(p) (4.30)

and

Freq(aa)T = I2 + var(p) (4.31)

The changes to homozygosity and heterozygosity
caused by allele-frequency divergence among popula-
tions are exactly analogous to the consequences of
consanguineous mating in a single population. In
section 2.5 it was shown that freq(AA) = p2 + fpq
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where f is the probability of identity by descent. 
The Wahlund effect describes a similar phenomenon
where allele-frequency divergence of populations leads
to an increase of homozygosity in subpopulations
compared to the heterozygosity expected based on
total population allele frequencies.

These equations show that in a subdivided popu-
lation, the expected genotype frequencies in the total
population are a function of the average allele fre-
quencies as well as the variance in allele frequencies
among subpopulations. A set of subpopulations in
panmixia is equivalent to a situation where there is
no variance in allele frequency (var(p) = 0). In that
case, HT = HS and FST is zero since HT − HS is also zero.
This result is consistent with the intuitive expecta-
tion that extensive gene flow homogenizes allele 
frequencies among subpopulations. However, when
subpopulations have diverged in allele frequencies

··

The Wahlund effect can be seen readily
with a simple simulation that allows you to
set allele frequencies for five subpopulations
and the degree of non-random mating
within populations. Launch PopGeneS2,
and select Wahlund effect from the 
Gene Flow and Subdivision menu. The
simulation computes genotype frequencies
within each population depending on allele
frequencies and the degree of non-random
mating. It also shows the expected and
observed genotype frequencies averaged
over the subpopulations along with the
average allele frequency and variance in
allele frequency among subpopulations.
The fixation indices FIS, FST, and FIT are also
calculated. Try the first simulation with the
default values of f = 0 and allele frequencies
of 0.9, 0.8, 0.7, 0.5, and 0.5.

What is the relationship between 
the variance in allele frequency and the
difference between the average observed
and expected heterozygosities? How does
FST change with variance in allele frequency?
What happens to the observed genotype
frequencies when you try different levels of
non-random mating within subpopulations?
(Set f to a value other than zero.)

Interact box 4.2
Simulating the Wahlund effect
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and var(p) > 0 then the total population will have a
deficit of heterozygotes and an excess of homozygotes
compared to the case of panmixia. This method also
provides the prediction that the total deficit of hetero-
zygotes will equal the total excess of homozygotes
when var(p) > 0.

One consequence of the Wahlund effect is termed
isolate breaking to describe the increase of hetero-
zygote genotypes that occurs when previously sub-
divided populations with diverged allele frequencies
experience random mating. In human populations,
disease phenotypes caused by recessive alleles ex-
pressed in homozygotes include cystic fibrosis, Tay–
Sachs disease, and sickle-cell anemia. These disorders
are more common in relatively insular populations
such as Ashkenazi Jews, native American groups,
and the Amish, but rarer in human populations that
have experienced greater amounts of genetic mix-
ing and thereby have less of a heterozygosity deficit 
due to subdivision. To see the impact of isolate break-
ing, imagine two randomly mating populations of
squirrels that initially do not share any migrants 
and have allele frequencies that have diverged over
time (Fig. 4.11). Suppose that the population on the
left has albino individuals and the basis of the albino
phenotype is the completely recessive allele a with
frequency q. The albino allele is completely absent in
the population on the right. The average frequency
of albino squirrels in the subdivided population is

(4.32)

= 0.08

Relying on Hardy–Weinberg, we can similarly 
determine the average frequency of dominant 

homozygotes and hetero-

zygotes for the two 

subpopulations.
Next, imagine that the two populations of squirrels

fuse into one randomly mating population. What are
the frequency of the recessive allele and expected 
frequencies of albino squirrels in this fused popula-
tion after random mating occurs? First, determine
the allele frequencies in the fused population:

(4.33)
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and then use that result to determine the expected
frequency of homozygous recessive genotypes in the
fused population:

(4.34)

There are fewer albino squirrels in the fused popula-
tion (4%) than there were for the average of the two
subdivided populations (8%). You can verify that 
the other homozygote also decreases in frequency in
the fused population. The frequencies of both homo-
zygotes have decreased by 4% in the fused population
compared to their average frequencies in the sub-
divided populations. In contrast, the frequency of
heterozygotes in the fused population,

2pqfused = 2(0.2)(0.8) = 0.32 (4.35)

q fused
2

2
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0%

p2 = 1.0
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q2 = 0.0

16%

p1 = 0.6

84%

q1 = 0.4

  4%

pfused = 0.8

96%  

qfused = 0.2

Figure 4.11 A hypothetical example of how the Wahlund
effect relates variation in allele frequency between 
subdivided populations and genotype frequencies 
in a single panmictic population. Initially, the two
subpopulations have different allele frequencies and 
therefore different frequencies of homozygous recessive
albino phenotypes. The average frequency of the 
albino phenotype is 8% in the subpopulations. When 
the populations fuse, the allele frequencies become the
average of the two subpopulations. However, the genotype
frequencies are not the average of the two subpopulations.
Rather, homozygotes become less frequent and heterozygotes
more frequent than their respective subpopulation averages.
In the fused population, the degree to which the frequencies 
of both homozygotes combined and the heterozygotes 
differ from their subpopulation averages is the same 
as the variance in allele frequency between the two
subpopulations.
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is greater than the average frequency of heterozygotes
in the subdivided populations (see Table 4.7).

Now let’s determine the variance in allele frequency
among the two populations before and after fusion.
Initially, the variance in allele frequency for the two
subdivided populations is

(4.36)

whereas var(q) is zero after fusion because there is no
longer any subdivision for allele frequencies. Take
note of the fact that the initial variance in the allele
frequencies (0.08) is exactly twice the difference
between the average frequency of albinos before fusion
(equation 4.32) and the expected frequency of albinos
in the fused population (equation 4.34)! With fusion
of the subdivided populations, each homozygote has
decreased by 4% and the heterozygote has increased
by exactly the same total amount or 8%.

This example shows that removing the allele fre-
quency differences between the two subpopulations
by making them into a panmictic population has
changed the total population heterozygosity. The
result is exactly what is predicted by the Wahlund
effect, with more total population heterozygosity
under panmixia than under subdivision. Subdivided
populations store some genetic variation as differences
(variation) in allele frequency among populations at
the expense of heterozygosity in the total population.
Another way to think of this is that population sub-
division is equivalent to inbreeding that increases the

Var( )
( . . ) ( . . )

( )
.q =

− + −
−

=
0 4 0 2 0 0 0 2

2 1
0 08

2 2

total population homozygosity (or reduces the total
population heterozygosity). A fused or panmictic
population has a larger effective size than individual
subdivided populations with restricted gene flow. 
In the subpopulations, mating is most probable within
the subpopulation rather than with a migrant from
the total population. The subpopulations therefore
have more autozygosity compared to a panmictic
population of equivalent size, analogous to the decline
in heterozygosity seen in a single finite population
due to genetic drift (see section 3.4).

A more realistic application of Wahlund’s principle
can be found in forensic DNA profiling. As covered 
in section 2.4, the use of DNA markers to determine
the expected frequency of a given genotype occurring 
by chance relies on estimates of allele frequencies in
various racially defined human populations. Although
allele frequencies at loci used in DNA profiles have
been estimated in many populations, there are a 
limited number of these reference allele-frequency
databases available. It is therefore possible that 
population-specific allele-frequency estimates are not
available for some individuals depending on their
racial, ethnic, or geographic background. A further
complication is that many individuals have ethnic-
ally diverse ancestry that may not be represented by
any single set of available reference allele frequencies.
None of this would be a problem in DNA profiling if
human populations exhibited panmixia, since there
would then be uniform allele frequencies among all
racially defined human populations. However, racially
and geographically defined human populations like

··

Table 4.7 Allele and genotype frequencies for the hypothetical example of albino squirrels in Fig. 4.11 used
to demonstrate Wahlund’s principle. Initially, the total population is subdivided into two demes with different
allele frequencies. These two populations are then fused and undergo one generation of random mating.

Initial subpopulations Fused population

Allele frequency q 0.4 and 0.0

Variance in q 0

Frequency of aa (0.2)2 = 0.04

Frequency of Aa 2(0.2)(0.8) = 0.32

Frequency of AA (0.8)2 = 0.64
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those used to construct allele-frequency reference
databases show up to 3–5% population divergence
of allele frequencies (Rosenberg et al. 2002).

We can use Wahlund’s principle to adjust DNA-
profile odds ratios for the effects of population struc-
ture. This requires a method to adjust the expected
genotype frequency at each locus to account for the
increased frequency of homozygotes and the decreased
frequency of heterozygotes caused by the divergence
of allele frequencies among populations. The adjusted
expected frequencies for homozygote genotypes are

f(AiAi) = p2
i + pi(1 − pi)FIT (4.37)

and the adjusted expected frequencies for hetero-
zygote genotypes are

f(AiAj) = 2pi pj − (2pi pj)FIT = 2pi pj(1 − FIT) (4.38)

where i and j represent different alleles at the A 
locus and FIT measures the total departure of geno-
type frequencies from frequencies expected under
panmixia due both to non-random mating within
populations and allele-frequency divergence among
populations (National Research Council, Commission
on DNA Forensic Science 1996). If mating within
populations is random (FIS = 0) then FIT is equivalent
to FST in these two equations. In that case, applying
these corrections increases the frequency of homo-
zygotes and decreases the frequency of heterozygotes
in proportion to the degree of allele frequency diver-
gence among populations.

In section 2.4, the expected frequency of a three-
locus DNA profile was determined under the assump-
tions of Hardy–Weinberg and panmixia. Let’s return
to that example and adjust the expected genotype
frequency and odds ratio to compensate for popula-

tion structure in human populations. The expected
genotype frequencies are given in Table 4.8 based on
the upper bound estimate of FST = 0.05 in human
populations. The adjustment reduces the expected
frequencies of the two heterozygous loci and increases
the expected frequency of the homozygous locus.
The odds ratio for chance match of this three-locus
genotype was one in 20,408 under the assump-
tion of panmixia and becomes one in 15,152 after
adjusting for population structure. Thus, population
structure increases the expected frequency of this
three-locus genotype by about 35% of its expected
frequency under panmixia. A random match for 
this three-locus genotype is more probable after
adjustment for population structure. Compensating
for population structure in determining DNA-profile
odds ratios is required to obtain an accurate estimate

Table 4.8 Expected frequencies for individual DNA-profile loci and the three loci combined with and without
adjustment for population structure. Calculations assume that FIS = 0 and use the upper-bound estimate of FST
= 0.05 in human populations. Allele frequencies are given in Table 2.3.

Expected genotype frequency

Locus With panmixia With population structure

D3S1358 2(0.2118)(0.1626) = 0.0689 2(0.2118)(0.1626)(1 − 0.05) = 0.0655
D21S11 2(0.1811)(0.2321) = 0.0841 2(0.1811)(0.2321)(1 − 0.05) = 0.0799
D18S51 (0.0918)2 = 0.0084 (0.0918)2 + 0.0918(1 − 0.0918)(0.05) = 0.0126
All loci (0.0689)(0.0841)(0.0084) = 0.000049 (0.0655)(0.0799)(0.0126) = 0.000066

Return to section 2.4 and Problem box 2.1
to determine the expected genotype
frequency and probability of a random
match after compensation for population
structure seen in human populations.
Assume that FST = 0.05 for human
populations. How does the expected
genotype frequency change at individual
loci when there is population structure 
and why? Is the 10-locus genotype still 
rare enough that the chance of a random
match is low?

Problem box 4.3
Account for population 

structure in a DNA-profile 
match probability
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Based on this situation along with its assumptions, it
is possible to predict how gene flow changes allele
frequency at a diallelic locus in the island population
over one generation. Allele frequency in the island
population one generation in the future (call it pt+1

island)
is a function of (i) the allele frequency in the propor-
tion of the island population that are not migrants
and (ii) the allele frequency in the proportion of the
island population that arrives via gene flow from 
the continent population. This can be stated in an
equation as

p t=1
island = p t=0

island(1 − m) + pcontinentm (4.39)

and used to predict the island population allele fre-
quency after one generation of gene flow from the
continent. Expanding the right side of this equation
gives

p t=1
island = p t=0

island − p t=0
islandm + pcontinentm (4.40)

which can be rearranged to an equation that gives
the change in allele frequency in the island popula-
tion over one generation:

p t=1
island − p t=0

island = −m(p t=0
island − pcontinent) (4.41)

in a form readily interpreted in biological terms.

Population structure and gene flow 131

of how often DNA profiles match by chance alone
(National Research Council, Commission on DNA
Forensic Science 1996). Using equations 4.37 and
4.38 to adjust for population structure is necessary
when an appropriate reference allele-frequency data-
base is not available, the ethnicity of the individual 
is not known, or the genotype comes from a person 
of mixed ancestry and therefore the choice of the
appropriate database is not obvious.

The next section explores models of population
structure that can be used to infer the causes of a
given pattern of population structure.

4.5 Models of population structure

• Continent-island, two-island, and infinite island
models.

• Stepping-stone and metapopulation population
models.

• General expectations and conclusions from the
different migration models.

The various models of population structure attempt to
approximate various gene-flow properties likely to be
found in actual populations. However, these models
do not necessarily capture the exact mixture of gene-
flow features in actual populations. It is likely, in fact,
that gene flow within and among actual subpopula-
tions of real organisms is not as easily categorized nor
as invariant as is assumed in these models. Nonethe-
less, these models of population structure are useful
tools to study the general principles that cause 
population differentiation. The utility of these dif-
ferent models of population structure is their ability 
to show basic and somewhat general features of the
impact of rates of gene flow, the size of subpopulations,
and the patterns of genetic connectedness among
subpopulations on the evolution of genotype and allele
frequencies within and among populations.

Continent-island model

Perhaps the simplest model of gene flow is called 
the continent-island model (Fig. 4.12a). It assumes
that there is one very large population where allele
frequency changes very little over short periods of
time and a smaller population that receives migrants
from the large continent population each generation.
The island population experiences the replacement of
a proportion m of its individuals through migration,
with 1 − m of the original individuals remaining
each generation. (We assume that the proportion 

m of island individuals replaced by gene flow each
generation either die or emigrate to the continent
population, which is so large that immigrants do 
not impact allele frequencies.) The continent-island
model assumes no genetic drift, no natural selection,
random mating in both populations, that migrants
are a random sample of genotypes, and no mutation.

··

Continent-island model An idealized model
of population subdivision and gene flow that
assumes one very large population where
allele-frequency changes only slowly over time
(like a continent full of many individuals)
connected by gene flow with a small
population where migrants make up a finite
proportion of the individuals present each
generation. Gene flow from the island to 
the continent occurs but the continent
population is assumed to be large enough 
that immigration has a negligible effect on
allele frequencies.
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Equation 4.41 predicts that the degree of differ-
ence between allele frequencies in the island and
continent populations (p t=0

island − pcontinent) will deter-
mine the direction as well as the rate of change in the
island allele frequency as long as the rate of gene flow
is not zero (m ≠ 0). For example, if pt=0

island > pcontinent then
the island allele frequency should decrease. Likewise,
the island allele frequency is expected to increase if
pt=0

island < pcontinent. To use a numerical example, suppose
that p t=0

island = 0.1 and pcontinent = 0.9. The difference
between the island and continent allele frequencies
is −0.8, so according to equation 4.41 the island
allele frequency should increase for any amount 
of gene flow. If m = 0.1, then the island allele fre-
quency will increase by 0.08 to pt=1

island = 0.18 in one
generation.

The expected change in allele frequency due to a
single generation of gene flow can also be extended
to predict allele frequency in the island population

over an arbitrary number of generations. If there is a
second generation of gene flow, the allele frequency
in the island population is then

p t=2
island = p t=1

island(1 − m) + pcontinentm (4.42)

Substituting p t=1
island as defined in equation 4.41 into

this equation,

p t=2
island = (p t=0

island(1 − m) + pcontinentm)(1 − m) + pcontinentm
(4.43)

and rearranging terms,

p t=2
island = p t=0

island(1 − m)2 + pcontinent(m(1 − m) + m)
(4.44)

to eventually give an expectation for the island 
allele frequency after two generations of gene flow

(a)

1 – m

m

(b)

1 – m

m/(no. of demes – 1)

(c)

1– m

m/2

(d)

1 – m

m/4

Figure 4.12 Classic models of population structure make different assumptions about the paths and rates of gene flow among
subpopulations. (a) In the continent-island model, gene flow is essentially unidirectional from a very large population to a smaller
population. The continent population is so large that allele frequencies are not impacted by emigration or drift whereas allele
frequencies in the small population(s) are strongly influenced by immigration. (b) The island model has equal rates of gene flow
exchanged by all populations regardless of the number of populations or their physical locations. (c, d) Stepping-stone models
restrict gene flow to populations that are either adjacent or nearby in one (c) or two (d) dimensions and thereby incorporate
isolation by distance. Gene-flow models can also incorporate the extinction and re-colonization of subpopulations, a feature
commonly added to stepping-stone model populations. Each panel shows the rate of gene flow indicated by the arrows if m percent
of each population is composed of migrants and 1 − m is composed of non-migrating individuals each generation.
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(p t=2
island) in terms of the initial island allele frequency

(p t=0
island ):

p t=2
island = p t=0

island(1 − m)2 + pcontinent(1 − (1 − m)2)
(4.45)

Notice that the exponents are equal to the number 
of generations that have elapsed. Changing these
exponents to an arbitrary number leads to the allele
frequency in the island population after t generations
have elapsed starting from an initial allele frequency
gives

p t
island = p t=0

island(1 − m)t + pcontinent(1 − (1 − m)t)
(4.46)

which can be rearranged to

p t
island = pcontinent + (p t=0

island − pcontinent)(1 − m)t (4.47)

The rate of allele frequency change in the island 
population can also be seen in this equation. The

proportion of the island population that made up its
initial allele frequency decreases by (1 − m)t, approach-
ing zero as time passes. This means that the island
population is increasingly composed of immigrants
from the continent. Therefore, the allele-frequency
difference between the island and continent decreases
toward zero over time and the allele frequency of 
the island approaches the allele frequency of the 
continent. Figure 4.13 shows how the island allele
frequency approaches the continent allele frequency
over time for a range of initial island allele frequencies.
Notice the smooth approach to the continent allele
frequency: this is a consequence of the fact that the
outcome is completely determined by a constant rate
of gene flow and has no random processes such as
genetic drift to introduce chance variation.

These predictions of the continent-island model
are consistent with intuition. Given that the con-
tinent population has a constant allele frequency
over time, the island population should eventually
reach an identical allele frequency when the two 
are mixed. How long it takes for the two populations

··
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Figure 4.13 Allele frequency in the island population for a diallelic locus under the continent-island model of gene flow. The
island population allele frequencies (pisland) over time are shown for six different initial values (solid lines). The continent population
has an allele frequency of pcontinent = 0.5 shown by the dashed line. In the left-hand panel m = 0.1 and in the right-hand panel 
m = 0.05. Equilibrium is reached more slowly when the rate of gene flow is lower. In contrast, the difference in allele frequencies
between the island and continent does not affect time to equilibrium for a given rate of gene flow. Note that the time scales in the
two graphs differ.
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to converge on the same allele frequency depends 
on the proportion of continent individuals moving 
to the island each generation. In contrast, the differ-
ence in allele frequencies between the island and
continent does not alter the time to equilibrium for 
a given migration rate (see Fig. 4.13). This occurs
since the rate of change in the island allele frequency
is determined by the difference in allele frequencies.
Greater differences lead to greater rates of change
toward the continent allele frequency. Thus, the
continent-island model shows that the process of
gene flow alone is capable of bringing populations to
the same allele frequency. Identical allele frequencies
between or among populations is really a lack of 
population structure or panmixia. So the continent-
island can be thought of as a demonstration that
gene flow acting in the absence of other processes
will eventually result in panmixia.

Two-island model

One simple adjustment to the continent-island model
is to consider the two subpopulations as being equal
in size, removing the assumption that one popula-
tion (the continent) serves as an unchanging source
of migrants. The model then represents gene flow
between two islands which can each exhibit changes
in allele frequency over time. The switch to a two-island
model also allows an independent rate of gene flow
for each subpopulation, m1 and m2. Using reasoning
similar to that for the continent-island model, the
allele frequency in a subpopulation one generation
in the future is the sum of the allele frequency in the
proportion of individuals that do not migrate (1 − m)

plus the allele frequency in the immigrants. Assuming
that m1 = m2 = m, the allele frequency in either sub-
population is

pt=1 = pt=0(1 − m) + Hm (4.48)

where . The allele frequency in the 

migrants is now the average of the two subpopulations
rather than just a constant like the continent allele
frequency. This happens because both subpopula-
tions receive immigrants so the allele frequencies of
each subpopulation are approaching the allele fre-
quency in the total population as gene flow mixes 
the subpopulations. Similar to the result for the con-
tinent-island model, the allele frequency in either of
the two islands is

pt = H + (pt=0 − H)(1 − m)t (4.49)

after t generations have elapsed. Figure 4.14 shows
allele frequencies in the two-island model over time.

When the rates of gene flow are not equal then the 

average allele frequency is , or the  

gene-flow-weighted average of the allele frequencies
in the two subpopulations. When m1 ≠ m2 the equi-
librium allele frequencies will be closer to the initial
allele frequency of the subpopulation with the lower
migration rate. This happens because the subpopula-
tion with the lower migration rate experiences less
immigration and remains closer to its initial allele
frequency, yet it supplies migrants to the other sub-
population. As seen in Fig. 4.14, the time to equilibrium

H =
+
+

p m p m

m m
1 2 2 1

1 2

   
H =

+p p1 2

2

PopGene.S2 contains a module to simulate the continent-island model of gene flow. In PopGene.
S2 click on the Gene Flow and Subdivision menu and then select Continent-Island model of
migration. The simulation window allows you to set allele frequencies in the island and continent,
the rate at which island alleles are replaced by continent alleles (or the migration rate) and the
number of generations to simulate. Enter the parameters of pC = 0.9, pI = 0.1, m = 0.1, and 100
generations to run. Before clicking the OK button, predict the equilibrium allele frequency in the
island population.

Keeping the same values for initial allele frequencies, try a series of values of the migration rate 
to see how it affects time to equilibrium. Click the Clear Screen button to clear the graph window.
Increase the Generations to run to 300. Run the simulation with m = 0.1, m = 0.05, m = 0.001,
and m = 0.001 without clearing the graph window. This should give a plot with four blue lines
(one for each value of the migration rate). What is the relationship between the migration rate 
and time to equilibrium?

Interact box 4.3 Continent-island model of gene flow
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is also longer when the migration rates are asymmet-
ric. Consider the example where migration rates are
unequal (m1 = 0.01 and m2 = 0.1) and the initial allele
frequencies in the two subpopulations are p1 = 0.9
and p2 = 0.1. The weighted average allele frequency 

is then . This is 

also the expected allele frequency in both subpopula-
tions at equilibrium.

The main conclusion of the two-island model is
that the equilibrium allele frequencies in the two
subpopulations are the average allele frequency of
the total population when the two migration rates
are equal. This conclusion holds when there are a
larger number of subpopulations, a result that will
be useful to remember when considering the process
of gene flow in an island model in combination with
another process such as genetic drift.

Infinite island model

One of the most widely used models of the process of
gene flow among a set of subpopulations is Wright’s

  
H = + =

( . )( . )
.

( . )( . )
.

.
0 9 0 1

0 11
0 1 0 01

0 11
0 827

(1931, 1951) infinite island model. Gene flow takes
the form of all subpopulations being equally likely of
exchanging migrants with any other subpopulation,
equivalent to a complete absence of isolation by dis-
tance. In addition, the size and migration rate of each
subpopulation is most commonly assumed to be
equal. The total population is made up of an infinite
set of subpopulations each of size Ne with m percent
of each subpopulation’s gene copies exchanged at
random with the rest of the population every genera-
tion (see Fig. 4.12b). Using this model it is possible 
to approximately relate the degree of differentiation
among subpopulations to a function of the effective
population size and the amount of migration.
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Figure 4.14 Allele frequency in the two-island model of gene flow for a diallelic locus. Dashed lines in each panel highlight 
gene-flow-weighted average or equilibrium allele frequencies. Starting from allele frequencies of 0.9 and 0.2 and with equal 
rates of gene flow (m = 0.1), the subpopulations approach an equilibrium allele frequency of H = (0.9 + 0.2)/2 = 0.55 (left panel).
With initial allele frequencies of 0.9 and 0.2 but asymmetric rates of gene flow (m1 = 0.1 and m2 = 0.05), the subpopulations
approach an equilibrium allele frequency of H = (0.9 × 0.05 + 0.2 × 0.1)/0.15 = 0.433 (right panel). Equilibrium is reached more
slowly in the case of asymmetric rates of gene flow on the right because the average rate of gene flow is lower. Note that the time
scales in the two graphs differ.

Infinite island model An idealized model 
of population subdivision and gene flow 
that assumes an infinite number of identical
subpopulations (demes) and that each
subpopulation experiences an equal probability
of gene flow from all other subpopulations.
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Let’s first consider what will happen in the infinite
island model when there is no gene flow among the
subpopulations (m = 0). Since each subpopulation 
is a finite island, allele frequencies will vary from one
generation to the next simply due to genetic drift.
The expected value of the fixation index for sub-
populations compared to the total population is:

(4.50)

where t is time in generations and Ne is the effective
size of a single subpopulation (Wright 1943a). In 

equation 4.50 the term gets smaller as time 
increases. This serves to approximate what happens
to FST as t increases: the average expected hetero-
zygosity of subpopulations (HS) decreases and even-
tually reaches zero, with the consequence that FST
reaches 1. This results from the process of genetic
drift, causing all subpopulations to eventually reach
fixation or loss. Note, however, that the total popula-
tion heterozygosity (HT) is not impacted by genetic
drift since each subpopulation has equal chances 
of fixation or loss and there are an infinite number of
subpopulations.

Next we will move on to consider what occurs 
in the infinite island model when both gene flow 
and genetic drift are acting at the same time. In
Chapter 3, the fixation index:

(4.51)F
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was developed as a measure of the probability that
two alleles in a genotype are autozygous or ident-
ical by descent in a single finite population. We can
extend this equation to include the influence of
migration on autozygosity when there are numerous
subpopulations that experience limited gene flow
each generation. The goal is to develop an expression
for the fixation index that accounts for both popula-
tion size and migration. Finite population size causes
autozygosity to increase over time in individual 
subpopulations. Migration counteracts this trend,
bringing in alleles from other subpopulations that
are not identical by descent, thereby decreasing 
the autozygosity. Therefore, in general in subdivided
populations, the net autozygosity is the balance of
the processes of genetic drift and migration.

When there is gene flow, two modifications need
to be made to the probabilities of autozygosity given
in the two terms of equation 4.51. The first modifica-

tion involves the probability of autozygosity or . 

With migration, some proportion m of the alleles in a
subpopulation arrived via gene flow from other sub-
populations while 1 − m of the alleles are contributed
by individuals and gametes that did not leave their
subpopulation. Therefore, there is some chance that
one or both of a pair of alleles was introduced to a
subpopulation by migration. A randomly sampled pair
of alleles in a subpopulation with zero, one, or two
alleles due to gene flow each generation have prob-
abilities of (1 − m)2, 2m(1 − m), and m2, respectively.
Only the (1 − m)2 proportion of genotypes with no
alleles introduced by gene flow can contribute to the
pool of alleles that may become identical by descent

1
2Ne

The two-island model of gene flow can be simulated in PopGene.S2. Launch PopGene.S2 and select
Island-island model of migration from the Gene Flow and Subdivision menu. The simulation
window has entry fields to set initial allele frequencies in each island subpopulation, the rate at
which each island receives immigrants from the other island, and the number of generations to run
the simulation. Enter parameters of p1 = 0.9, p2 = 0.1, m1 = 0.1, m2 = 0.1, and 100 generations to
run. Before clicking the OK button, predict the equilibrium allele frequency in each subpopulation.

A major conclusion from the two-island model is that the allele frequencies in each subpopulation
approach the average allele frequency in the total population. Confirm that equal migration 
rates for both subpopulations give an equilibrium allele frequency of the average of the initial 
allele frequencies (for example, try p1 = 0.6, p2 = 0.4, m1 = 0.1, and m2 = 0.1, and then 
p1 = 0.99, p2 = 0.01, m1 = 0.1, m2 = 0.1). Also simulate cases when the migration rates are not
equal (such as p1 = 0.9, p2 = 0.1, m1 = 0.01, m2 = 0.1) and use the the gene-flow-weighted
average of the allele frequencies to predict allele frequencies at equilibrium.

Interact box 4.4 Two-island model of gene flow

9781405132770_4_004.qxd  1/16/09  5:39 PM  Page 136



Population structure and gene flow 137

due to finite sampling. We can also see this by noting
that 2m genotypes heterozygous and m2 genotypes
homozygous for alleles entering the subpopulation
by gene flow are expected each generation. Together,
these two classes of genotypes bearing alleles that
entered the population by gene flow reduce the auto-
zygosity by a factor of 1 − 2m − m2 = (1 − m)2. This 

gives as the autozygosity adjusted for 

gene flow. Using the same reasoning, the chances
that a randomly sampled pair of alleles in a sub-
population are autozygous due to past inbreeding 

(the term in equation 4.51) also needs 

to be adjusted by a factor of (1 − m)2.
Bringing these two changes to the autozygosity

together to account for gene flow leads to:

(4.52)

As seen by examining this equation, when m is be-
tween zero and one, the effect of gene flow is to reduce
the expected value of the fixation index by reducing
the probability of identity both in the present (time t)
and in the past (time t − 1). This makes intuitive
sense: if gene flow introduces an allele copy into a
subpopulation, it has not been present for sampling
events between time t − 1 and time t. Therefore an
allele copy introduced by gene flow has not yet had
the opportunity to become identical by descent at
time t and it cannot contribute to the frequency of
autozygous genotypes gauged by the fixation index.

Equation 4.52 is really an expression for the bal-
ance of gene flow and genetic drift among multiple
subpopulations so F is identical to FST. We can make
this equation more general by using it to get an
expected value of the fixation index among popula-
tions (FST) in the infinite island model when allele 
frequency differentiation among subpopulations by
genetic drift and allele frequency homogenization
among subpopulations by gene flow, reach a net 
balance. With the assumption that the migration
rate is small and much, much less than the effective
population size (see Math box 4.1), an approximation
for the expected amount of fixation among subpopula-
tions at equilibrium in an infinite island population is:

(4.53)

as shown by Wright (1931, 1951).
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Based on these assumptions, Fig. 4.15 shows the
expected levels of genetic differentiation among
infinitely many island model subpopulations for 
different levels of the product of the effective popula-
tion size of each deme and the migration rate among
demes (Nem). When Nem – sometimes called the
effective migration rate – is large, very little differen-
tiation among demes is expected for a diploid locus
since the combination of the effective size of demes
and the migration rate is large enough to overcome
the genetic differentiation caused by genetic drift. As
the effective migration rate declines from a relatively
large value such as Nem = 10, genetic differentia-
tion among demes increases slowly at first and then
rapidly once the effective migration rate is less than
about 1. An effective migration rate of one individual 

every other generation is often cited 

as sufficient to prevent substantial genetic differen-
tiation at a diploid locus in the infinite island model
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Figure 4.15 Expected levels of fixation among
subpopulations depend on the product of the effective
population size (Ne) and the amount of gene flow (m) in the
infinite island model of population structure. Each line
represents expected FST for loci with different probabilities 

of autozogosity (from bottom to top , , and ). 

Marked divergence of allele frequencies among
subpopulations (FST ≥ 0.2) are expected when Nem is 
below 1 for biparentally inherited nuclear loci with an 

autozygosity of . Y-chromosome or mitochondrial 

loci (autozygosity = ) are examples where marked 

divergence among populations is expected at higher 
levels of Nem.
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since this rate is enough to balance the expected rate 

of loss of heterozygosity by genetic drift in 

an isolated population (see section 3.4).
The expected relationship between the fixation

index and the effective number of migrants relies on
the infinite island model for two reasons. First, in the
island model all subpopulations have an identical
rate of migration from all other populations so there
is only a single migration rate (m) that applies to all
subpopulations. Second, since there are an infinite
number of subpopulations the entire ensemble 
population will never reach fixation or loss due to
genetic drift. In an island model of gene flow where
the number of subpopulations is finite, called the
finite island model, the entire set of populations
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will eventually reach fixation or loss and FST will
eventually decline to zero since the entire set of sub-
populations will eventually reach fixation or loss due
to genetic drift (Nei et al. 1977; Varvio et al. 1986).
The expected amount of genetic differentiation in the
finite island model is

(4.62)

where GST is an estimator of FST for loci with any
number of alleles (Nei 1973) and n is the number of
subpopulations (Latter 1973; Crow & Aoki 1984;
Takahata & Nei 1984). This version of GST corrects
the expected amount of differentiation among sub-
populations for a finite number of subpopulations. 
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At equilibrium when the differentiating effects
of genetic drift and the homogenizing effects of
gene flow have come into balance, the value
of FST does not change from one generation 
to the next so that FST(t) = FST(t−1) = FST(equilibrium).
If a population is at equilibrium then we can
set both Ft and Ft−1 equal to Feq. Making this
substitution in equation 4.52:

(4.54)

This equation can be solved for Feq most
transparently by restating it as

Feq = ac + bcFeq (4.55)

where a = , b = 1 − , and c = (1 − m)2. 

Then using algebraic manipulation

Feq − bcFeq = ac (4.56)

Feq(1 − bc) = ac (4.57)

(4.58)

Substituting the full expressions for a, b, and c
gives

  
F

ac
bceq =

−1

1
2Ne

1
2Ne

F
N

m
N

F meq
e e

eq= − + −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −

1
2

1 1
1

2
12 2( ) ( )

(4.59)

which when multiplied by gives the  

simpler equation

(4.60)

The terms in the numerator and denominator
can be multiplied out to give an expression
that is fairly complex (feel free to do the
expansion if you are curious). However, if 
we again invoke the assumption that the
migration rate is small and much, much less
than the effective population size, then terms
in the expansion of equation 4.60 containing
m or powers of m can be ignored since they
are very small (e.g. if m = 0.01 then 2m = 0.02
and m2 = 0.0001). This then leads to the
approximation for the expected value of the
fixation index
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Math Box 4.1 The expected value of FST in the infinite island model
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The correction term is at a maximum of  

4 with two subpopulations and approaches one as 
n gets large. For example, when Nem = 0.1 and 
n = 10, the expected value of GST is about 94% of 
that expected for an infinite number of demes. This
implies that a given level of gene flow is more effect-
ive at homogenizing allele frequencies among fewer
subpopulations than among a very large number 
of subpopulations. For n greater than about 50 the
adjustment for a finite number of demes makes 
little difference and the finite number of subpopula-
tions behave essentially as an infinite number of 
subpopulations.

Given that the infinite island models leads to an
expected level of genetic differentiation among demes
for some level of the effective migration rate, it is 
natural to reverse the relationship:

(4.63)

to get an expected effective migration rate given an
amount of genetic differentiation among subpopula-
tions in the infinite island model. This equation
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again reinforces that the level of allele frequency 
differentiation among subpopulations (FST) is a func-
tion of the balance between the processes of gene
flow tending to homogenize allele frequencies among

··

Use PopGene.S2 to simulate the island model of gene flow among a large (but finite) number of
demes. Launch the program, click on the Gene Flow and Subdivision menu, and select the 
F-Statistics module. Run simulations with the following values for the effective population size, 
the migration rate, and the initial allele frequency.

Ne m Initial allele frequency p
10 0 0.5
10 0.001 0.5
10 0.1 0.5
50 0 0.5
50 0.001 0.5
50 0.1 0.5
100 0 0.5
100 0.001 0.5
100 0.1 0.5

For each simulation run, examine the allele frequencies over time and record the different
hierarchical heterozygosity measures (HI, HS, and HT) and fixation indices (FIS, FST, and FIT).

What is happening when the allele frequency lines sometimes hit the top or bottom axis (go 
to fixation or loss) and then reappear? What are the units of the migration values you entered in 
the model parameters box? Why does increasing m maintain lower FST and FIT values? How does
migration counteract genetic drift? Is migration always able to do this?

Interact box 4.5 Finite island model of gene flow

What is the expected value of FST at
equilibrium in the island model for 
Y-chromosome loci or mitochondrial and
chloroplast (organelle) loci? A hint at how
to approach the problem is to think about
the autozygosity of loci other than diploid
autosomes and then make adjustments 
to equation 4.52 that result in different
versions of equation 4.53. What level of
fixation among populations (FST) would be
expected for these types of loci compared
to biparentally inherited diploid loci? What
causes the difference in levels of FST for the
different types of loci?

Problem box 4.4
Expected levels of FST for 

Y-chromosome and organelle loci
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subpopulations and genetic drift causing subpopula-
tions to diverge as they individually approach fixation
or loss (Nem) in the context of the infinite island
model. This relationship has been used in literally
thousands of studies to estimate from empirical
estimates of JST in wild populations like the examples
in Table 4.9. This equation (or expectations like it
but based on different population models) is the 
basis of so-called indirect estimates of the number of
effective migrants ( ) that cause a given pattern
of allele frequency differentiation among popula-
tions (JST).

It is important to recognize that employing equa-
tion 4.63 to estimate is really using the infinite
island model as an ideal standard rather than actu-
ally estimating the long-term effective number of
migrants for a specific population. Because of this
dependence on the infinite island model, using JST
to obtain an estimate of should be interpreted as
“the observed level of population differentiation (JST)

  
N me

  
N me

  
N me

  
N me

would be equivalent to the differentiation expected 
in an infinite island model with a given number of
effective migrants (Nem).” Such a comparison of actual
and ideal populations is identical to that used in the
definition of effective population size (see section 3.3).
Despite this dependence on a highly idealized model,
Slatkin and Barton (1989) concluded that using
observed levels of population differentiation to estim-
ate under island model assumptions should be
roughly accurate, even when the actual population
structure deviates from the island model. In contrast,
Whitlock and McCauley (1999) review the many
ways in which actual populations will deviate from
the infinite island model and the assumptions used 
to approximate the relationship between JST and
Nem, generally invalidating the indiscriminate use 
of equation 4.63.

The estimate of the effective number of migrants
or obtained through the island model is referred
to as an indirect estimate of the rate of gene flow. The

  
N me

  
N me

Table 4.9 Estimates of the fixation index among subpopulations (JST) for diverse species based on molecular
genetic marker data for nuclear loci. Different estimators were employed depending on the type of 
genetic marker and study design. Each JST was used to determine the effective number of migrants ( ) 
that would produce an identical level of population structure under the assumptions of the infinite island
model according to equation 4.63.

Species ;ST Reference

Amphibians
Alytes muletansis (Mallorcan midwife toad) 0.12–0.53 1.8–0.2 Kraaijeveld-Smit et al. 2005

Birds
Gallus gallus (broiler chicken breed) 0.19 1.0 Emara et al. 2002

Mammals
Capreolus capreolus (roe deer) 0.097–0.146 2.2–1.4 Wang and Schreiber 2001
Homo sapiens (human) 0.03–0.05 7.8–4.6 Rosenberg et al. 2002
Microtus arvalis (common vole) 0.17 1.2 Heckel et al. 2005

Plants
Arabidopsis thaliana (mouse-ear cress) 0.643 0.1 Bergelson et al. 1998
Oryza officinalis (wild rice) 0.44 0.3 Gao 2005
Phlox drummondii (annual phlox) 0.17 1.2 Levin 1977
Prunus armeniaca (apricot) 0.32 0.5 Romero et al. 2003

Fish
Morone saxatilis (striped bass) 0.002 11.8 Brown et al. 2005
Sparisoma viride (stoplight parrotfish) 0.019 12.4 Geertjes et al. 2004

Insects
Drosophila melanogaster (fruit fly) 0.112 2.0 Singh and Rhomberg 1987
Glossina pallidipes (tsetse fly) 0.18 1.1 Ouma et al. 2005
Heliconius charithonia (butterfly) 0.003 79.8 Kronforst and Flemming 2001

Corals
Seriatopora hystrix 0.089–0.136 2.6–1.6 Maier et al. 200

  N me

  N me
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term indirect is used because the observed pattern of
allele frequency differences among subpopulations 
is used in a model (containing many assumptions) 
to produce a parameter estimate. This is in contrast
to a direct estimate of gene flow from a method like
parentage analysis (although section 4.2 suggests
direct methods also depend on assumptions). Such
indirect estimates of gene flow have the effect of 
averaging across all of the past events that lead up
the current pattern of allele frequency differentiation
among subpopulations. In contrast, direct estimates
apply only to those periods of time when parentage
or movement is observed. Slatkin (1987a) considers
an example where mark–recapture methods suggest
movement of a butterfly among different geographic
locations is extremely limited, yet a multilocus estimate
of JST suggests almost no allele frequency differen-
tiation among the butterfly populations. One possible
explanation is that gene flow was extensive in the past
and has very recently decreased, but not enough time
has elapsed to witness increased population differ-
entiation. Another possibility is that the infrequent
gene-flow events required to prevent differentiation are
not well measured by the mark–recapture technique.

Stepping-stone and metapopulation models

Although the island model assumes that the amount
of gene flow among all subpopulations is identical, 
a population organized into discrete subpopulations 
or demes can also experience isolation by distance.
The stepping-stone model, inspired by the flat stones
that form a walking path in a Japanese garden,
approximates the phenomenon of isolation by dis-
tance among discrete subpopulations by allowing
most or all gene flow to be only between neighbor-
ing subpopulations (Kimura 1953; see Fig. 4.12).
This gene-flow pattern produces an allele-frequency
clumping effect among the subpopulations qualitat-
ively very similar to that seen in the first section of
the chapter for isolation by distance in a continuous
population of individuals (Fig. 4.3). A classic analysis
of the stepping-stone model was carried out by Kimura
and Weiss (1964), who showed that the correlation
between the states of two alleles sampled at random
from two subpopulations depends on (i) the distance
between the subpopulations and (ii) the ratio of gene
flow between neighboring colonies and long-distance
gene flow where alleles are exchanged among sub-
populations at random distances. As expected for
isolation by distance, the correlation between allelic
states decreases with increasing distance between

subpopulations. Interestingly, the correlation between
allelic states drops off more rapidly with distance when
subpopulations occupy two dimensions than when
they occupy one dimension. In a two-dimensional
stepping-stone model, FST is expected to grow like the
logarithm of the number of colonies for fixed values
of gene-flow parameters (see Cox & Durrett 2002;
Slatkin & Barton 1989). Another way of saying this
is that increasing levels of gene flow are required to
maintain the same level of population structure as
the number of colonies increases.

A logical extension of the stepping-stone model 
is the metapopulation model. Metapopulation
models approximate the continual extinction and
recolonization seen in many natural populations in
addition to the process of gene flow. These models are
motivated by organisms like pioneer plants and trees
that colonize and grow in newly created clearings
but eventually disappear from a patch as succession
introduces new species and changes the environ-
mental and competitive conditions. Even though
each subpopulation of a pioneer species eventu-
ally goes extinct, there are other subpopulations in 
existence at any given time and new subpopulations
are continuously being formed by colonization. A
metapopulation is then just a collection of a number
of smaller subpopulations or habitat patches (see
various definitions of metapopulation and related
concepts in Hanski & Simberloff 1997), conceptu-
ally similar to the stepping-stone model. However, 
in metapopulations the individual subpopulations
have some probability of going extinct and these
unoccupied locations that become available can also
be colonized to found a new subpopulation.

Gene flow in metapopulation models is of two
types. First, there is gene flow among the existing
subpopulations like that in the continent-island or
island models. Second, there is the gene flow that
occurs when an open patch is colonized to replace 
a subpopulation that went extinct. The pattern of
gene flow that takes place during colonization may
take different forms (Slatkin 1977). The first form 
is where colonists are sampled at random from all
subpopulations, called migrant-pool gene flow. The
second form is where colonists are sampled at 
random from only a single random subpopulation,
called propagule-pool gene flow. Migrant-pool gene
flow is identical to the pattern of gene flow in the
island model where migrants represent the average
allele frequencies of all subpopulations. In contrast,
propagule-pool gene flow can introduce a genetic
bottleneck when a new subpopulation is founded

··
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because the colonists are only drawn from a single
existing subpopulation.

The impact of the form of colonization on hetero-
zygosity in newly established subpopulations within
a metapopulation is described by

(4.64)

where FST
colony is the expected allele frequency differ-

entiation in newly established subpopulations, k is
the number of diploid colonists, FST is the degree 
of allele frequency differentiation among the exist-
ing subpopulations, and φ is the probability that 
the two alleles in a newly established population
come from the same or different subpopulations
(Whitlock & McCauley 1990). Colonization corres-
ponds to the propagule pool for φ = 1 (the chance 
of one that two founding alleles come from the 
same subpopulation) and the migrant pool for φ = 0
(no chance that two founding alleles come from 
the same subpopulation so all alleles must come 
from different subpopulations). In the equation, all
newly founded subpopulations have a chance of
being established with alleles that are identical by 
descent due to sampling from the total population, 

hence the term (see equation 3.47). For those 

subpopulations that are founded by individuals from
a propagule pool (or φ = 1), the chances of alleles
being identical by descent and homozygous is greater
to the degree that existing subpopulations are differ-
entiated in their allele frequencies. With colonization
from the propagule pool, newly founded populations
inherit the average level of homozygosity of existing
subpopulations plus some additional homozygosity
due to sampling from a finite population. With colon-
ization from the migrant pool (φ = 0), founding alleles
are always drawn from a different subpopulation, so
the heterozygosity is the same as the total population
heterozygosity (2HI) except for sampling error from 
a finite number of founders.

The general conclusion is that extinction and
recolonization can be an additional source of gene
flow or an additional restriction on gene flow in meta-
populations (Maruyama & Kimura 1980; Wade &
McCauley 1988). Propagule pool colonization tends
to increase overall population differentiation for 
all values of the number of diploid colonists (k). In
contrast, the change in overall differentiation with
the migrant model depends on the rate of gene flow
among existing subpopulations. When the number
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of diploid colonists (k) exceeds twice the effective
number of migrants (2Nem) then differentiation tends
to decrease since colonization accomplishes additional
mixing of alleles. Using newly established popula-
tions of the plant Silene alba, McCauley et al. (1995)
estimated φ between 0.73 and 0.89, suggesting 
that new populations do experience some additional 
sampling during their formation that increases 
population differentiation.

4.6 The impact of population structure on
genealogical branching

• Bugs in many boxes.
• Event times with population subdivision.
• Sample configurations.
• Mean and variance of waiting time in two demes.

In structured populations with gene flow, lineages
can move from deme to deme. In a retrospective view,
two lineages sampled in the present can experience
either coalescence or migration going back in time
(Fig. 4.16). Determining the mean and variance of
time to coalescence in structured populations will
show the overall impact of population structure on
genealogical trees. In particular, we would like to know
whether population structure will alter the average
and variance of the height of genealogical trees 
in comparison with the basic coalescent process in 
a single panmictic population. We will again utilize
the properties of the exponential distribution to
approximate the time to an event (see section 3.6).

Let’s begin by thinking about the coalescent pro-
cess when there is gene flow among several demes in
terms of the bugs-in-a-box metaphor used to describe
the basic coalescent process. With population sub-
division the bugs are located in multiple boxes with
each box representing a deme. Bugs move about
within a box at random and eat each other, reducing
their numbers. There is also the possibility of migra-
tion where a bug is chosen at random and moved to
another box. If migration events are very rare, then
the individual boxes have a good chance of being
reduced to a single bug before a migrant bug enters or
leaves the box. It will then take a long time for enough
migration events to happen such that the entire group
of boxes is reduced to a single bug. When migration
events are common, migrant bugs move among 
the boxes frequently and the boxes are effectively
interconnected. Therefore, there should be little or
no time spent waiting for migration events as the
bugs in all the boxes eat their way to a single bug.
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Combining coalescent and migration events

Describing genealogies with gene flow can be accom-
plished by adding another type of possible event that
can occur working from the present to a time in the
past where all lineages find their most recent common
ancestor. We will assume that both coalescent and
migration events are rare (or that Ne is large and 
the rate of migration is small), so that when an event
does occur going back in time it is either coalescence
or migration. In other words, we will assume that
migration and coalescence events are mutually
exclusive. The fact that events are mutually exclusive
is an important assumption. When two independ-
ent processes are operating, the coalescence model
becomes one of following lineages back in time and
waiting for an event to happen. When events are inde-
pendent but mutually exclusive, the probability of
each event is added over all possible events to obtain
the total chance that an event occurs. For example,

the chance that a diploid genotype for a diallelic locus
is a heterozygote under random mating is 2pq. This 
is the sum of the independent chance of sampling Aa
and the chance of sampling aA since a heterozygote
results from one of the two ways of sampling of 
two different alleles (the probability of a heterozygote
under random mating is not (pq)2, which is the chance
of sampling Aa and aA simultaneously). Therefore, if
we can find an exponential approximation for the
chance that a lineage migrates to a different deme each
generation, we can just add this to the exponential
approximation for the chance of coalescence.

In a subdivided population, each generation there
is the chance that a lineage in one deme migrates 
to some other deme. The rate of migration, m, is the
chance that a lineage migrates each generation. The
chance that a lineage does not migrate is therefore 
1 − m each generation. The chance that t genera-
tions pass before a migration event occurs is then the
product of the chances of t − 1 generations of no
migration followed by a migration, or

P(Tmigration = t) = (1 − m)t−1m (4.65)

This is in an identical form to the chances that a 
coalescent event occurs after t generations given 
in Chapter 3. Like the probability of coalescence, 
the probability of a migration through time is a 
geometric series that can be approximated by the
exponential distribution (see Math box 3.2). To obtain
the exponent of e (or the intensity of the migration
process), we need to determine the rate at which
migration is expected to occur in a population.

Now consider migration events in the context of
an island model of gene flow where there are d
demes and each deme contains 2Ne lineages. The
total population size is the sum of the sizes of all
demes or 2Ned lineages. When time is measured on a 

continuous scale with , one unit of time is 

equivalent to 2Ned generations. If 2Ned generations
elapse and m is the chance of migration per genera-
tion, then 2Nedm migration events are expected in
the total population during one unit of continuous
time. If we define M = 4Nem, then M/2 is equivalent
to 2Nem or the chance that a lineage in one deme
migrates (the per deme migration rate). The chance
of migration is independent in all of the demes, so 
the expected number of migration events in the 
total population is the sum of the per deme chances 

of migration or . This leads to the exponential 
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Deme 1 Deme 2 Present

Past

Coalescence

Coalescence

Coalescence

Coalescence

Coalescence
Migration

Migration

Migration

MRCA

Time
scale

Type of
event

Figure 4.16 A hypothetical genealogy for two demes.
Initially there are three lineages in each deme. The very first
event going back in time is the migration of a lineage from
deme one into deme two. Immediately after this migration
occurs, the chance of coalescence in deme two increases 
since there are more lineages and the chance of coalescence
in deme one decreases since there are fewer lineages.
Continuing back in time, a coalescence event occurs in 
deme one and then a coalescence event occurs in deme two.
The lineage that migrated out of deme one migrates back 
into deme one by chance. Coalescence to the single most
recent common ancestor (MRCA) of all lineages cannot 
occur until the final two lineages are brought together in a
single deme by migration.
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approximation for the chances that a single lineage
in any of the demes migrates at generation t:

(4.66)

on a continuous time scale. When there is more than
one lineage, each lineage has an independent chance
of migrating but only one lineage will migrate. So we 

add the chance of migration for each lineage 
over all k lineages to obtain the total chance of
migration:

(4.67)

for k ancestral lineages of the d demes. The chance
that one of k lineages migrates at or before a certain
time can then be approximated with the cumulative
exponential distribution:

(4.68)

in exactly the same fashion that times to coalescent
events are approximated.

When two independent processes are operating,
the genealogical model becomes one of following 
lineages back in time and waiting for an event to
happen. The possible events in this case are migration
or coalescence, so the total chance of any event is the
sum of the independent probabilities of each type 
of mutually exclusive event. Since lineages cannot 
coalesce unless they are in the same deme, the chance
of a coalescent event is

(4.69)

when there are ki ancestral lineages in deme i, a
slightly modified version of the basic coalescent model
that takes into account the d demes and time scaling
by 2Ned. (Note that when d = 1 the expected time to 

coalescence reduces to on a continuous time 

scale.) The total chance of an event occurring when
going back in time (increasing t) is then

(4.70)

where the exponent is the sum of the intensities of
migration and coalescence. In the simplest case of
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two demes (d = 2) with k1 and k2 ancestral lineages
in each deme, equation 4.70 reduces to

(4.71)

(the example given in Hudson 1990) where time is
scaled in units of the total population size 2Ned or the
sum of number of lineages in all of the demes.

When an event does occur at a time given by 
this exponential distribution in equation 4.70, it 
is then necessary to decide whether the event is a 
coalescence or a migration. The total chance that
the event is either a migration or a coalescence 

event is . Therefore the chance 

the event is a migration is

(4.72)

whereas the chances that the event is a coalescence is

(4.73)

When the event is a coalescence, the deme is picked
at random given that demes with more ancestral 
lineages have a greater chance of experiencing a
coalescent event (the chance that deme j experiences  

the coalescence is ).

Figure 4.19 shows two realizations of the com-
bined coalescence and migration process when the
migration rate is either relatively high or relatively
low. The times to each event are determined by the
exponential distributions specified by equation 4.70.

The average length of a genealogy with
migration

Before determining the average time to coalescence
for a genealogy in a structured population, it is first
necessary to introduce some notation that is useful
to describe the different possible locations of lineages
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within and among demes. We can define a list (or row
vector) that tracks the way lineages are partitioned
among all demes as

d = (d1,d2,d3, . . . ,dn) (4.74)

where each di is the number of demes with i lineages
and n is the total number of demes. The total num-
ber of lineages is then the product of the number of
demes containing i lineages and the number of line-
ages i summed over all possible numbers of lineages 

per deme or . With a sample of two lineages 

taken from a total population composed of two demes,
there are two possible ways the lineages could be
sampled. The two lineages could either be sampled
from different demes to give d = (2,0) or sampled
from a single deme to give d = (0,1). This notation
specifies what is called the sample configuration
of a number of lineages drawn from some num-
ber of demes. Figure 4.18 gives several examples of 
sample configurations for two or three demes. With
coalescence to a single ancestral lineage the sample
configuration becomes (1). This sample configura-
tion notation is useful because the mean and variance
of coalescence times in a structured population
depends on whether lineages are located in the same
or different demes.

idi
i

n

=
∑

1

··

A coalescent genealogy that includes the possibility of migration among demes can be constructed
using the cumulative exponential distribution specified by equation 4.70 to determine the waiting
time to an event. Once the waiting time is obtained, then determining whether each event is a
migration or a coalescence can be accomplished with equations 4.72 or 4.73. If the event is
coalescence, a random pair of lineages in a random deme is picked to coalesce and the number of
ancestral lineages in that deme (ki) is reduced by 1. If the event is migration, a random lineage is
picked and moved into a random deme. It is possible to construct a coalescent genealogy that
includes the possibility of mutations occurring along each branch.

A natural way to see the results of these steps is to simulate genealogies in a simple case with 
two demes. Using the link on the text web page, go to the BiRC Animators web page and click 
on the Migration link under the heading Hudson Animator. This will take you to a web page
containing a Java simulation. There are three parameters that can be set in the simulation: n: sets
the number of lineages sampled in both demes in the present time (or k1 + k2 in equation 4.71),
while M1: and M2: set the expected number of migrants in deme 1 and deme 2 each time period
(or M in equations 4.68 and 4.70). Pressing Recalc will calculate the waiting times for a new
genealogy. The animation process can be controlled with the buttons below the figure. Waiting
times can be seen in at the lower right when the pointer is placed over a circle in the tree. Click on
the Trees tab at the top left to see how population structure impacts the genealogical tree itself.

Initially set n to 10 and both M1 and M2 to the low migration rate of 0.1. Simulate 10
independent trees, in each case recording the number of migration events (the light blue circles 
in the animation) and the total waiting time until coalescence to a single most recent common
ancestor. Increase both M1 and M2 to a higher migration rate of 1.0 and again simulate 10
independent trees and record the number of migration events and total waiting time to an MRCA.
How do the genealogies compare on average when migration rates are lower or higher?

Interact box 4.6 Coalescent events in two demes

(b)

(0,1) (2,0)

(3,0,0) (1,1,0) (0,0,1)

(a)

Figure 4.17 Sample configurations for two lineages and
two demes (a) and three lineages and three demes (b).
Lineages are represented by the circles and the separation
between demes is represented by a dotted vertical line. Only
one possibility is given for each sample configuration even
though some configurations can occur in multiple ways. For
example, (0,1) can occur when both lineages are in the left-
hand deme or when both lineages are in the right-hand deme.
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With that background on sample configurations,
let’s move on to derive the average coalescence time
and expected total length of a genealogy in a struc-
tured population. We will focus on the simplest case
of two lineages in the context of two demes. We need
to determine the chances that two lineages in either
of the two possible sample configurations ((2,0) or
(0,1)) experience coalescence. Figure 4.18 shows
these possible transitions between sample configura-
tion states. As in the basic coalescent process, the
chance of coalescence is the product of one over the
population size and the number of unique pairs of
lineages that can coalesce. If each deme contains 

2Ne lineages the probability of coalescence is for 

two lineages in one deme. However, two lineages
cannot coalesce unless they are together in the same
deme and restricted gene flow will make this less
likely to happen.

For two lineages that are together in the same
deme, or in sample configuration (0,1), there are two
possible events that eventually lead to coalescence.
The first possible event is simply that the two lineages

1
2Ne

(2,0)
p = 2m(1 – m)

(0,1)

OR

p = m(1 – m) p = (1 – m)m

(b)

OR

p = m(1/(d – 1)) + p = m(1/(d – 1))
(0,1)

p = 2m(1/(d – 1))
(2,0)

(c)

(0,1) (1)
p = 1/(2Ne)

(a)

+

Figure 4.18 The possible events that can occur when two
lineages are in the same deme (0,1) or when two lineages are
in two different demes (2,0) along with their probabilities of
occurring. The separation between demes is represented by 
a dotted vertical line. Two lineages can coalesce only when
they are in the same deme. The probability of coalescence (a),
migration of one lineage such that the two lineages are in
different demes (b), and migration that places both lineages 
in the same deme (c) determine the overall chances that two
lineages coalesce. The chance that both lineages migrate
(with probability m2) is not shown in (b) and applies when
there are three or more demes.

coalesce with probability . The second possible 

event is that one or both of the two lineages migr-
ates into another deme before they can coalesce. If
the proportion of migrants per generation in any
deme is m then the chance that a single lineage is 
an emigrant is m and the chance that it is not an 
emigrant is 1 − m. The chance that one lineage
migrates and the other lineage does not is m(1 − m)
+ (1 − m)m = 2m(1 − m). The chance that both line-
ages migrate is m2. The total chance that one or both
lineages migrate is then 2m(1 − m) + m2, which is
approximately 2m if m is small and m2 terms can be
ignored. For two lineages in the same deme or (0,1),
the total chance that any event occurs in the previ-
ous generation, either coalescence or migration, is 

therefore 2m + .

For two lineages that are in different demes, or 
in sample configuration (2,0), the total chance that
one lineage migrates is 2m, following the same logic
as when two lineages are in a single deme. However,
to transition from (2,0) to (0,1), the migration event
is not into any random deme but must be into the
one other deme where the second lineage is found.
The chance that migration into a specific deme occurs

is where d is the number of demes. The total 

probability that two lineages initially in separate demes
end up in a single deme with the possibility that they 

can later coalesce is therefore .

To determine the average time to coalescence in
two demes we can use the fact that the average time
to an event is one over the probability of each event
in a process where waiting times are exponentially
distributed. Let Z(0,1) represent the average time until
coalescence for two lineages in the same deme and
Z(2,0) the average time to coalescence for two line-
ages in different demes. For two lineages in the same
deme, the average time to coalescence is the average
time to coalescence plus the average time spent in
two different demes if there is a migration event. The
average time either of coalescence or migration is 

one over the total chance of an event, or . 

When an event occurs, there is a chance that it  

is a coalescence and a 2m chance that it is a migration
event. Bringing this all together leads to an expression
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for the average time to coalescence for two lineages
in the same deme:

(4.75)

For two lineages in different demes, the average time
to coalescence is the sum of the average time needed
to migrate into the same deme and the average time
until coalescence once the lineages are in the same
deme. Since the chance of migration into the same 

deme is , the average time for two lineages 

to migrate into the same deme is . The average 
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time to coalescence for two lineages in different
demes this then

(4.76)

Solving these two equations (see Math box 4.2) leads,
respectively, to:

Z(0,1) = 2Ned (4.77)

and

Z(2,0) = 2Ned + (4.78)

(see Slatkin 1987b; Strobeck 1987; Nordborg 1997;
Wakeley 1998).
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(a)

1 2 3 4 5 6

0.042

0.259

0.385

0.865

8.955

9.157

MRCA

Deme 1 Deme 2

Time in
units of 2Ned

Type of
event

(b)

Present

Past

1 2 3 4 5 6

0.117

0.268

0.579
0.674
0.744

1.089
1.091
1.206
1.425
1.539 Migration

Migration

Migration
Migration

Migration

Migration

Coalescence

Coalescence

Coalescence
Coalescence

Coalescence

2.198

MRCA

Deme 1 Deme 2

Figure 4.19 Genealogies for six lineages initially divided evenly between two demes when the migration rate is low (a) and when
the migration rate is high (b). When migration is unlikely, coalescent events within demes tend to result in a single lineage within
all demes before any migration events take place. There is then a long wait until a migration event places both demes in one deme
where they can coalesce. When migration is likely, lineages regularly move between the demes, and lineages originally in the same
deme are as likely to coalesce as lineages initially in different demes. These two genealogies are examples and substantial variation
in coalescence times is expected. In (a) M = 4Nem = 0.2 and in (b) M = 4Nem = 2.0. The two genealogies are not drawn to the same
scale. MRCA, most recent common ancestor.
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We can restate equations 4.75 and 4.76 as

Z(0,1) = x = a + by (4.79)

Z(2,0) = y = c + x (4.80)

where , , and 

. When time is scaled in units of 2Ne

then .

We can then substitute the equation for x
into the equation for y to get

y = c + a + by (4.81)

which rearranges to

y − by = c + a (4.82)

and then

(4.83)

Substituting the values for a, b, and c gives

(4.84)

The denominator above can be rearranged to 

. Next let 

and then substitute it into the f m
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equation 4.82 with the rearranged
denominator to get

(4.85)

which when the numerator and denominator
are multiplied by f gives

(4.86)

Substituting the full expression for f and then
expanding gives

(4.87)

and then multiplying by 2Ne instead of 

dividing by cancels the term in the 

numerator, and then expanding gives

(4.88)

which after addition and canceling terms
finally gives

(4.89)

Equations 4.76 or 4.80 for Z(2,0) can then 
be solved by substituting this expression 
for y and similar methods of algebraic
rearrangement.
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Math box 4.2 Solving two equations with two unknowns for average
coalescence times
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These average times to coalescence for two line-
ages in the context of two demes are both simple
expressions that are easy to interpret. Equation 4.77
is a bit surprising since it says that the average time
to coalescence for two lineages in the same deme 
is independent of the migration rate and is simply a
function of the total population size as in a panmictic
population (note that if each of d demes contains 2Ne
lineages the total population size is NT = 2Ned ). We
can understand why this is the case by imagining
what happens as the migration rate changes. If the
migration rate decreases, the probability that a line-
age migrates into another deme decreases with the
effect of shortening the time to coalescence. However,
in those cases when a migration event does occur, 
the lineage would take a longer time to migrate back
before coalescence. The average time to coalescence
is independent of the migration rate since these 
two factors exactly balance as the migration rate
changes. When two lineages are in different demes
the average time to coalescence increases as the
migration rate decreases and as the number of demes
increases. The average coalescence time is inversely
proportional to the migration rate since migration is
required to put two lineages into the same deme by
chance. As the number of demes increases there are
an increasing number of places for two lineages to be
apart so that more migration events will have to occur
until two lineages are together in the same deme.

Average coalescence times within demes and in the
total population can also be used to express the degree
of population structure. Earlier in the chapter we used
probabilities of autozygosity to express population
structure as a difference between the chance that
two alleles sampled from the total population are 
different in state (HT) and the chance that two alleles
sampled from a subpopulation are different in state 

(HS), or . For two lineages drawn at 

random from the total population of d demes there is 

a chance they are from the same deme and a 

chance they are from different demes. Therefore, the
average coalescence time for two lineages sampled at
random from a subdivided population is

(4.90)

and equation 4.77 provides the average coalescence
time for two lineages sampled from the same deme
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(Z(0,1) = 2Ned). Putting these two average coalescence
times together,

(4.91)

gives an expression for the pattern of population
structure from the perspective of coalescence times
(Slatkin 1991). Population structure can then be
thought of as the difference in average coalescence
times for a pair of lineages in the total population and
a pair of lineages in a subpopulation.

In general, population subdivision is expected to
increase the time required for lineages to coalesce 
to a single most recent common ancestor. When
gene flow is limited, coalescent events within demes
occur much as they would in an isolated panmictic
population. However, the single ancestor for each
deme must wait for a relatively rare migration event
until two lineages in different demes can coalesce 
to a single ancestor. This tends to produce genea-
logical trees that have long branches connecting 
the individual ancestors of different demes. As rates
of migration increase, the genealogical tree branch
lengths approach the patterns expected in a single
panmictic population of the same total size since
migration events frequently move lineages among
the demes.

Chapter 4 review

• Spatial and temporal separation of discrete sub-
populations as well as isolation by distance in
continuous populations both result in mating that
is not random throughout a population. Without
enough gene flow to maintain random mating
(panmixia), genetic drift causes divergence of
allele frequencies among subpopulations.

• Parentage analyses use genotypes of progeny 
and one known parent to infer the haplotype 
of the unknown parent. This unknown parent 
haplotype is then used to exclude possible parents
from the pool of candidate parents. The power of
this procedure to identify the true parent depends
on the chance that a given haplotype will occur
at random in a population.

• The Wahlund effect demonstrates that genetic
variation can be stored as variance in allele fre-
quencies among subpopulations or as hetero-
zygosity within a panmictic population. Fusion 
of diverged subpopulations or subdivision of a 

   
FST =

−Z Z

Z
( , )0 1

··
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panmictic population converts one type of genetic
variation into the other type of genetic variation.

• FIS measures the average excess or deficit of 
heterozygous genotypes compared with random
mating. FST measures the deficit of heterozygosity
in subpopulations due to population structure com-
pared to heterozygosity expected with panmixia.
FIT measures the total excess or deficit of hetero-
zygous genotypes due to both non-random mating
within and allele-frequency divergence among
subpopulations.

• Levels of gene flow can be measured by directly
tracking parentage in contemporary populations
(a direct estimate) or by measuring the pattern 
of allele-frequency differentiation among a set of
subpopulations and then comparing the result to
what is expected in an ideal standard such as the
infinite island model (an indirect estimate).

• Genealogical trees in subdivided populations can
be modeled with an exponentially distributed
waiting time where the chance of migration and
the chance of coalescence are combined.

• In two demes, the average time to coalescence for
two lineages in the same deme is the total popula-
tion size and is independent of the migration rate.
For two lineages in different demes, the average
time to coalescence gets longer as the number 
of demes increases and as the migration rate
decreases, since two lineages can only coalesce
when they are in the same deme.

• Population structure and limited gene flow
lengthen the average coalescence time of two 
lineages sampled at random from the population
compared to the average coalescence time of two
lineages sampled from the same subpopulation.

Further reading

A review of spatial patterns of genetic variation within
and among populations, methods to measure spatial
aspects of genetic variation, and discussion of the
processes causing these patterns can be found in

Epperson BK. 2003. Geographical Genetics. Princeton
University Press, Princeton, NJ.

To learn more about the role that the plant Linanthus
parryae played in the development of the theory 
of isolation by distance, as well as the personalities 
associated with competing interpretations of the
spatial distributions of blue and white flower colors,
see chapters 11 and 13 in

Provine WB. 1986. Sewall Wright and Evolutionary
Biology. University of Chicago Press, Chicago, IL.

A review of probability theory for parentage assign-
ment along with a detailed listing of available analysis
software available can be found in

Jones AG and Ardren WR. 2003. Methods of parentage
analysis in natural populations. Molecular Ecology
12: 2511–23.

An older yet still valuable review of concepts and
empirical estimates of population structure and 
indirect estimates of gene flow can be found in

Slatkin M. 1985. Gene flow in natural populations. Annual
Review of Ecology and Systematics 16: 393–430.

The impacts of population subdivision or isolate break-
ing on genotype frequencies is more complicated for
loci with more than two alleles. For a treatment of
this topic consult:

Li CC. 1969. Population subdivision with respect to
multiple alleles. Annals of Human Genetics 33: 23–9.

A review of the conceptual bases and methodological
approaches to estimation of population structure
using analysis of variance can be found in

Weir BS. 1996. Genetic Data Analysis II. Sinauer
Associates, Sunderland, MA.

A review of the impacts of population structure in
the context of the coalescent model can be found in

Charlesworth B, Charlesworth D, and Barton NH. 2003.
The effects of genetic and geographic structure on
neutral variation. Annual Review of Ecology and
Systematics 34: 99–125.
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Problem box 4.1 answer

The allele frequencies for each of the alleles in
the paternal haplotype are obtained in Table
4.3. For tree 4865 there is only one possible
paternal allele at each locus. The chance of any
genotype having one copy of each paternal
allele at each locus is:

A: (0.1216)2 + 2(0.1216)(1 − 0.1216) = 0.2284
B: (0.3971)2 + 2(0.3971)(1 − 0.3971) = 0.6365
C: (0.0761)2 + 2(0.0761)(1 − 0.0761) = 0.1464
D: (0.1905)2 + 2(0.1905)(1 − 0.1905) = 0.3447
E: (0.1250)2 + 2(0.1250)(1 − 0.1250) = 0.2344

The paternal allele is expected to occur in
between 14 and 64% of possible genotypes
for any individual locus. The probability of a
random match at all five loci is 0.2284 ×
0.6365 × 0.1464 × 0.3447 × 0.2344 = 0.0017,
or in 17 out of 10,000 random genotypes. 
The probability of exclusion is then 1 − 0.0017
= 0.9983 while the probability of exclusion for
a sample of 30 candidate parents is (0.9983)30

= 0.9502. There is about a 95% chance that
there would not be a random match in a
sample of 30 candidate parents; therefore, we
have high confidence that 4865 is the true
father of seed 25-1 from tree 989. For this
offspring–maternal parent combination, the 
B locus is the least useful in resolving paternity
since the frequency of the 106 allele is almost
40%. The 167 allele at the C locus is the most
useful with a frequency of just over 7%.

Problem box 4.2 answer

where K is the observed frequency 

of heterozygotes in each of the n
subpopulations.

HI = (0.0 + 0.14 + 0.34 + 0.40)/4

HI = 0.22

The average observed heterozygote frequency
is 0.22 or 22%.

H
nI i

i

n

=
=
∑1

1

K

where pi and qi are the allele 

frequencies in subpopulation i.

HS = (2(0.0)(1.0) + 2(0.93)(0.07) +
2(0.17)(0.83) + 2(0.51)(0.49))/4

HS = (0.0 + 0.1302 + 0.2822 + 0.4998)/4

HS = 0.228

HT = 2HI where H and I are average allele
frequencies for all the subpopulations. Let f
be the frequency of the fast allele and s the
frequency of the slow allele so that f + s = 1.
Then estimate the average allele frequency for
the fast allele in the total population (the slow
allele could be averaged as well):

X = (0.0 + 0.93 + 0.17 + 0.51)/4

X = 0.4025

whereas the frequency of the other allele is
found by subtraction: S = 1 − 0.4025 = 0.5975.

HT = 2(0.4025)(0.5975)

HT = 0.481

We can now calculate the F statistics using HI ,
HS , and HT .

FIS = (0.228 − 0.220)/0.228

FIS = 0.035

There is no evidence for self-fertilization since
these four populations have observed
heterozygosities very close to that expected
under random mating. Comparing the
observed and expected heterozygosity for
each population shows that subpopulations 9
and 43 have a slight excess of heterozygotes
while subpopulation 68 has about a 10%
deficit. These three deviations along with the
zero deviation in subpopulation 1 all average
out to approximately zero.
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FST = (0.481 − 0.228)/0.481

FST = 0.526

There is less heterozygosity within the
subpopulations than we expect under
Hardy–Weinberg based on allele frequencies
for the total population. This value reflects the
substantial differences in subpopulation allele
frequencies.

FIT = (0.481 − 0.220)/0.481

FIT = 0.543

This is the deficit of heterozygosity caused by
both non-random mating within populations
and allele-frequency divergence among
subpopulations. In this case almost all of the
deficit in heterozygosity is due to allele
frequency divergence among the
subpopulations.

The three fixation measures are related by

(1 − FIT) = (1 − FIS)(1 − FST)

Using the values for FIS and FST and then
solving for FIT gives the same value that was
determined by direct computation:

(1 − FIT) = (1 − 0.035)(1 − 0.526)

(1 − FIT) = (0.965)(0.474)

(1 − FIT) = 0.4574

FIT = 0.543

Based on the data from all 43 subpopulations,
Levin (1978) estimated FIS = 0.70, FST = 0.80,
and FIT = 0.80 in P. cuspidata.

Problem box 4.3 answer

The Wahlund effect shows that population
structure causes heterozygotes to become less

F
H H

HIT
T I

T

=
−

F
H H

HST
T S

T

=
− frequent and homozygotes to become more

frequent by a factor proportional to the
amount of allele frequency divergence among
populations. Using the allele frequencies in
Table 2.3 we can calculate the expected
genotype frequencies for each locus with
adjustment for population using equation
4.37 for homozygous loci and equation 4.38
for heterozygous loci:

D3S1358 2(0.2118)(0.1626)(0.95) = 0.0655
D21S11 2(0.1811)(0.2321)(0.95) = 0.0799
D18S51 (0.0918)2 + (0.0918)(0.9082)(0.05) = 0.0126
vWA (0.2628)2 + (0.2628)(0.7372)(0.05) = 0.0788
FGA 2(0.1378)(0.0689)(0.95) = 0.0181
D8S1179 2(0.3393)(0.2015)(0.95) = 0.1299
D5S818 2(0.3538)(0.1462)(0.95) = 0.0942
D13S317 2(0.0765)(0.3087)(0.95) = 0.0448
D7S820 2(0.2020)(0.1404)(0.95) = 0.0539

Assuming that the Amelogenin locus should
not be affected by population structure, 
the expected frequency of the 10-locus
genotype after adjustment for population
structure is 0.0655 × 0.0799 × 0.0126 ×
0.0788 × 0.0181 × 0.1299 × 0.0942 × 0.0448
× 0.0539 × 0.5 = 1.514 × 10−12 with an odds
ratio of one in 660,501,981,506. Compare
that with the expected genotype frequency 
of 1.160 × 10−12 and odds ratio of one in
862,379,847,814 assuming panmixia. After
accounting for population structure this
genotype appears more likely to occur by
chance, although its expected frequency is 
still extremely rare.

Problem box 4.4 answer

The joint effects of drift and migration in the
fixation index are expressed by

This can be made more general if x is used to
represent the probability of autozygosity and y
is used to represent the probability of
allozygosity (y = 1 − x):

Ft = x(1 − m)2 + yFt−1(1 − m)2
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For the case of a diploid nuclear locus we 

used and to obtain the 

relationship between FST and Nem at
equilibrium. Both Y-chromosome and
organelle loci are haploid and uniparentally
inherited, giving an effective population size 
of one-quarter of that for nuclear loci. For
example, in humans the mitochondrial
genome is inherited from the maternal parent
only, or half of the population, and it is also
haploid or present in half the number of copies
of the nuclear genome. For 

such loci we would use and 

to obtainy
Ne

= −1
2   

x
N Ne e

= =
1

2

2

y
Ne

= −1
1

2
x

Ne

=
1

2
The result is that FST is expected to be 
higher for Y-chromosome and organelle 
loci because their effective population 
size is smaller (see Fig. 4.15). Compared to
diploid nuclear loci, Y-chromosome and
mitochondrial loci have levels of FST four-fold
higher when all types of loci share a common
migration rate. The greater level of divergence
among subpopulations for the Y-chromosome
and organelle loci comes about strictly
because of differences in the autozygosity for
the loci that produced increased rates of
fixation or loss due to genetic drift. See Hu 
and Ennos (1999) and Hamilton and Miller
(2002) for more details and references.
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5.1 The source of all genetic variation

• Types of mutations and rates of mutation.
• How can a low-probability event like mutation

account for genetic variation?
• The spectrum of fitness for mutations.

The previous four chapters have discussed in detail
genotype frequencies under random and non-random
mating, the relationship between genetic drift and the
effective population size, as well as population sub-
division and gene flow. These and all other processes
in populations act to shape or change existing genetic
variation. But where does genetic variation come from
in the first place? The Hardy–Weinberg expectation
shows clearly that particulate inheritance itself does
not alter genotype or allele frequencies and so it is
not a source of genetic variation. Any form of non-
random mating alters only genotype frequencies and
leaves allele frequencies constant. Genetic drift serves
to erode genetic variation as sampling error leads to
allele frequency change and eventually to fixation and
loss. Gene flow just serves to partition genetic vari-
ation among subpopulations, thereby altering patterns
of population structure. The process of mutation,
the permanent incorporation of random errors in
DNA that results in differences between ancestral and
descendant copies of DNA sequences, is the ultimate
source of all genetic variation. This chapter will cover
the process of mutation starting out with a description
of the patterns and rates of mutation. The follow-
ing sections will present classical population genetic
models for the fate of a new mutation, the impact of
mutation on allele frequencies in a population, and
the predicted balance between removal of genetic
variation by genetic drift and its replacement by
mutation. This chapter will also cover several models
of the way new alleles are introduced by mutation
commonly employed in population genetics, illustrated
with applications that highlight the consequences of
these models. The final section of the chapter will show

how the process of mutation can be incorporated
into genealogical branching models.

Mutation is a broad term that encompasses a 
wide variety of events that lead to alterations in DNA
sequences. Point mutations lead to the replace-
ment of a single base pair by another nucleotide.
Point mutations to chemically similar nucleotides
(purine to purine (A ↔ G) or pyrimidine to pyrimi-
dine (C ↔ T)) are called transitions, while point
mutations to chemically dissimilar nucleotides (purine
to pyrimidine or pyrimidine to purine) are called
transversions. Base substitutions that occur within
coding genes may or may not alter the protein pro-
duced by that gene. Synonymous or silent mutations
result in the same translation of a DNA sequence into
a protein due to the redundant nature of the genetic
code, while nonsynonymous or missense mutations
result in a codon that does change the resulting
amino acid sequence.

Mutation can take the form of insertion or dele-
tion of DNA sequences, often referred to as indels.
Indels within coding regions result in frameshift
mutations if the change in sequence length is not an
even multiple of three, altering the translation of a
DNA sequence and possibly creating premature  stop
codons. Indels may range in size from a single base
pair to segments of chromosomes containing many
thousands of base pairs. Arrays of multiple copies 
of homologous genes called multigene families
are formed by duplication events. Some copies of
such duplicated genes may lose functions due to the 
accumulation of mutations, becoming pseudogenes.
Gene conversion may result in the homogenization
of the sequences of multiple loci within multigene
families. Gene conversion occurs because of in-
appropriate mismatch repair that takes place during 
meiosis. Sections of two homologous chromosomes
may anneal when they are single stranded during
DNA replication. If these regions differ slightly in
sequence, the annealed stretch will contain single
nucleotide mismatches. These mismatches will then

CHAPTER 5
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be repaired to proper Watson–Crick base pairing by
enzymes normally involved in proofreading during
DNA replication. The process of annealing between
two sister chromosomes tends to happen frequently
when the same gene has been repeated many times,
because the gene copies have very similar sequences
and the chromosomes can anneal anywhere along
the length of the gene array. The result is that all gene
copies within multigene regions tend to converge 
on one random version of DNA sequence without
recombination taking place.

Mutation may also take the form of rearrange-
ments where a chromosomal region forms a loop
structure that results in a segment breaking and being
repaired in reversed orientation, called an inversion.
Translocations are mutations where segments of
chromosome break free from one chromosome and
are incorporated by repair mechanisms into a non-
homologous chromosome. Transposable elements,
segments of DNA that are capable of moving and
replicating themselves within a genome, are fre-
quent causes of translocation mutations. Lateral 
or horizontal gene transfer, the movement and
incorporation of DNA segments between different
individuals and even different species, is another 
possible avenue of mutation that occurs relatively
frequently in prokaryotes. For more detail on the
molecular mechanisms that underlie these differ-
ent types of mutations consult a text such as Lewin
(2003).

The probability that a locus or base pair will experi-
ence a mutation is a critical parameter in population
genetics since the rate of mutation describes how
rapidly novel genetic variation is added to popula-
tions. Although it seems counterintuitive, mutation
rates are actually quite difficult to estimate with pre-
cision in many types of organism (see Drake et al.
1998; Fu & Huai 2003). Consider the case of muta-
tion rates at a single locus that has a well-understood
effect on the phenotype of an organism, like coat color
in mice. The data available to estimate mutation rates
are numbers of progeny that have a different coat
color than expected based on the known coat-color
genotypes of the parents. It is simple to divide the
number of progeny with unexpected coat colors by
the total number of progeny examined. However, that
calculation estimates the frequency of detectable
changes to coat color due to some molecular change
at the coat color locus. That is an estimate of the 
frequency of all types of mutation anywhere at the
locus rather than an estimate of the mutation rate.
Such an estimate of mutation frequency could also

be biased since only mutational changes that caused
an obvious change in coat color are included. Not 
all mutations will be reflected in coat colors, like
changes to the third position nucleotide of a codon
that are silent, or synonymous, and do not change
the resulting amino acid sequence of a gene. Addi-
tionally, mutations may vary in their effect on coat
color with some mutations having little or no easily
observable effect on the phenotype. Therefore, the
frequency of observable changes to the phenotype 
is not equivalent to the mutation rate.

An estimate of the mutation rate requires more
information. One critical detail is the number of
replications a locus or genome experiences, because
mutational changes usually occur during the replica-
tion process. Different cell types and different spe-
cies experience different numbers of cell replications
during growth and reproduction. For example, in
mammals mutations are more frequent in male
gametes than in female gametes because there are
many more cell divisions before the production of a
sperm than there are before production of an egg.
However, the underlying mutation rate could be
identical for male and female gametes with the differ-
ence due only to the different number of genome
replications that occur. Another set of considera-
tions is the size of a locus or genome available to
mutate. In the hypothetical mouse coat color exam-
ple, the number of base pairs at the coat color locus is
a critical piece of information. The rate of mutation
per base pair estimated from the frequency of coat
color changes is very different if the locus has 900 or
90 base pairs.

The distinction between mutation frequency 
and mutation rate highlights the fact that mutation
rates in population genetics are expressed in a variety 
of terms depending on experimental methods and 
the life cycle of an organism. The target of mutation 
can be an entire genome, a locus, or a single base
pair, while the rate can be expressed in time units 
per DNA replication or per sexual generation.
Comparisons of mutation rates only make sense
when the target size and time period are expressed 
in identical units. Generally, for population genetic 
predictions involving sexual eukaryotes, mutation
rates per sexual generation are the relevant units.
Predictions for prokaryotes such as Escherichia coli
or yeast would more naturally use mutation rates
per cell division.

The most general rule of mutation is that it is a
rare event with a low probability of occurrence. In 
a classic experiment involving literally millions of

··
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mice, mutation rates were estimated from five genes
with observable effects on the phenotype of coat color
(Table 5.1; Schlager & Dickie 1971). Rates of muta-
tion per gene were between 1.8 and 16.6 mutations
per 1 million gametes produced. This is equivalent 
to a mutation rate of (1.8–16.6) × 10−6 per locus per
sexual generation. Very similar mutation rates for
mice have been reported from more recent irradia-
tion studies as well (Russell & Russell 1996). The rates
of mutation from wild type to a novel allele (called
forward mutations) are nearly a factor of 10 more
common than mutations from a novel allele to wild
type (termed reverse mutations). This asymmetry
of forward and backward mutation rates per locus 
is a common observation in mutation experiments.
It is a product of the fact that there are more ways
mutation can cause a normal allele to malfunction
than there are ways to exactly restore that func-
tion once it is disrupted. In this sense, forward and
reverse mutation rates exist only because mutations
are detected via their phenotypic effect.

Mutation rates can also be estimated in terms of
the chance that a genome or a base pair mutates per
replication or per sexual generation. At least in prin-
ciple, the mutation rates for viruses and microbes can
be estimated from direct examination of nucleotide
sequences after correction for the error rate of the

DNA sequencing techniques, avoiding the under-
estimate of mutations that comes from detecting only
those with a phenotypic effect. Table 5.2 summarizes
mutation rate estimates presented in a compre-
hensive review of mutation rate data (Drake et al. 
1998). These rates of mutation differ greatly across
the taxonomic groups surveyed but tend to be very 
similar within the taxonomic groups. For microbes
with DNA-based genomes, the rate of mutation 
per genome per replication clusters around 1/300.
Since these organisms vary greatly in their genome
sizes, the rate of mutation per base pair per genera-
tion ranges widely from 7.2 × 10−7 to 7.2 × 10−11. 
In eukaryotes, mutation rates per base pair per 
sexual generation all fall within a narrow range 
from 3.4 × 10−10 to 5.0 × 10−11. If mutation rates per
genome in eukaryotes are expressed in terms of the
portion of the genome that contains coding genes
(termed “effective genome size” by Drake et al. 1998),
then the rate of mutation per effective genome in
eukaryotes is statistically indistinguishable from the
1/300 rate of DNA-based microbes. The per-base-pair
mutation rate estimates are in rough agreement with
older per-locus estimates based on visible phenotypes.
If the coat-color loci in Table 5.1 have around 1000
or 103 base pairs, then the per-base-pair mutation
rates would be on the order of 10−8.

Table 5.1 Per-locus mutation rates measured for five loci that influence coat-color phenotypes in inbred lines
of mice (Schlager & Dickie 1971). Dominant mutations were counted by examining the coat color of F1
progeny from brother–sister matings. Recessive mutations required examining the coat color of F1 progeny
from crosses between an inbred line homozygous for a recessive allele and a homozygous wild-type dominant
allele. The effort to obtain these estimates was truly incredible, involving around 7 million mice observed over
the course of 6 years.

Locus Gametes tested Mutations observed Mutation rate per locus ×× 10−6 (95% CI)

Mutations from dominant to recessive alleles
Albino 150,391 5 33.2 (10.8–77.6)
Brown 919,699 3 3.3 (0.7–9.5)
Dilute 839,447 10 11.9 (5.2–21.9)
Leaden 243,444 4 16.4 (4.5–42.1)
Non-agouti 67,395 3 44.5 (9.2–130.1)
All loci 2,220,376 25 11.2 (7.3–16.6)

Mutations from recessive to dominant alleles
Albino 3,423,724 0 0 (0.0–1.1)
Brown 3,092,806 0 0 (0.0–1.2)
Dilute 2,307,692 9 3.9 (1.8–11.1)
Leaden 266,122 0 0 (0.0–13.9)
Non-agouti 8,167,854 34 4.2 (2.9–5.8)
All loci 17,236,978 43 2.5 (1.8–3.4)

95% CI, 95% confidence interval.
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The mutation rates at microsatellite or simple
sequence repeat (SSR) loci are also of interest since
such loci are widely employed as selectively neutral
genetic markers to study a wide range of popula-
tion genetic processes. These repeated DNA regions 
have very high rates of mutation between 1 × 10−2

and 6 × 10−6 per sexual generation (Ellegren 2000;
Steinberg et al. 2002; Beck et al. 2003).

How can such a low-probability event like mutation
add more than a trivial amount of genetic variation
to populations? Let’s calculate an initial answer to
that question using humans as our example. Averag-
ing over coding and non-coding parts of the genome,
an approximate nuclear genome mutation rate in
humans is about 1 × 10−9 mutations per base pair 
per generation. The haploid genome (one sperm or 
egg) contains about 3.2 × 109 base pairs (bp). Each
genome of each diploid individual will have:

(1 × 10−9 mutations bp−1 generation−1) (2 × 3.2 ×
109 bp−1) = 6.4 mutations (5.1)

where the factor of 2 is due to a diploid genome. 
Each of us differs from one of our parents by half this
amount, or about three mutations on average. If all
mutations are random events evenly distributed
throughout the genome, every pair of individuals 
differs by twice this number of mutations or about 
13 mutational differences on average. The overall
effect of mutation on available genetic variation
depends on the size of a population. The human 
population is currently about 6.486 billion people
(see www.census.gov/main/www/popclock.html).
Based on this population size, there are a total of

(6.4 mutations individual−1 generation−1)(6.486 ×
109 individuals) = 41.5 × 109 mutations (5.2)

or over 41 billion mutations expected each genera-
tion! This means that the absolute numbers of muta-
tions per generation are potentially high and depend
on the rate of mutation, the size of the population,
and the size of the genome. We will revisit this topic

··

Organism Mutation rate per replication

Per genome Per base pair

Lytic RNA viruses
Bacteriophage Qβ 6.5
Poliovirus 0.8
Vesicular stomatitis virus 3.5
Influenza A ≥1.0

Retroviruses
Spleen necrosis virus 0.04
Rous sarcoma virus 0.43
Bovine leukemia virus 0.027
Human immunodeficiency virus 0.16–0.22

DNA-based microbes
Bacteriophage M13 0.0046 7.2 × 10−7

Bacteriophage λ 0.0038 7.7 × 10−8

Bacteriophages T2 and T4 0.0040 2.4 × 10−8

Escherichia coli 0.0025 5.4 × 10−10

Neurospora crassa 0.0030 7.2 × 10−11

Saccharomyces cerevisiae 0.0027 2.2 × 10−10

Eukaryotes
Caenorhabditis elegans 0.018 2.3 × 10−10

Drosophila 0.058 3.4 × 10−10

Human 0.49 1.8 × 10−10

2.5 × 10−8a

Mouse 0.16 5.0 × 10−11

aEstimate from Nachman and Crowell (2000) based on pseudogene divergence
between humans and chimpanzees.

Table 5.2 Rates of spontaneous
mutation expressed per genome
and per base pair for a range of
organisms. The most reliable
estimates come from microbes
with DNA genomes whereas
estimates from RNA viruses 
and eukaryotes have greater
uncertainty. Full explanation of 
the assumptions and uncertainties
behind these estimates can be
found in Drake et al. (1998).
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later in the chapter to make a more formal prediction
about the levels of heterozygosity expected when the
input of genetic variation due to mutation and the
loss of genetic variation caused by genetic drift are at
equilibrium.

The impact that a mutant allele (as part of a hetero-
zygous or homozygous genotype) has on the pheno-
type of an individual can vary greatly. Since natural
selection along with genetic drift are critical pro-
cesses that determine the fate of new mutations, the
phenotype is most often considered in the context of
its survivorship and reproduction, or fitness. The range
of the possible fitnesses for an individual mutant allele
can be thought of as a mutation fitness spectrum
like that shown in Fig. 5.1. The fitness of all mutation
effects on the phenotype is relative to the average
fitness of a population (see Chapter 6 for explana-
tions of fitness and average fitness). Detrimental or
deleterious mutations reduce survival and repro-
duction while mutations that improve survival and
reproduction are advantageous. Severely deleterious
mutations such as those that result in death (called
lethals) or failure to reproduce viable offspring are
acted strongly against by natural selection and will
likely not last for a single generation. Mutations that

are strongly deleterious and nearly lethal are some-
times called sublethals. Mutations that have small
positive or negative effects on fitness (the shaded
zone around the mean fitness in Fig. 5.1) are called
neutral or nearly neutral since their fate will be
dictated either totally or mostly by sampling error 
of genetic drift. The final type are beneficial muta-
tions that increase survival and reproduction above
the average fitness of the population. It is import-
ant to note that the fitness effects of mutations may
depend greatly on environmental context (see Fry 
& Heinsohn 2002) and the genotype at other loci.
These different types of mutation will be the subject
of models later in this chapter that show how fitness
relates to the chance that a new mutation is lost or
reaches fixation in a population.

The mutation fitness spectrum plays a central role in
a wide range of hypotheses to explain a multitude of
phenomena in population genetics and evolution
(see Charlesworth & Charlesworth 1998; Lynch et al
1999; Orr 2003; Estes et al. 2004). Explanations 
for phenomena as general and diverse as inbreed-
ing depression, the evolution of mating systems, the
evolution of sex and recombination, and the rate 
of adaptation depend in part on the nature of the
mutation fitness spectrum. Strongly deleterious or
strongly beneficial mutations will be steadily and
predictably driven to loss or to fixation, respectively,
by natural selection. However, fixation and loss 
of mutations that have a small impact on fitness 
(relative to the effective population size) is due in whole
or in part to random genetic drift. A consequence is
that mildly deleterious mutations may reach fixation
by chance and accumulate in a population over time.
Similarly, some mildly beneficial mutations may be
lost from populations by chance. An accumulation
of mildly deleterious mutations reduces individual
fitness and may increase the risk of extinction, result-
ing in natural selection for processes that reduce the
load of deleterious mutations in a population. The
frequency of beneficial mutations may also place
limits on the rate of evolution by positive natural
selection. Thus, the specific shape of the frequency

Relative fitness of a new mutation
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Figure 5.1 A hypothetical distribution of the effects 
of mutations on phenotypes that ultimately impact the
Darwinian fitness of genotypes. Mutations that have a mean
fitness less than the mean fitness of the population (N) are
decreased in frequency by natural selection. The shaded 
area around N indicates the zone where mutations have 
small effects on fitness relative to the effects of genetic drift
(the width of the neutral zone depends on the effective
population size). The shaded area near zero mean fitness
indicates mutations that cause failure to reproduce or are
lethal. Lethals are more common since it is a category that
includes many degrees of severity resulting from diverse
causes. The fitness effects of mutations are inherently difficult
to measure because of the rarity of mutation events, the small
effect of many mutations, and the dependence of fitness on
environmental context.

Mutation fitness spectrum The frequency
distribution of the average fitness of new
mutations measured relative to the average
fitness of a reference population.
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distribution shown schematically in Fig. 5.1 pro-
vides crucial information about the fate of individual
mutations as well as the long-term consequences of
continual mutation in populations.

A commonly employed method to estimate the
shape of the mutation fitness spectrum relies on found-
ing a series of genetically identical populations and
then allowing some to experience mutations for many
generations while maintaining a control population
that does not experience mutation. Viability and
reproduction phenotypes of the mutated populations
are then compared with the control population at
intervals to estimate the average change in fitness
caused by the mutations. Such comparisons are
called mutation-accumulation experiments since
mutations are repeatedly fixed by genetic drift over
time in the mutation populations.

If there was absolutely no mutation, the replicate
populations in a mutation-accumulation experiment
would all maintain identical viability over time 
since each population started out being genetically
identical. Mutation, however, will occur at random
and cause independent genetic changes in the differ-
ent populations, causing the populations to diverge
in viability. Imagine that the mutation fitness spec-
trum is symmetric around the mean fitness so that
the frequency of deleterious and beneficial muta-
tions of the same magnitude is equal. That would
produce no change in the average viability of lines 
in a mutation-accumulation experiment since there
would be equal chances of beneficial or deleterious
mutations of the same size that would cancel each
other out in a sample of many mutations. However,
there would be an increase in the variance in viability
because the range of viabilities among the popula-
tions would increase with more and more mutations.
Next imagine a mutation fitness spectrum like that
shown in Fig. 5.1 where deleterious mutations are
more common than beneficial mutations. As muta-
tions accumulate, the average viability of lines should
decrease since deleterious mutations are more com-
mon than beneficial mutations. The more skewed
the distribution is toward deleterious mutations the
faster the average viability should decrease in the
replicate populations.

The results of several classic mutation accumula-
tion studies that estimated the frequency distribu-
tion for mutations that affect viability in Drosophila
melanogaster have had a major impact on percep-
tions of the mutation fitness spectrum (Mukai 1964;
Mukai et al. 1972). Mutation-accumulation experi-
ments in Drosophila rely on special breeding designs

that maintain the second chromosome without re-
combination in many replicate homozygous families
or lines over many generations. Mutations of all
types occur on this non-recombining chromosome
and are fixed by genetic drift within each line of 
flies due to a single male founder for each genera-
tion. At intervals of 10 generations, the flies in all 
of the different independent lines were assayed for
viability in comparison with a control line that did
not experience any mutation due to chromosomal 
inversions (again accomplished with special breed-
ing techniques). The change in average viability and
variance in viability found by Mukai et al. (1972) 
is shown in Fig. 5.2. The variance in viability among
the replicate lines has increased because the second
chromosome of each line diverged due to the occur-
rence and fixation of mutations. In addition, the
average viability has declined as expected if deleter-
ious mutations are more common than beneficial
mutations. The results are consistent with deleter-
ious mutations that cause an average reduction in
viability of 5% or less when homozygous. Therefore,
this experiment and others like it motivated a view of
the mutation fitness spectrum as drawn in Fig. 5.1.
However, mutation-accumulation experiments have
been carried out in only a relatively few organisms
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Figure 5.2 The results of the classic Drosophila melanogaster
mutation accumulation experiment carried out by Mukai 
et al. (1972). The experiment maintained three distinct sets 
of mutation-accumulation populations with 25 lines each. 
The left-hand panel shows the change in mean viability over
time and the right-hand panel shows the change in the
variance among replicate independent lines. Each point is 
the value obtained from one set of mutation-accumulation
populations. Mutation of any type makes the lines diverge
genetically and increases the variance. Mean viability
declines over time as deleterious mutations are more 
common than advantageous mutations. Redrawn from
Figure 2 in Mukai et al. (1972).
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and are inherently unable to detect mutations with
very small effects or that do not affect the pheno-
type within the laboratory environment where the
phenotype is measured. There is also the possibility
that the distribution of mutation fitnesses varies
among taxa. For example, a mutation-accumulation
experiment in the plant Arabidopsis thaliana showed
that deleterious and beneficial mutations were about
equally frequent (Shaw et al. 2000).

Inherent in the mutation fitness spectrum in 
Fig. 5.1 is that beneficial mutations are rarer than
deleterious mutations. This makes estimating of 
the frequency distribution of beneficial mutations
even more difficult than it is for deleterious muta-
tions. Nonetheless, a number of studies have directly 
measured the effects of advantageous mutations.
Bacterial populations have been used to study muta-
tions due to their short generation times and the ease 
of constructing and maintaining replicate popula-
tions. Using E. coli, several studies have shown that
beneficial mutations with small effects on fitness 
are much more common than mutations with larger
effects (Imhof & Schlotterer 2001; Rozen et al. 2002).
Using an RNA virus, Sanjuan et al. (2004) used 
site-directed mutagenesis to make numerous single-
nucleotide mutations. Beneficial mutations were
much rarer than deleterious mutations, but the
eight beneficial mutations had an average of a 7%
improvement in fitness and small mutation effects
were more common. An important caveat to these
studies is that the beneficial mutations detected are
biased toward those of larger effects because: very
small mutation effects cannot be measured; beneficial
mutations with larger effects increase in frequency
more rapidly under natural selection making them
more likely to reach a high enough frequency to be
detected; and there is the possibility of competition
among lineages with different beneficial mutations
in asexual organisms (a phenomenon called clonal
interference).

5.2 The fate of a new mutation

• The chance a neutral or beneficial mutation is
lost due to Mendelian segregation.

• Mutations fixed by natural selection.
• Frequency of a mutant allele in a finite population.
• Accumulation of deleterious mutations by Muller’s

Ratchet without recombination.

How does the frequency of a new mutation change
over time after it is introduced into a population?

This simple question is central to understanding 
the chance of fixation and loss for new mutations
and therefore their ultimate fate in a population. The
mutation rate dictates how often a new mutation
will appear in a population. But once a mutation 
has occurred, population genetic processes acting on
it will determine whether it increases or decreases 
in frequency. This section will consider four distinct
perspectives on the frequency of a new mutation
based on the processes of genetic drift and natural
selection. Each of the four perspectives makes differ-
ent assumptions about the population context in
which a new mutation is found, considering different
effective population sizes, levels of recombination,
and whether mutations are neutral, advantageous,
or deleterious. Naturally, these four perspectives do
not cover all possible situations but are meant to
explore a range of possibilities and communicate
several distinct approaches to determining the fate 
of a new mutation. Although this section will con-
sider the action of natural selection on mutations, the
simple forms of selection assumed should be accessible
to most readers. Natural selection and fitness are
defined and developed rigorously in Chapter 6.

Chance a mutation is lost due to Mendelian
segregation

The fate of a new mutation can be tracked by con-
sidering its pattern of Mendelian inheritance, as
shown by R.A. Fisher in 1930 (see Fisher 1999). 
Call all the existing alleles at a locus Ax where x is an
integer 1, 2, 3 . . . , x to index the different alleles,
and a new selectively neutral mutation Am. Any 
new mutation appears initially as a single-allele copy 
and it therefore must be found in a heterozygous
genotype (AxAm). To form the next generation, this
AxAm heterozygote experiences random mating
with the other AxAx genotypes in the population. For
each progeny produced by the AxAm genotype, there
is a 1/2 chance that the mutant allele is inherited and
a 1/2 chance that the mutant allele is not inherited
(the Ax allele is transmitted instead). The total chance
that an AxAm heterozygote passes the mutant allele
on to the next generation depends on the number 
of progeny produced. If k is the number of progeny
parented by the AxAm heterozygote and there is 
independent assortment of alleles, then

P(mutant lost) = (5.3)1
2

⎛
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9781405132770_4_005.qxd  1/16/09  5:40 PM  Page 160



Mutation 161

is the probability that the mutant allele is not trans-
mitted to the next generation in any of the progeny.
As you would expect, the probability that no mutant
alleles are transmitted to the next generation declines
as the number of progeny produced increases.

In a population that is constant in size over time,
each pair of parents produces two progeny on aver-
age that take their places in the next generation. 
A key phrase here is “on average,” meaning that 
not every pair of parents will produce two progeny:
some parents will produce more progeny and some
parents will produce fewer. As shown in the context
of the variance effective population size in Chapter 3,
the Poisson distribution is commonly used to model
variation in reproductive success. Here too, we can
use a Poisson distribution to determine the expected
frequencies of each family size when the average
family size is two progeny (Table 5.3). The reason we
need to know the expected proportion of the parental
pairs that produce a given number of progeny is that
each family size has a different probability of not
transmitting the mutant allele. For a given family
size k, the probability that a mutant allele is not trans-
mitted to the next generation is the product of the
expected frequency of parental pairs and the chance
of not transmitting the mutant allele:

P(mutant lost) = (5.4)

or the product of the two terms in each column of
Table 5.3. The total probability that the mutant
allele is not transmitted to the next generation is 
the sum over all possible family sizes from zero to
infinity:

P(mutant lost) = (5.5)
2 1
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Although this sum looks daunting to calculate, the
equation actually simplifies to a very neat result. The
e−2 term is a constant so that it can be moved in front
of the summation

P(mutant lost) = (5.6)

and the 2k and terms cancel to give

P(mutant lost) = (5.7)

The final trick is to notice that the series deter-

mined by the summation (1 + 1 + ) 

approaches e (e = 2.718 . . . ) as k goes to infinity.
The summation term can then be replaced with e to give

P(mutant lost) = e−2e = e−1 (5.8)

As promised, the tidy conclusion is that the chance 
a newly occurring mutant is lost simply due to
Mendelian segregation after one generation is 
e−1 = 0.3679. Therefore, a new mutation has about
a 36% chance of being lost within one generation 
of its introduction into a population. The world is
tough for a new mutation!

This result can be extended to determine the 
probability that a mutation is lost over multiple 
generations of Mendelian segregation. A general
expression for the cumulative probability of a muta-
tion being lost from the population over time is

P(mutant lost generation t) = ex−1 (5.9)

where x is the probability of loss in the generation
before or at time t − 1. (The series determined by 
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Table 5.3 The expected frequency of each family size per pair of parents (k) under the Poisson distribution
with a mean family size of 2 (Y = 2). Also given is the expected probability that a mutant allele Am would not
be transmitted to any progeny for a given family size. Note that 0! equals one.

Family size per pair of parents (k) . . . 0 1 2 3 4 . . . k

Expected frequency e−2 2e−2 2e−2 . . .

Chance that Am is not transmitted 1 . . .
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the summation in equation 5.7 is really (1 + x +

) and approaches e1+x as k goes to 

infinity to give (e−2)(e1+x) = ex−1. When a mutant first
appears in a population x = 0.)

Using this result shows that the probability of 
a new mutation being lost in two generations is 
e−0.6321 = 0.5315 or the probability of being lost in
three generations is e−0.4685 = 0.6295. Based on this
progression, Fig. 5.3 shows the probability that a
new mutation is lost over the course of 140 genera-
tions. The conclusion from this graph is that a new
mutation must eventually be lost from a population
given enough time.

We can also ask what impact natural selection
might have on this prediction that a new mutation
will eventually be lost. Let’s imagine that a new
mutation is slightly beneficial instead of being 
neutral. Natural selection will then improve the
chances that the new mutation is transmitted to the
next generation, giving it a slight advantage over
any of the other alleles in the population. Let c be 
the selective advantage of a new mutation so that a
value of 1.0 would indicate neutrality and a value 
of 1.01 would mean a transmission advantage of
1%. The cumulative probability that an allele is lost
at generation t is then

P(mutant lost generation t) = ec(x−1) (5.10)

  

x x x
k

k2 3

2 3! !
· · ·

!
+ + +

This version of the equation multiplies the exponent
for the neutral case by the selective advantage of 
a beneficial allele. This makes very little difference 
to the probability that a mutant is lost if only a 
few generations elapse, but makes a larger difference
after more generations have passed (Fig. 5.3). In
general, the chance that a new beneficial mutation is
not lost is approximately twice its selective advant-
age, still a very low probability for realistically small
values of the selective advantage. However, as Fisher
pointed out, if something like 250 independent bene-
ficial mutations occur singly over time then there is 
a very small chance (0.98250 = 0.0064) that all of
them would be lost during Mendelian segregation.
This suggests that at least some beneficial mutations
will be established in populations as mutations con-
tinue to be introduced.

The conclusion that a new neutral mutation must
always be lost from a population seems at odds with
the possibility of random fixation of a new mutation
due to genetic drift. Fisher’s method of modeling the
fate of a new mutation makes the assumption that
population size is very large. This assumption allows
use of the expected values for the proportion of
parental pairs for each family size under the Poisson
distribution and the chance of an allele being lost 
for each family size, probabilities that should only be
met in the limit of many parental pairs that span a
wide range of family sizes. Finite numbers of parental
pairs would likely not meet these expected values
due to chance deviations from the expected value.
The assumption of infinite population size is justified
because it is used to reveal that particulate inherit-
ance by itself can lead to loss of new mutations even
in the complete absence of genetic drift. Next, we 
will take up the fate of a new mutation in the context
of a finite population.

Fate of a new mutation in a finite population

A second perspective on new mutations is to con-
sider their fate as an allele in a finite population in the
absence of natural selection. We can then employ
the concepts and models of genetic drift developed in
Chapter 3 to predict the frequency of new mutations
over time in a population. The first critical observa-
tion is to recognize that the initial frequency of any
new mutation is simply

p0(new mutation) = (5.11)
1
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Figure 5.3 The probability that a novel mutation is lost from
a population due to Mendelian segregation. A neutral allele is
eventually lost from the population while a beneficial mutation
has a probability of about twice its selective advantage of
fixation. The cumulative probability over time is described 
by ec(x−1) where x is the probability of loss in the generation
before and c is the degree of selective advantage, if any. This
expected probability assumes an infinitely large population
that has a Poisson-distributed variance in family size.

9781405132770_4_005.qxd  1/16/09  5:40 PM  Page 162



Mutation 163

because a new mutation is present as a single-
allele copy in a population of 2Ne allele copies. If the
frequency of a new mutation is determined strictly
by genetic drift, then each new mutation has a prob-

ability of of going to fixation and a probability of 

of going to loss. This result makes intuitive 

sense, since a new mutation is very rare and is close
to loss but very far from fixation. This result also
shows that the chance of fixation or loss of a new
mutation depends on the effective population size.

Using the diffusion approximation of genetic 
drift, it is possible to estimate the average number of 
generations before a new mutation is either fixed or
lost (Kimura & Ohta 1969a). Figure 3.14 and equa-
tion 3.40 give the average number of generations
until fixation or loss for an allele depending on the
effective population size and initial allele frequency.
Under the assumption that the effective population
size is large, those alleles that eventually fix do so 
in an average of 4Ne generations. Those alleles that
are lost go to fixation in many fewer generations,
approaching zero generations as the population size 

gets larger and the initial frequency of therefore 

gets smaller. However, since genetic drift is a stoch-
astic process we expect that the variance around 
the average time to fixation or loss will be large. In
other words, the allele frequency of each new muta-
tion will take a random walk between zero and 
one. Although many mutations may be lost quickly
others may segregate for several or many genera-
tions before being lost or fixed.

The fate of new mutations can be seen readily in 
a simulation. Figure 5.4 shows the frequency of 
new mutations introduced every 30 generations
into a population of Ne = 10. Of the seven mutations
introduced into the population, six go to loss and
only one goes to fixation. This is roughly consistent
with the prediction that one in 20 new mutations
will fix in a population where Ne = 10. Most of the
mutations that go to loss do so in fewer than 10 
generations, although in one case the mutation 
segregates for about 25 generations. Equation 3.40
predicts that mutations go to loss in that an average
of about six generations, roughly consistent with 
the simulation. The mutation that goes to fixation
does so in 60 generations, taking a zig-zag trajectory
of allele frequency. Equation 3.40 predicts that 
an average of about 39 generations will elapse for 
those mutations that go to fixation when Ne = 10,

1
2Ne

1
1

2
−

Ne

1
2Ne

suggesting that the simulation result is somewhat
greater than the expected average time to fixation.

··

PopGene.S2 can be used to simulate the
fate of new mutations in a finite population.
Click on the Mutation menu and then
select Neutral Mutation. Initially, try the
simulation using the default values of
mutations introduced every 30 generations,
a population of Ne = 10 and 200 generations.
Tabulate the number of fixations and 
losses over several separate runs (the fate
and frequency of each new mutation is
independent). What are the expected
number of new mutations that go to fixation
and loss and how do these expectations
compare with the results of the simulation?
Then increase the population size to Ne = 50
and view 400 generations. How does the
number of new mutations going to fixation
and loss change? How does the time that
new mutations segregate change?

Interact box 5.1
Frequency of neutral mutations 

in a finite population
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Figure 5.4 The frequencies over time of new mutations 

that each have an initial frequency of . In this example, 

one new mutation is introduced into the population every 
30 generations and Ne = 10. All of the mutations except one
(solid line) go to loss within a few generations. The one allele
that does go to fixation takes a relatively long time to do so
compared with the time to loss. At the start of the simulation
the ancestral allele has a frequency of 1 (not shown). When a
new mutation reaches fixation, the original ancestral allele is
lost and the new mutation becomes the ancestral allele.
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These predictions for the frequency and fate of new
neutral mutations under genetic drift suggest that at
least some genetic variation is maintained in popula-
tions simply due to the random allele-frequency
walk that new mutations take before reaching either
fixation or loss. If the population shown in Fig. 5.4
were observed at a single point in time, it is possible
that it would be polymorphic since a new mutation
happened to be somewhere between fixation and
loss. Observing many such loci at one point in time, 
it would be very likely that at least some of them
would be polymorphic. This observation forms the
basis of the neutral theory of molecular evolution,
the hypothesis that genetic variation in populations
is caused by genetic drift, covered in Chapter 8.

Geometric model of mutations fixed 
by natural selection

The third perspective on the fate of new muta-
tions will focus on beneficial mutations, looking 
first at mutations fixed by natural selection alone
and then at mutations fixed by the combined pro-
cesses of natural selection and genetic drift. In 
addition to considering how new mutations are lost
during segregation, in 1930, Fisher (see Fisher 1999
variorum edition) constructed another model of the
fate of mutations that are acted on by the process of
natural selection. As discussed earlier in the chapter,
mutations may have a range of effects on fitness as
well as on any phenotype with variation that has 
a genetic basis. The model Fisher developed sought 
to determine the range or distribution of the effect
sizes (the amount of change in the phenotype caused
by each mutation) of the beneficial mutations that
are fixed by natural selection over time. Are the
mutations that are fixed by natural selection all of
large effect or all of small effect, or do they have effect
sizes that fall into some type of distribution? It is 
quite likely that you are aware of the generalizations
of this model without being aware of where these
conclusions came from or what assumptions are
involved. The generalization is that beneficial muta-
tions have small effects: we do not expect to see
beneficial changes taking place in single big leaps.
This view of evolution is called micromutationalism,
a concept that has been profoundly influential in
evolutionary biology and population genetics (see
Orr 1998a and references therein). The model that
leads to this conclusion is called the geometric model
of mutation and is developed in this section.

Fisher imagined a situation where the values of two
phenotypes determined the survival and reproduc-
tion, or fitness, of an individual organism (fitness is
defined rigorously in Chapter 6). An example of two
phenotypes might be the number of leaves and the
size of leaves to achieve the maximum light capture
for photosynthesis for a species of plant. However,
the exact nature of the phenotypes is not important
in the model as long as they contribute to the fitness
of individuals. The critical point to understand is that
phenotypic values closer to the maximum fitness
value (Fisher called this the “optimum”) are favored
by natural selection, causing genotypes conferring
higher fitness phenotypes to increase in frequency
and fix in a population over time. Figure 5.5 shows
the model. The values of the two traits are repres-
ented by two axes and the optimum fitness value for
the combination of the two traits is at the center, the
point labeled O for optimum.

Let’s say an individual has values of the two 
phenotypes that put it at point A on the phenotypic
axes, some distance r from the optimum fitness. 
All the points on a circle of radius r centered at the 
optimum have the same fitness as the fitness of the
individual at point A (the dashed circle in Fig. 5.5a).
Next, imagine that random mutations can occur to
one allele of the genotype of the individual at point A.
If the effects of mutations are random, then a muta-
tion could move the phenotype in any direction from
point A, and these moves could be of any distance large
or small away from point A. Some mutations would
move the phenotype a short distance whereas others
cause a long-distance move; some mutations move
the phenotype toward the optimum whereas others
move the phenotype away from the optimum.

From this graphical model, can we determine what
types of mutational change are likely to be fixed by
natural selection and contribute to adaptive change?
One conclusion from the model is that mutations
with a very large effect on phenotype (change in 
phenotype greater than 2r) cannot get the pheno-
type any closer to the optimum even if they are in the
right direction. Since mutations of very large effect
always move the phenotype further away from the

Micromutationalism The view that beneficial
mutations fixed by the process of natural
selection have small effects and therefore that
the process of adaptation is marked by gradual
genetic change.
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optimum fitness outside the dashed circle, these will
never be fixed by natural selection.

What about mutations with smaller effects?
Figure 5.5b shows two situations where the pheno-
typic effect of a mutation is smaller (change in 
phenotype less than 2r). On the right there is a muta-
tion with a larger effect on the phenotype and on the
left a mutation with a smaller effect on the phenotype.
Both of these mutations could be in any direction,
specified by the circle around A with a radius m
to indicate the magnitude of the mutational effect.
Notice that as the mutation gets larger in effect, 
less of the circle describing the effect on the pheno-
type falls inside of the dashed circle that describes 

the current fitness of the individual at point A. As 
the phenotypic effect of a mutation approaches zero 
(m → 0), its effect circle will approach being half
inside the arc of current fitness and half outside 
the arc of current fitness. Said the other way, as the 
phenotypic effect of a mutation gets larger and 
larger its effect circle encompasses more and more
area outside the arc of current fitness. As mutations
increase in their phenotypic effect they have an
increasing probability of being in a direction that will
make fitness worse rather than better. Therefore,
natural selection should fix more mutations of small
effect than of large effect since smaller mutations have
a greater probability moving the phenotypic value
toward the optimum. Mutations with almost zero
effect have close to a 1/2 chance of being favorable
while large mutations have a diminishing chance of
being favorable.

This can be described in an equation:

P(mutation improves fitness) = (5.12)

where m is the radius of the phenotypic effect of a
mutation and r is the distance to the optimum from
the current phenotypic value. As m goes to zero, the
probability that a mutation moves the phenotype
closer to the optimum approaches 1/2. For mutations
of increasing effect, there is a diminishing probability
that they improve fitness. When m is equal to twice
the value of r there is no chance that the mutation
will improve fitness: a mutation of effect 2r could just
reposition A on the opposite side of the equal fitness
circle around the optimum at best.

Fisher also reasoned that the fitness of organisms
depends on many independent traits since the pheno-
types of organisms must meet many requirements
for successful growth, feeding, avoidance of preda-
tion, mating, and so forth. He therefore assumed that
the dashed circle of equal fitness shown in Fig. 5.5 for
illustration was really better represented by a space
of many dimensions. In n dimensions, the measure of
whether or not a mutation is large or small relative
to the distance to the point of maximum fitness (r) 

is gauged by instead of m/2r in equa-

tion 5.12. The main point is that increasing phenotypic
dimensions cause the probability that a mutation
improves fitness to decline more rapidly as its pheno-
typic effect gets larger. The top panel of Fig. 5.6 plots
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Figure 5.5 R.A. Fisher’s geometric model of mutations 
fixed by natural selection. (a) Axes for two hypothetical
phenotypes that determine fitness with maximum fitness
when both phenotypes have the values at the center point
marked with the black dot. An individual (or the mean
phenotype of a population) with a phenotypic value is some
distance from the maximum fitness. The dashed circle shows
a perimeter of equal fitness around the point of maximum
fitness. Although only two phenotypes define fitness in this
example, the dashed circle of equal fitness would be a sphere
with three phenotypes and an n-dimensional hyperspace if 
n phenotypes contribute to fitness. (b) Two mutations with
smaller or larger phenotypic effects. The phenotypic effect of
the mutations could be in any direction around the current
phenotype (circles with radius m). Mutations with smaller
effects have a better chance of moving the phenotype toward
the maximum fitness (more of the area of the mutation-effect
circle is to the left of the dashed line of equal fitness).
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a version of equation 5.12 which assumes that fitness
is determined by many independent phenotypes.
This shows the distribution of the probability that a
mutation improves fitness as the multi-dimensional
phenotypic effect of a mutation increases.

The conclusion from the geometric model of muta-
tion is evident in the top panel of Fig. 5.6. Mutations
with small effects are most likely to bring an organism
closer to its fitness optimum and are therefore most
likely to be fixed by natural selection. Mutations of
larger effect have a lower probability of improving
fitness and are therefore less likely to be fixed by 
natural selection. Fisher compared the situation to
the focus adjustment on a microscope. If a micro-
scope is close to being in focus, then large random

changes to the adjustment are likely to make things
worse while small random changes are more likely
to make the focus better. A logical consequence of
Fisher’s model is that the mutation fitness spectrum
approaches 50% deleterious and 50% beneficial
mutations as mutation effects approach zero. This
prediction is not consistent with the general picture
of the mutation fitness spectrum in Fig. 5.1.

Many years later, Kimura (1983a) reevaluated
the predictions of the geometric model of muta-
tion by relaxing Fisher’s implicit assumption of an 
infinite effective population size. This change allows
genetic drift to operate on the frequency of mutations 
along with natural selection. In a finite population,
allele frequency is determined by a combination of 
sampling error and the effect of natural selection to
fix alleles with higher average fitness. Natural selec-
tion will only determine the fate of an allele if it is
stronger than the randomizing effect of genetic drift.
The pressure of natural selection also depends on 
the phenotypic effect of a mutation – mutations with
a larger effect experience a stronger push toward
fixation. Thus, the push toward fixation by natural
selection is strongest for those new mutations that
have the largest effects. In other words, new mutations
with small effects are likely to experience random
fixation or loss by genetic drift. The bottom panel of
Fig. 5.6 shows the probability that a new mutation 
is fixed by natural selection in a finite population.
The mutations with the smallest phenotypic effects
are still most likely to move the phenotype toward
higher fitness. However, this is now balanced by the
effect of genetic drift, which has the greatest impact
on new mutations with small effects on fitness. The
modified result is that new mutations with an inter-
mediate effect on fitness are the most likely to fix
under natural selection in a finite population.

Orr (1998) provides an analysis of the effect sizes
of mutations that are fixed by natural selection in a
finite population that compensates for the fact that
the effect of mutations must shrink as a population
gets closer to the maximum fitness over time. The 
net balance of natural selection and genetic drift is
considered in detail in later chapters and the pheno-
typic effects of loci and alleles are treated in detail in
Chapter 9 on quantitative genetics.

Muller’s Ratchet and the fixation of deleterious
mutations

The fourth and final perspective on the fate of a 
new mutation focuses on deleterious mutations that
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Figure 5.6 The probability that a mutation is fixed by
natural selection depends on the magnitude of its effect on
fitness. Using the geometric model of mutation and assuming
that fitness is determined by many phenotypes, Fisher showed
the probability that a mutation improves fitness approaches
1/2 as the effect of a mutation approaches 0 (top panel). This
result comes about because smaller mutations have a better
chance of moving the phenotype toward the optimum than
do larger mutations (see Fig. 5.5). Kimura pointed out that
mutations with small effects on fitness are also the most likely
to be fixed or lost due to genetic drift rather than by natural
selection. Combining the chance that a mutation moves the
phenotype toward higher fitness and the chance that a
mutation has a large-enough fitness difference to escape
genetic drift suggests that mutations with intermediate effects
are most likely to be fixed by natural selection (bottom panel).
Both models assume that mutations of any effect on fitness
are equally likely to occur.
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occur within genomes lacking recombination. The
combination of mutation, genetic drift, and natural
selection results in the progressive loss of the class 
of individuals in a population with the fewest muta-
tions, in a phenomenon called Muller’s Ratchet
(Muller 1964; Maynard Smith 1978; Charlesworth
& Charlesworth 1997). The name is an analogy to a
mechanical device like a ratchet wrench that per-
mits rotation in only one direction. Muller’s Ratchet
results in the accumulation of more and more muta-
tions in a population, which leads to ever-declining
average fitness in populations if most mutations are
deleterious. Thus, Muller’s Ratchet demonstrates a
selective advantage of recombination under some
conditions.

To see how Muller’s Ratchet works in detail, con-
sider a finite population of haploid individuals that

reproduce clonally. Assume that all mutations at 
all loci are equally deleterious and acted against by 
natural selection to the same degree. The selective
disadvantage is s at each locus with a mutation and
the total selection coefficient against an individual
with n mutated loci is (1 − s)n. Further, assume that
mutation is irreversible and can only make deleterious
alleles from wild-type alleles but not wild-type alleles
from deleterious ones. Initially, all individuals in the
population start off with no mutations. Mutations
that occur decrease the proportion of individuals
with no mutations and increase the frequencies of
individuals with 1,2,3 . . . n mutations. Over time,
the frequency of the zero mutation category declines
while the frequencies of individuals with one or more
mutations increases. This process can be seen in the
top two panels of Fig. 5.7.
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Figure 5.7 Simulation results show the action of Muller’s Ratchet in increasing the number of deleterious mutations in the
absence of recombination. Initially, all haploid individuals in the population have zero mutations. Mutations occur randomly 
over time and continually reduce the frequency of individuals with fewer mutations. Genetic drift causes sampling error and the
stochastic loss of mutation classes with few individuals. Individuals with more mutations are less likely to reproduce, due to
natural selection against deleterious alleles. Once the category with fewest mutations (e.g. the zero mutations class) is lost due 
to genetic drift and mutation, there is no process that can repopulate it. Therefore, the distribution of the number of mutations
continually moves to the right but can never move back to the left. The simulation parameters were Ne = 200 and μ = 0.06, each
mutation reduced the chance of reproduction by 1%, and each individual had 100 loci.
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Genetic drift and natural selection are also acting
along with mutation on the frequencies of individuals
with different numbers of mutations. The sampling
error of genetic drift can result in the stochastic 
loss of mutation categories with a low frequency 
in the population. This effect of genetic drift works
regardless of the number of mutations. Any category
of mutations lost by drift can be reestablished via
mutation from individuals with fewer mutations.
However, when all the individuals with the lowest
number of mutations are lost from the population
that fewest-mutation category is gone forever. This
is because mutation cannot make wild type-alleles
that would reduce the number of deleterious muta-
tions. Also, the fewest-mutation category cannot be
reconstituted because there is no recombination.
The overall effect of genetic drift is to push the fre-
quency distribution of the number of mutations
toward higher numbers. In contrast, natural selec-
tion tends to push the distribution of the number of
mutations toward lower numbers since individuals
with more mutations are increasingly disfavored by
natural selection.

If the effective population size is small, Muller’s
Ratchet also leads to accelerated rates of fixation to a
single allele within the category of individuals with
fewest mutations. This occurs since the category of
fewest mutations is not renewed by mutation. It is
also finite and consists of alleles that have identical
fitness, so that genetic drift will eventually cause fixa-
tion of a single allele within that mutation category.
This effect has implications for genomes with low
levels of recombination or in diploid populations
with mating systems that lead to high levels of homo-

zygosity that effectively nullify recombination. In
these situations, fixation may occur at higher rates
than for deleterious mutations in genomes with free
recombination and the same effective population size
(see Charlesworth & Charlesworth 1997).

5.3 Mutation models

• The infinite alleles, k alleles, and stepwise mutation
models.

• Understanding the implications of mutation models
using the standard genetic distance and RST.

• The infinite sites and finite sites mutation models
for DNA sequences.

Mutation acts in diverse ways and can produce a
wide range of changes at the level of alleles and 
DNA sequences. To study the allele frequency conse-
quences of mutation it is helpful to construct some
simplifying models of the mutation process itself.
Mutation models attempt to capture the essence 
of the genetic changes caused by mutation while 
at the same time simplifying the process of mutation
into a form that permits generalizations about allele
frequency changes. There is no single model of the
process of mutation, but rather a series of models
that serve to encapsulate different features of the
mutation process for different classes of loci and 
different types of alleles. Often, mutation models are
motivated by molecular methods such as allozyme
electrophoresis or DNA sequencing used to assay
genetic variation in actual populations. This sec-
tion introduces and describes the major classes of
mutation models. Two types of mutation model for 

Selecting the Muller’s Ratchet module from the Mutation menu of PopGene.S2 opens a
simulation of the fate of new deleterious mutations in a finite population of chromosomes that lack
recombination. The simulation starts out with a population of haploid, clonal individuals that have
no mutations and then lets mutation, genetic drift, and natural selection act. The fitness of each
individual determines its chances of contributing progeny to the next generation. The number of
progeny produced by each individual is Poisson-distributed with a mean of one. The effective size
of the population, the coefficient of selection against deleterious mutations, and the mutation rate
can be set in the simulation. The results are given in terms of the proportion of individuals in the
population with a given number of mutations.

Initially, run the simulation using the default values. Then try independently increasing the
effective population size (or the population size of haploid chromosomes), the selection coefficient
against the deleterious mutations, and the chance of a deleterious mutation. Predict the impact of
each simulation parameter on the frequency distribution of the number of mutations per genome
before you change each parameter.

Interact box 5.2 Muller’s Ratchet
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discrete alleles are applied in measures of genetic 
difference between populations to show the role
mutation models play in the interpretation of genetic
differences. Mutation models for DNA sequences are
applied in the last section of the chapter on mutation
in genealogical branching models.

Mutation models for discrete alleles

A repeated theme in earlier chapters was determining
expected levels of homozygosity and heterozygos-
ity (autozygosity and allozygosity) under different 
population genetic processes. A key assumption 
in many of these expectations is that identity in 
state can be treated as identity by descent. In other 
words, alleles identical in state look alike because
they descended from a common ancestral allele 
copy at some point in the past. The infinite alleles
model of mutation (see Kimura & Crow 1964) is an
assumption used to guarantee that identity in state is
equivalent to identity by descent. Under the infinite
alleles model, each mutational event creates a new
allele unlike any other allele currently in the popula-
tion. Once a given allelic state is made by mutation
the first time it can never be made by mutation ever
again. In essence, the allelic state is crossed off the 
list of possible mutations. The infinite alleles model,
serves to avoid the possibility that two alleles are
identical in state but not identical by descent, as can
occur if the same allele can be made by mutation
repeatedly over time. Under the infinite alleles model,
mutation produces the original copy of each allele but
is not an ongoing process influencing the frequency
of any allele already in the population. Processes other
than mutation are responsible for allele and geno-
type frequencies after an allele exists in a population.
An additional consequence is that the evolutionary
“distance” or number of transition events between
all alleles is the same, since all alleles are produced 
by a single mutational event and alleles can never
accumulate multiple mutations. This means that all
alleles can be treated as equivalent when estimating
heterozygosity or fixation indices.

The infinite alleles model might roughly approx-
imate the mutational process for molecular markers
like allozymes since alleles take discrete states (e.g.
fast or slow migration on a gel) and allozyme loci 
are generally observed to have low mutation rates 
so it is likely that most alleles in a sample are not
recently the product of mutation. A length of DNA
sequence might also approximate the infinite alleles
model. In a sequence of 500 nucleotides there are

4500 = 1.072 × 10301 unique combinations of the
nucleotides. If mutation is purely random and muta-
tion changes an existing nucleotide to any other
nucleotide with equal probability, many mutations
could occur in a population of DNA sequences with-
out producing a duplicate allele since there are a
truly staggering number of possible alleles.

There are several features of the mutational process
that the infinite alleles model does not account for,
and therefore there are a number of other mutation
models. Obviously, there are not an infinite number
of alleles possible at actual genetic loci. The k alleles
model of mutation is an alternative to the infinite
alleles model where k refers to a finite integer 
representing the number of possible alleles. In this
model each allele can mutate with equal probability
to each of the other k − 1 possible allelic states. With
the k alleles model the same allele can be created 
by mutation repeatedly, blurring the equivalence 
of identity in state and identity by descent. As the
number of possible alleles or k decreases and as the
mutation rate increases, allelic state becomes a poorer
and poorer measure of identity by descent since an
increasing proportion of alleles with identical states
have completely independent histories. The term
homoplasy refers to allelic states that are identical
in state without being identical by descent.

The infinite alleles and k alleles models both assume
that the allelic state produced by mutation is 

··

Homoplasy The condition where allelic states
are identical without the alleles being identical
by descent.
Infinite alleles model A model where each
mutational event creates a new allele unlike
any other allele currently in the population so
that identity in state for two or more alleles 
is always a perfect indication of identity by
descent.
k alleles model A mutation model 
where each allele can mutate to each of the
other k − 1 possible allelic states with equal
probability.
Stepwise mutation model A mutation model
where the allelic states produced by mutation
depend on the initial state of an allele. Alleles
with a greater difference in state are therefore
more likely to be separated by a greater
number of past mutational events.
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independent of the current state of an allele. With
these models each allele has an equal probability 
of mutating to any of the other allowable allelic
states. It is also possible that the state of a new allele
produced by mutation is not independent of the 
initial state of an allele. An example is the common
observation that transitions are more common than
transversions in diverged DNA sequences. The step-
wise mutation model accounts for cases where
allelic states are somehow ordered and the allelic states
produced by mutation depend on the initial state of
an allele (Kimura & Ohta 1978). Mutations by
slipped-strand mispairing at microsatellite or simple
sequence repeat loci produce new allelic states within
one or a few repeats of the initial allelic state much
more often than mutations that are many repeats dif-
ferent than the initial allelic state. Microsatellite loci
are therefore a prime example of ordered, stepwise
mutation where alleles closer in state are more likely
to be recently identical by descent than alleles that
are very different in state. See evidence for human
microsatellite loci in Valdes et al. (1993).

The role of mutation models is illustrated in sum-
mary measures that express the genetic similarity 
or dissimilarity of individuals or populations, called
genetic distances. The standard genetic distance
or D measure developed by Nei (1972, 1978) has
been widely employed. Given allele frequencies for
several populations, D (not to be confused with the
measure of gametic disequilibrium) expresses the
probability that two alleles each randomly sampled
from two different subpopulations will be identical 
in state relative to the probability that two alleles
randomly sampled from the same subpopulation are
identical in state. Table 5.4 gives hypothetical allele
frequencies at one locus in two subpopulations that
can be used to compute D. With random mating, 
the total probability that two identical alleles are
sampled from subpopulation 1 is

J11 = = (0.6)2 + (0.3)2 + (0.1)2

= 0.46 (5.13)

and the total probability that two identical alleles are
sampled from subpopulation 2 is

J22 = = (0.4)2 + (0.6)2 + (0.0)2

= 0.52 (5.14)

where pik indicates the frequency of allele k in popula-
tion i. The total probability of sampling an identical
allele from subpopulation 1 and subpopulation 2 is

J12 = = (0.6)(0.4) + (0.3)(0.6)

+ (0.1)(0.0) = 0.42 (5.15)

The normalized genetic identity for this locus is then

(5.16)

which is used to compute the genetic distance as

D = −ln(I ) = −ln(0.8589) = 0.152 (5.17)

When two subpopulations have identical allele 
frequencies J11 and J22 are equal, I is then one and 
the natural logarithm of one is zero, giving a genetic
distance of zero. D has no upper limit. Although this
genetic distance can be calculated for any pair of
populations, D for completely isolated populations
where divergence is due exclusively to mutation is
expected to increase linearly with time under the
infinite alleles model. This expectation relies on
mutation not causing any homoplasy so that alleles

I
J

J J
= = =12

11 22

0 42

0 46 0 52
0 8589

.

( . )( . )
.

p pk k
k

alleles

1 2
1=

∑

p k
k

alleles

2
2

1=
∑

p k
k

alleles

1
2

1=
∑

Table 5.4 Hypothetical allele frequencies in two subpopulations used to compute the standard genetic
distance, D. This example assumes three alleles at one locus, but loci with any number of alleles can be used. 
D for multiple loci uses the averages of J11, J22, and J12 for all loci to compute the genetic identity I.

Allele Subpopulation 1 Subpopulation 2

Frequency p2
ik Frequency p2

ik

1 0.60 p2
11 = 0.36 0.40 p2

21 = 0.16
2 0.30 p2

12 = 0.09 0.60 p2
22 = 0.36

3 0.10 p2
13 = 0.01 0.00 p2

23 = 0.00
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identical in state are always identical by descent. If the
infinite alleles model is not met, D underestimates
the true genetic distance because the mutational
events that record the history of the populations will
not be reflected perfectly in the allele frequencies.

With an awareness of mutation models, we can
also reflect back on measures of genetic divergence
among populations covered earlier in the book.
Chapter 4 gave the expression for the fixation index
among subpopulations relative to the total population

. It turns out that this assumes the 

infinite alleles model since it treats all alleles as being
an equal number of mutational steps apart with all
heterozygotes considered equally distant. There is 
an alternative method to compute the fixation index
that depends instead on the stepwise mutation model
where the fixation index is measured by

(5.18)
  
}ST
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where ST is twice the variance in allelic sizes in the total
population and SW is twice the average of the within
subpopulation variance in allelic sizes (Slatkin 1995;
Goodman 1997). The states of the alleles then influ-
ence the perceived amount of population subdivision.
Alleles with states further apart (greater variance 
in state) are counted more heavily in the estimate 
of population structure since they are less likely to 
be recently identical by descent (multiple stepwise
mutations would be required to make a large change
in state). In contrast, alleles with very similar states
(less variance in state) make a smaller contribution
to the estimate of population subdivision since they
are more likely to be recently identical by descent but
changed in state due to mutation. Using the stepwise
mutation model and RST accounts for high rates of
mutation that can give the appearance of more or less
gene flow than has actually occurred. Table 5.5 gives
hypothetical genetic data from two subpopulations,
illustrating the degree of population subdivision under
the infinite alleles and stepwise mutation models.

··

Table 5.5 A comparison of hypothetical estimates of population subdivision assuming the infinite alleles
model using FST or assuming the stepwise mutation model using RST. Allelic data expressed as the number of
repeats at a hypothetical microsatellite locus are given for two subpopulations in each of two cases. In the case
on the left, the majority of alleles in both populations are very similar in state. Under the stepwise mutation
model the two alleles are separated by a single change that could be due to mutation. The estimate of RST is
therefore less than the estimate of FST. In the case on the right, the two populations have alleles that are very
different in state and more than a single mutational change apart under the stepwise mutation model. In
contrast, all alleles are a single mutational event apart in the infinite alleles model. The higher estimate of RST
reflects greater weight given to larger differences in allelic state.

Case 1 Case 2

Subpopulation 1 
(number of repeats) 9, 10, 10, 10, 10, 10, 10, 10, 10, 10 9, 10, 10, 10, 10, 10, 10, 10, 10, 10

Subpopulation 2 
(number of repeats) 12, 11, 11, 11, 11, 11, 11, 11, 11, 11 19, 20, 20, 20, 20, 20, 20, 20, 20, 20

Allele size variance 
in subpopulation 1, S1 0.10 0.10

Allele size variance 
in subpopulation 2, S2 0.10 0.10

Allele size variance 
in total population, ST 0.947 52.821

RST 0.789 0.996

Expected heterozygosity 
in subpopulation 1, H1 0.18 0.18

Expected heterozygosity 
in subpopulation 2, H2 0.18 0.18

Average subpopulation 
expected heterozygosity, HS 0.18 0.18

Expected heterozygosity 
in total population, HT 0.59 0.59

FST 0.695 0.695
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Mutation models for DNA sequences

There are two widely used conceptual models of the
process of mutation operating on DNA sequences
(note that these types of models also apply in prin-
ciple to amino acid sequences). One approximation 
for the process of mutation with DNA sequences is
the infinite sites model. Each allele is an infinite
DNA sequence and each mutation occurs at a differ-
ent position along the DNA sequence. The infinite
sites model can be thought of as an infinite alleles
model built specifically for DNA sequences. A key 
distinction is that the infinite sites model permits 
the process of mutation to act on each allele in a 
population any number of times. As a consequence,
the evolutionary “distance” between pairs of alleles
can vary since a few or many sites differ between
pairs of alleles depending on how many mutations
have occurred for each allele. Figure 5.8a shows 
an example of how mutations might occur for 
DNA sequences under the infinite sites model. For
example, after the fourth base-pair position (or site)

Under the infinite alleles model allelic 
state is irrelevant in estimating population
structure. However, in the stepwise
mutation model, allelic states are weighted
in the total estimate of population
structure. Computing RST and FST for 
two subpopulations in a Microsoft Excel
spreadsheet will help you develop a better
understanding of how mutational models
influence the perception of population
structure. Enter your own allelic state values
in the Excel spreadsheet to explore how
allelic state differences as well as allele
frequencies produce different estimates of
the amount of population structure.

Interact box 5.3
RST and FST as examples of the

consequences of different
mutation models

...CATGGATCTT... ...CATGGATCTT... ...CATGGATCTT...

Ti
m

e

...CATcGATCTT... ...CATGGATCTT... ...CATGGAaCTT...

...gATGGATaTT......CATcGATCTg... ...CATGGAaCTT...

Sequence 2 ...gATGGATaTT...

Sequence 1

Sequence 1 Sequence 2 Sequence 3

...CATcGATCTg...

Sequence 3 ...CATGGAaCTT...

Sequence 1 Sequence 2 Sequence 3(a)

(b)

CATGGATCTT CATGGATCTT CATGGATCTT

Ti
m

e

CATcGATCTT CATGGATCTa CATGGAaCTT

gATGGATaTaCATgGATCTg CATGGAcCTT

Sequence 2 gATGGATaTa

Sequence 1 CATgGATCTg

Sequence 3 CATGGAcCTT

Figure 5.8 Patterns of mutational
change in DNA sequences under the
infinite sites (a) and finite sites (b)
models. Base-pair states created by 
a mutation are in blue lower-case
letters. In the infinite sites model
sequences that are identical in state
at the same site are identical by
descent because mutations only
occur once at each site. In contrast,
the finite sites model shows how
multiple mutations at the same site
act to obscure the history of identity
based on comparisons of site
differences among DNA sequences.
The ellipses ( . . . ) that surround the
sequences in (a) indicate that each
sequence has infinitely many sites of
which only 10 are displayed.
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of sequence 1 mutates from G to C, no more mutations
can take place at that site. The sites where muta-
tions took place can therefore all be distinguished 
in alignment of the sequences since each site only
experiences a mutation once. Although other pro-
cesses such as genetic drift and natural selection
may influence the frequency of the sequences, we
can conclude that sequences sharing the same base
at a site are identical by descent.

Although no DNA sequence is infinite, the infinite
sites model is a reasonable approximation if not 
too much time has passed since sequences shared a
common ancestor. If mutation occurs randomly and
with equal probability at each site, then any single
site has a small chance of experiencing a mutation
twice (e.g. the rate of mutation per site squared is
small). Over a relatively short period of time, say
1000s of generations, only a few mutations are likely
to occur and so it is unlikely that one site mutates
more than once.

However, actual DNA sequences are finite and the
time period for mutations to occur can be very long,
so a mutation model taking these facts into account
is useful. The finite sites model is used for DNA
sequences of a finite length. It is similar to the infinite
sites model except that now the number of sites is
finite and each site can experience a mutation more
than once. Multiple mutations have the potential to
obscure past mutational events as shown in Fig. 5.8b.
For example, two sequences are either identical or
different at each site even though a site where they
differ may have mutated more than once in the 
past. The fourth site in sequence 1 is such a case.
Although there have been two mutations at that site,
the second mutation leads to the same nucleotide
that was originally in that position. However, in the
alignment of all three sequences the fourth site is
identical and it is not possible to detect the two muta-
tion events that occurred for sequence 1. Consider 
a similar example of site 7 in sequence 3 and what
happens when we compare pairs of sequences.
Sequences 2 and 3 differ by four sites (1, 7, 8, and 10)
but there are actually five mutational events that
separated them in the past. Sequences 1 and 3 differ
at three sites (4, 7, and 10) but there are actually five
mutation events separating them. Thus, multiple
mutational changes at the same site work to obscure
the complete history of mutational events that dis-
tinguish DNA sequences.

The possibility of multiple mutational changes at the
same site, often called multiple hits, leads to satura-
tion of mutational changes over time as mutations

occur more times at the same sites. Saturation can 
be “corrected” using nucleotide substitution models
that estimate and adjust for multiple mutations at the
same site to estimate the “true” number of events that
separate two sequences. One such correction called
the Jukes–Cantor model is covered in Chapter 8.

One way to understand the impacts of multiple hits
is to imagine a situation similar to the beakers con-
taining micro-centrifuge tubes in Chapter 3. Now the
beakers contain a very large number of nucleotides
(A, C, T, and G) at equal frequencies. Imagine com-
posing two DNA sequences by drawing nucleotides
from the beaker. The chance that a given nucleotide
is sampled at random is 25%. Therefore, given one
random DNA sequence there is a 25% chance that
another random DNA sequence shares an identical
base pair at the same site. Therefore, DNA sequences
that have experienced many mutations at the same
site are expected to be identical for 25% of their 
base pairs. Therefore, when there is the possibility of 
multiple hits, identity in state is not a perfect indica-
tor of identity by descent.

5.4 The influence of mutation on allele
frequency and autozygosity

• Irreversible and bi-directional mutation models.
• The parallels between the processes of mutation

and gene flow.
• Expected autozygosity at equilibrium under muta-

tion and genetic drift.
• Expected heterozygosity and the biological inter-

pretation of θ.

In developing expectations for allele and genotype
frequencies to this point, all processes served only 
to shape existing genetic variation. To understand
the consequences of mutation requires models that
predict allele and genotype under the constant input

··

Infinite sites model A model for the process
of mutation acting on infinitely long DNA
sequences where each mutation occurs at a
different position along the DNA sequence
and the same position cannot experience a
mutation more than once.
Finite sites model A model for the process of
mutation acting on DNA sequences of finite
length so that the same site may experience a
mutation more than once.
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of genetic variation by mutation. This section pres-
ents three models for the process of mutation. The
first two models are related and ask how recurrent 
mutation is expected to change allele frequencies
over time in a population. The third model pre-
dicts genotype frequencies when genetic drift and
mutation are both operating, showing how the com-
bination of these processes influences autozygosity
in a population.

Let’s develop two simple models to predict the
impact of constant mutation on allele frequencies
(sometimes called mutation pressure) in a single
panmictic population that is very large. Both models
will focus only on the process of mutation and leave
out other processes such as genetic drift or natural
selection. Consider one locus with two alleles, A and
a, where the frequency of A is represented by p and
the frequency of a is represented by q. For the first
model, assume that mutation operates to change A
alleles into a alleles but that a alleles cannot mutate
into A alleles. This is called the irreversible mutation
model. The chance that mutation changes the state
of each A allele every generation is symbolized by μ
(pronounced “mu”). The frequency of the A allele
after one generation of mutation is then

pt+1 = pt(1 − μ) (5.19)

where the (1 − μ) term represents the proportion of
A alleles that do not mutate to a alleles at time t. As
long as μ is not zero, then the frequency of A alleles
will decline over time because 1 − μ is less than one.
This also must mean that the proportion of the a 
alleles increases by μ each generation. If the mutation

rate is constant over time, then the allele frequency
after an arbitrary number of generations is

pt = p0(1 − μ)t (5.20)

where p0 is the initial allele frequency and t is the
number of generations that have elapsed.

With irreversible mutation, eventually all A alleles
will be transformed into a alleles by mutation since
there is no process that replaces A alleles in the 
population. Figure 5.9 shows the expected frequen-
cies of the A allele over time starting at five different
initial allele frequencies when the mutation rate is 
μ = 1 × 10−5 or 0.00001. Notice that the time scale
to reduce the frequency of the A allele is very long. 
In this example, the equilibrium allele frequency of 
p = 0 has not been reached even after 100,000 
generations. In fact, it takes 69,310 generations to
halve the frequency of A with this mutation rate (the 

halving time is determined by setting )  
  
( )1

1
2

− =μ t

Irreversible mutation For a locus with two
alleles, a process of mutation that changes 
A alleles into a alleles but does not change a
alleles to A alleles.
Mutation pressure The constant occurrence
of mutations that add or alter allelic states in a
population.
Reversible or bi-directional mutation For a
locus with two alleles, a process of mutation
that changes A alleles into a alleles and also
changes a alleles to A alleles.
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 (p
) Figure 5.9 Expected change in allele

frequency due to irreversible or one-way
mutation for a diallelic locus for five initial 
allele frequencies. Here the chance that an 
A allele mutates into an a allele (or the per
locus rate of mutation) is 0.00001. This rate 
of mutation is high compared with estimates 
of the per-locus mutation rate (see Table 5.1).
The expected equilibrium allele frequency is 
p = 0 since there is no process acting to replace 
A alleles in the population. The population has
not reached equilibrium even after 100,000
generations have elapsed. Changes in allele
frequency due to mutation alone occur over
very long time scales.
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even using a mutation rate at the high end of the
observed range (Table 5.1). To generalize from the
irreversible mutation model, we can expect that 
the process of mutation does influence allele frequen-
cies but that substantial changes to allele frequency
caused by mutation alone will take thousands or
tens of thousands of generations depending on the
mutation rate.

The assumption of irreversible mutation is not bio-
logically realistic. Mutation can usually change the
state of all alleles, resulting in both forward (A → a)
and reverse (a → A) mutation for a diallelic locus. The
bi-directional or reversible mutation model takes
this possibility into account using independent rates
of forward mutation (μ) and reverse mutation (ν,
pronounced “nu”). With mutation pressure in both
directions we can again ask how mutation will change
allele frequencies in a population over time. Each
generation, μ of the A alleles mutate to a alleles while
at the same time ν of the a alleles mutate to A alleles.
The allele frequency after one generation is therefore

pt+1 = pt(1 − μ) + (1 − pt)ν (5.21)

because the frequency of A alleles will decline due 
to the proportion of alleles that experience forward
mutation (pt(1 − μ)) but increase due to the proportion
of the alleles in the population that experience reverse
mutation ((1 − pt)ν). The general result is that the
equilibrium value of the frequency of A is determined
by the net balance of the two rates of mutation:

(5.22)
  
pequilibrium =

+
ν

νµ

as derived in Math box 5.1. So whatever the starting
frequency of the A allele, the population will con-
verge to pequilibrium that is closer to one for the allele
produced by the higher of the two mutation rates.
Figure 5.10 shows the frequency of the A allele over
time with bi-directional mutation for five different
initial allele frequencies. Because the forward and
backward mutation rates used for the figure are not
equal but are within a factor of five, both alleles have
intermediate frequencies at equilibrium. The num-
ber of generations required to reach the equilibrium
allele frequency is again very long, just as it is with
the irreversible mutation model.

It turns out that the process of mutation within a
population is exactly analogous to the process of gene
flow among several subpopulations. Compare allele
frequency in Fig. 5.9 with irreversible mutation and
Fig. 4.13 which shows allele frequency under one-
way gene flow in the continent-island model. Both
processes cause allele frequencies to change toward
a state of fixation and loss and the shape of both
curves is identical. Then compare allele frequency 
in Fig. 5.10 with the process of bi-directional muta-
tion and the process of bi-directional gene flow 
in the two-island model shown in Fig. 4.14. Here 
too the shape of both curves is identical and both 
processes result in intermediate frequencies of both 
alleles at equilibrium. The major differences in the
mutation and gene-flow graphs are the time scales.
In the absence of other processes, gene flow causes
allele frequencies to approach equilibrium values in
tens or hundreds of generations whereas mutation
requires tens to hundreds of thousands of genera-
tions to approach equilibrium allele frequencies. It is

··
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Figure 5.10 Expected change in allele
frequency due to reversible or two-way
mutation for a diallelic locus for five initial 
allele frequencies. Here the chance that an A
allele mutates to an a allele (A → a) is 0.0001
and the chance that an a allele mutates to an 
A allele (a → A) is 0.00005. These mutation
rates are toward the high end of the range of
estimated mutation rate values (see Table 5.1).
The expected equilibrium value is p = 0.333
according to equation 5.22, an allele frequency
that is reached only after tens of thousands 
of generations. The time to equilibrium is
proportional to the absolute magnitudes of the
mutation rates while the equilibrium value
depends only on a function of the ratio of the
mutation rates.
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important to understand that this difference in time
scale is just a product of the vastly different rates for the
two processes rather than a fundamental difference
in the processes themselves. In the figures, the chance
that a gamete migrated was one in 10 while the chance
of an allele mutated was between one in 1000 and
one in 10,000. While these rates are likely to be on
the high end of the range of values found in natural

populations, gene flow is expected to occur at much
higher rates than mutation as a general rule. The
conclusion from this comparison is that gene flow is
a much more potent force to change allele frequencies
at single loci over the short term compared to mutation.
Mutation does have an effect, but it is longer term.

The parallel nature of the processes of gene 
flow and mutation can be used as an advantage to

To determine the equilibrium allele frequency
for a diallelic locus with the possibility of both
backward and forward mutation, we take the
basic equation that predicts allele frequency
over one generation:

pt+1 = pt(1 − μ) + (1 − pt)ν (5.23)

and try to express it as

pt+1 − a = (pt − a)b (5.24)

where a and b are constants that depend only
on the forward and backward mutation rates 
μ and ν. Expressing the equation in this way
allows us to equate pt+1 with a if the (pt − a)b
term goes to zero under certain limiting
conditions. Equation 5.24 can be rearranged
by adding a to both sides:

pt+1 = (pt − a)b + a (5.25)

and then multiplying:

pt+1 = ptb − ab + a (5.26)

and lastly factoring terms containing a to give

pt+1 = ptb + a (1 − b) (5.27)

Equation 5.23 containing the mutation rates
can be put into this same form by expanding
to give

pt+1 = pt − ptμ + ν − ptν (5.28)

which then can be factored to give

pt+1 = pt(1 − μ − ν) + ν (5.29)

Comparing equations 5.27 and 5.29 we see that

b = (1 − μ − ν) (5.30)

and

a(1 − b) = ν (5.31)

Substituting the expression for b into the
equation above gives the solution for a:

(5.32)

We can then substitute these values of a and b
into equation 5.24 to get a new expression 
for the change in allele frequency over one
generation:

(5.33)

Since the expression for change in allele
frequency over any one generation interval is
identical and the mutation rates are constant
over time, we can recast the equation above in
terms of the initial allele frequency p0 and the
number of generations that have elapsed:

(5.34)

Notice that as the number of generations
grows very large (t → ∞) the (1 − μ − ν)t term
approaches zero, making the entire right-
hand side of the equation zero. Therefore,
when many generations have elapsed, the
equilibrium allele frequency is expected to be

(5.35)
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Math box 5.1 Equilibrium allele frequency with two-way mutation
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understand more about the process of mutation. In
particular, we can learn more about how mutation
will impact autozygosity in finite populations where
genetic drift is also operating. Recall from Chapter 3 
the expression for the level of autozygosity in a finite
population caused by genetic drift:

(5.36)

Mutation breaks the chain of descent by changing
the state of alleles and therefore reduces the prob-
ability that a genotype is composed of two alleles
identical by descent (autozygous). Genotypes with
no alleles, one allele, or two alleles impacted by muta-
tion each generation have frequencies of (1 − μ)2,
2μ(1 − μ), and μ2, respectively. Only the (1 − μ)2

genotypes with no mutated alleles can contribute 
to the pool of alleles that may become identical by
descent due to finite sampling. From the opposite
perspective, we note that 2μ genotypes heterozygous
and μ2 genotypes homozygous for a new mutation
are expected each generation. Together, these two
classes of genotypes with mutations reduce the auto-
zygosity by a factor of 1 − 2μ − μ2 = (1 − μ)2. (This is

F
N N

Ft
e e

t= + − −
1

2
1

1
2 1( )

identical to the reasoning used in Chapter 4 for the
case of gene flow.)

Mutation will therefore reduce the autozygosity
caused by finite sampling in the present generation 

(chance of ) by a factor of (1 − μ)2. In addition, 

mutation will also reduce any autozygosity from
past generations (Ft−1) because some alleles that are
identical by descent may change to new states via
mutation, leaving the proportion (1 − μ)2 of geno-
types unaffected by mutation and at the same level of
autozygosity. Putting these two separate adjustments
for the autozygosity together gives

(5.37)

Assuming that the mutation rate is small and 
much, much less than the effective population size
(see derivation in Math box 4.1 for the case of gene
flow), an approximation for the expected amount of
autozygosity at equilibrium in a finite population
experiencing mutation is

(5.38)

This result also depends on each mutation giving rise
to a new allele that is not present in the population 
or the infinite alleles model. Since the allozygosity 
or expected heterozygosity is just one minus the
autozygosity,

(5.39)

This is the expected heterozygosity in a finite popula-
tion where the “push” on allele frequencies toward
fixation and loss by genetic drift and the “push” on
allele frequencies away from fixation and loss by
mutation has reached a net balance.

The quantity 4Neμ has a ready biological interpre-
tation when Ne is large and μ is small. In a population
of 2Ne alleles, the expected number of mutated alleles
each generation is 2Neμ. In a sample of two alleles
that compose a diploid genotype, the chance that
both alleles have experienced mutation and are there-
fore not identical by descent is 4Neμ. For example, in
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··

Both the irreversible and two-way mutation
models are available in PopGene.S2 by
clicking on the Mutation menu and then
selecting Irreversible or Two-way. In the
irreversible model only the forward mutation
rate can vary while the reverse mutation
rate is always 0.0. As an example, compare
how rapidly equilibrium is approached with
forward mutation rates of 0.01 and 0.001
from an initial allele frequency of 0.9 and
the scale set to 2000 generations. For the
two-way model, compare approach to
equilibrium over 2000 generations when
both backward and forward mutation rates
are equal (e.g. both 0.001) and when they
are unequal (e.g. 0.0015 and 0.0005)
starting at an initial allele frequency of 0.9.
Note that these mutation rates serve as an
illustration only and that biologically realistic
mutation rates are usually much lower.

Interact box 5.4
Simulating irreversible and 

bi-directional mutation
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a population of 2Ne = 100 alleles with a mutation rate
of one in 10,000 alleles per generation (μ = 0.0001),
the expected number of mutations is 0.01 and the
chance that a sample contains two alleles that are
not autozygous is 0.02. The quantity 4Neμ is fre-
quently symbolized by θ (pronounced “theta”). Under
the infinite alleles model, θ is the probability that 
two alleles sampled at random from a population 
at drift–mutation equilibrium will be allozygous.
With θ = 0.02, the expected heterozygosity at drift–
mutation equilibrium is 0.0099. It is important to
note that equilibrium heterozygosity will be lower
than that predicted by θ if the infinite alleles or
infinite sites model is not met. This is the case because
with a finite number of allelic states not all muta-
tion events will produce a novel allele that forms 
an allozygous pair, or a heterozygote, when sampled
with an existing allele in the population. In fact,
mutations that make additional copies of existing
alleles actually increase the perceived homozygosity
due to homoplasy.

Figure 5.11 shows the expected probability of auto-
zygosity and allozygosity at mutation–genetic drift
equilibrium. At small values of 4Neμ there will be an
intermediate equilibrium level of autozygosity due 
to the balance of mutation introducing new alleles
and genetic drift moving allele frequencies toward
fixation or loss. As 4Neμ gets large there is either 

little drift or lots of mutation so there will be almost
complete heterozygosity (no autozygosity). In the
other direction, 4Neμ near zero indicates very strong
genetic drift or very infrequent mutation resulting 
in high levels of autozygosity and very low hetero-
zygosity. Bear in mind that reaching the expected
equilibrium autozygosity or heterozygosity will take
many, many generations because mutation rates
are low, making mutation a very slow process. If 
heterozygosity is perturbed from its mutation–drift
equilibrium point, a population will take a very long
time to return to that equilibrium.

5.5 The coalescent model with mutation

• Adding the process of mutation to coalescence.
• Longer genealogical branches experience more

mutations.
• Genealogies under the infinite alleles and infinite

sites models of mutation.

The genealogical branching model was introduced
in Chapter 3 for a single finite population and then
extended in Chapter 4 to account for branching 
patterns expected with population subdivision. The
goal of those sections was to predict genealogical
branching patterns without reference to the identity
of the lineages represented by the branches. Those
branching models need to be extended to account 
for the possibility that mutation occurs. Mutations
will alter the genes or DNA sequences that are 
represented by each lineage or branch in the genea-
logical tree. Therefore, accounting for mutation will
be a critical step in developing a coalescent model
that explains differences among a sample of line-
ages in the present. This section will focus on the
action of mutation in the coalescent model along
with the state of each lineage in a genealogy. This is
accomplished by coupling the process of coalescence
and the process of mutation while moving back 
in time toward the most recent common ancestor. 
The ultimate goal is to build a genealogical branch-
ing model that can be used to predict the numbers
and types of alleles that might be expected in a 
sample of lineages taken from an actual population.
For example, one prediction might be the number 
of alleles expected in a single finite population for a
given mutation rate. In this way, the combination of
the coalescent process and the mutation process is
used to form quantitative expectations about patterns
of genetic variation produced by various population
genetic processes.
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Figure 5.11 Expected homozygosity (F or autozygosity, 
solid line) and heterozygosity (H or allozygosity, dashed line)
at equilibrium in a population where the processes of both
genetic drift and mutation are operating. The chance that
two alleles sampled randomly from the population are
identical in state depends on the net balance of genetic drift
working toward fixation of a single allele in the population
and mutation changing existing alleles in the population to
new states. A critical assumption is the infinite alleles model,
which guarantees that each mutation results in a unique allele
and thereby maximizes the allozygosity due to mutations.
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Building a coalescent model with mutation is as
simple as adding another type of possible event that
can occur between the present and some time in the
past (Fig. 5.12). We will assume that both coalescent
and mutation events are rare (or that Ne is large 
and the rate of mutation is small), so that when an
event does occur going back in time it is either coales-
cence or mutation. In other words, we will assume
that mutation and coalescence events are mutually
exclusive.

Every generation there is the chance a mutation
occurs. The rate of mutation, μ, can be thought of as
the chance that each lineage experiences a muta-
tion each generation. The chance that a lineage 
does not experience a mutation is therefore 1 − μ
each generation. The chance that t generations pass
before a mutation event occurs is then the product 
of the chances of t − 1 generations of no mutation
followed by a mutation, or

P(Tmutation = t) = (1 − μ)t−1μ (5.40)

This equation has an identical form to the chance
that a coalescent event occurs after t generations
given in Chapter 3. Like the probability of coales-
cence, the probability of a mutation through time is 
a geometric series that can be approximated by the
exponential distribution (see Math box 3.2).

To obtain the exponential expression or the 
exponent of e that describes the frequency of muta-
tion events, we need to determine the rate at which
mutations are expected to occur. When time is meas-

ured on a continuous scale with , one unit of 

time is equivalent to 2Ne generations. If 2Ne gen-
erations elapse and μ is the rate of mutation per 
generation, then 2Neμ mutations are expected 

t
j

Ne

=
2

during one unit of continuous time. If we define 
θ = 4Neμ then θ/2 is equivalent to 2Neμ. This leads to
the exponential approximation for the chance that a
mutation occurs in a single lineage at generation t:

(5.41)

on a continuous time scale. When there is more 
than one lineage, each lineage has an independent
chance of experiencing a mutation but only one 
lineage can experience a mutation. When events are
independent but mutually exclusive, the probability
of each event is added over all possible events to
obtain the total chance that an event occurs. Adding 

the chance of a mutation for each lineage over 
all k lineages gives the total chance of mutation:

(5.42)

for k lineages (compare this with the chances of 

coalescence at time t with k lineages, , based
on similar logic). The chance that a mutation occurs
in one of k lineages at or before a certain time can
then be approximated with the cumulative exponen-
tial distribution

(5.43)

in exactly the same fashion that times to coalescent
events are approximated.

When two independent processes are operating,
the coalescence model becomes one of following 
lineages back in time and waiting for an event 
to happen. The possible events are mutation or 
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coalescence, so the total chance of any event is the
sum of the independent probabilities of each type 
of mutually exclusive event. The total chance of an
event occurring while going back in time (increas-
ing t) is then

(5.44)

where the exponent of e is or the 

sum of the intensities of mutation and coalescence.
When an event does occur at a time given by this
exponential distribution, it is then necessary to decide
whether the event is a coalescence or a mutation.
The total chance that the event is either a mutation 

event or a coalescence event is . There-

fore the chance the event is a mutation is

(5.45)

while the chance that the event is a coalescence is

(5.46)

Using the cumulative exponential distribution specified
by equation 5.44 and then determining whether each
event is a mutation or a coalescence, it is possible to
construct a coalescent genealogy that includes the
possibility of mutations occurring along each branch
(Fig. 5.13).

The pattern of mutations on genealogical trees
has some general features. Since the chance of 
mutation is assumed to be constant through time,
the more time that passes, the greater the chance 
that a mutation occurs. This means that longer
branches tend to experience more of the muta-
tions on average in genealogical trees, while shorter
branches are less likely to exhibit mutations. Recall
the metaphor of branch length as a road that was
used in Chapter 3 to describe the total branch length
of a genealogy. If mutations are road signs with a
constant chance of appearing per distance of road-
way, then longer stretches of road are expected to
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have more signs. Applying this logic to genealogies
like that in Fig. 5.13 tells us that more mutations 
are expected during the long average waiting time
for coalescence with two lineages (k = 2) than are
expected to occur when there are six lineages that
can coalesce (k = 6). Another example would be the
pattern of mutations expected for lineages in two
demes with different levels of migration (see Fig. 4.17).
With very limited migration, multiple mutations 
are expected on the long branches before the single
lineages within each deme coalesce. Alternatively,
when migration rates are high then many fewer
mutations are expected between migration events.  In
the former case mutations cause lineages to diverge
substantially between the two demes, while in the
latter case the lineages in the different demes have
less opportunity to accumulate differences.

A genealogy with generic mutations like that
shown in Fig. 5.13 is an abstraction until it is 
joined with a mutation model. Figure 5.14 shows
the same genealogy under the assumptions that the
most recent common ancestor has an allelic state of
A and mutational changes follow the infinite alleles

Past
MRCA

Present

Time
scale

Type of
event

Mutation

Mutation

Mutation

Coalescence

Coalescence

Coalescence

Coalescence

Coalescence

Figure 5.13 A genealogy constructed under the
simultaneous processes of coalescence in a single finite
population and mutation. Working backward in time 
from the present, both mutation and coalescence events 
can occur. The blue dots represent mutation events, 
each assigned at random to a lineage present when the 
event occurred. Mutation events alter the state of a lineage,
causing divergence from the ancestral state of the most 
recent common ancestor (MRCA) of all the lineages in 
the present.
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Again building a few coalescent trees can help you to better understand the evolution of
genealogies when both the processes of mutation and coalescence are operating. You can use an
expanded version of the Microsoft Excel spreadsheet used to build coalescent trees in Chapter 3
that now models waiting times for both mutation and coalescence. The spreadsheet contains the
cumulative exponential distributions used to determine the time until a coalescent or mutation
event (see equation 5.44) for up to six lineages. To determine the time that an event occurs for 
a given number of lineages k and mutation rate, a random number between zero and one is 
picked and then compared to the cumulative exponential distribution. The time interval on the
distribution that matches the random number is taken as the event time. The next step is to
determine whether the event was a mutation or a coalescence, again accomplished by comparing
a random number to the chances of each type of event (equations 5.45 and 5.46).

Step 1 Open the spreadsheet and click on cells to view the formulas used, especially the
cumulative probability of coalescence for each k. This will help you understand how the
equations in this section of the chapter are put into practice. You can compare the
cumulative probability distributions graphed for k = 6 and k = 2.

Step 2 Look at the section of the spreadsheet under the heading “Event times:” on the right 
side of the sheet. This section gives the waiting times until an event occurs and then
determines if the event was a coalescence or a mutation. Press the recalculate key(s) to
generate new sets of random numbers (see Excel help if necessary). Watch the times 
to an event change.

Step 3 Now draw a genealogical tree with the possibility of mutations (do not recalculate again
until Step 6 is complete). Along the bottom of a blank sheet of paper, draw six evenly-
spaced dots to represent six lineages.

Step 4 Start at the first “Decide event time:” panel to determine how much time passes (going
backward in time) until either a mutation or a coalescence occurs. Then use the entries
under “Decide what type of event:” to determine if the event was a coalescence or a
mutation. If the event is a mutation go to Step 5, otherwise go to Step 6.

Step 5 If the event is a mutation, draw the lines for all lineages back in time by a length equal 
to the waiting time (e.g. if the time is 0.5, draw lines that are 0.5 cm). Use the random
number table to pick one lineage and draw an X on the lineage at the event time to indicate
a mutation occurred. If a mutation occurred the number of lineages (k) remains the same.
Move down to the next “Decide event time:” panel and obtain the next event time for the
same value of k. Repeat Step 5 until the event is a coalescent event.

Step 6 Using the random number table, pick two lineages that will experience coalescence. Label
the two left-most dots with these lineage numbers. Then, using a ruler, draw two parallel
vertical lines that start at the end of the last event and extend as long as the time to
coalescence in continuous time (e.g. if the time is 0.5, draw lines that are 0.5 cm). Connect
these vertical lines with a horizontal line. Assign the lineage number of one of the coalesced
lineages to the pair’s single ancestor at the horizontal line. Record the other lineage number
on a list of lineages no longer present in the population (skip over these numbers if they
appear in the random number table). There are now k − 1 lineages.

Step 7 Return to Step 4 until all lineages have coalesced (k = 1).

You should obtain a coalescence tree with mutation events on the branches like that in Fig. 5.13.
Your trees will be different because the random coalescence and mutation times vary around their
averages, but the overall shape of your trees (e.g. shorter branches when k is large) and frequencies
of mutations (for a given mutation rate) will be similar.

Interact box 5.5 Build your own coalescent genealogies with mutation
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model. Each mutation event is an instance where the
current state of a lineage changes to an allelic state
not currently present in the population. Because of
mutational changes to the ancestral allelic state, the
six lineages in the present represent four allelic states.
Two of the alleles have a frequency of 2/6 = 33%
while the remaining two alleles have a frequency of
1/6 = 16.6%. The lineages sharing B or C alleles are
identical in state and therefore can be considered
identical by descent. Figure 5.15 shows a third 
version of the genealogy with mutations, this time
representing each allele as a DNA sequence and
employing the infinite sites mutation model. Each
mutational event alters a randomly picked site in the
DNA sequence under the constraint that a site can
only experience mutation a single time. The result 
is a set of DNA sequences that differ at three of 10
nucleotide sites. As with the infinite alleles model,
DNA sequences in the present that are identical in
state are therefore identical by descent.

When a genealogy containing mutations is com-
bined with a mutation model, it results in an explicit
prediction of the diversity and types of allelic states
expected under the processes that influence the
branching patterns. Although the two examples
shown here both utilize genealogies resulting from
genetic drift in a finite population, mutation could
also be combined with processes such as population
structure, growing or shrinking population sizes, or
natural selection that are used to generate a coalescent
genealogy. Chapter 7 covers genealogies expected with
natural selection and Chapter 8 explains methods 
to compare the expected patterns of allelic states in
genealogies generated by different population genetic
processes.

A

Allelic state of MRCA

B B

Allelic states of lineages in the present

D A C C

A

B

A

C

A

D

Figure 5.14 A genealogy constructed under the
simultaneous processes of coalescence in a single finite
population and mutation. Here the infinite alleles model 
of mutation is assumed to determine the allelic state of 
each lineage in the genealogy. Arbitrarily assigning allelic
state A to the most recent common ancestor (MRCA), 
each mutational event then alters the state of the lineage
experiencing the mutation. Each mutation changes the 
allelic state of the lineage to a new allele not present in the
population, giving rise to a variety of allelic states among 
the lineages in the present.

ACTGCTAGCA

Allelic state of MRCA

ACTGCTAGCA

ACTGCTAGCA

ACTGCTAGgA

ACaGCTAGCA

ACTGCTAGCA

ACTGCcAGCA

ACTGCTAGgA

ACTGCTAGgA

ACTGCcAGCA

ACTGCTAGCA

ACaGCTAGCA

ACaGCTAGCA

Allelic states of lineages in present

Figure 5.15 A genealogy constructed under the
simultaneous processes of coalescence in a single finite
population and mutation. Here the infinite sites model of
mutation for DNA sequences is assumed to determine the
allelic state of each lineage in the genealogy. Arbitrarily
assigning the DNA sequence ACTGCTAGCA to the most
recent common ancestor (MRCA), each mutational event
then alters the DNA sequence of the lineage experiencing the
mutation. Each mutation occurs at a random site in the DNA
sequence that has not previously experienced a mutation
(bases in blue lower-case letters), giving rise to differences in
the DNA sequences among the lineages in the present. Here
each base is equally likely to be produced by a mutation,
although there are numerous models to specify the pattern of
nucleotide changes expected by mutation. Under the finite
sites model of mutation, each site in the DNA sequence could
experience mutation repeatedly.
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Chapter 5 review

• The spectrum of relative fitness for genotypes
containing mutations expresses the frequencies
of mutations with a range of fitness effects.
Mutations that are strongly deleterious or lethal
will be purged by natural selection, while strongly
advantageous mutations will be fixed by natural
selection. Mutations with smaller effects may be
neutral or nearly neutral and therefore be subject
or stochastic fixation or loss due to genetic drift.

• New mutations may be lost simply by Mendelian 

segregation since there is a chance that a 

given single allele will not be transmitted to k
progeny. Neutral mutations are eventually lost
while the chance of a new selectively favored muta-
tion escaping loss (becoming fixed) is approximately
twice its selective advantage, under the assump-
tion that the population size is very large.

• New selectively neutral mutations are initially at 

a frequency of so the chance of fixation is 

and the chance of loss is 1 − . Most new 

neutral mutations are expected to be lost from a
population very rapidly since their initial frequency
is very near zero. An average of 4Ne generations
will elapse before a new mutation reaches fixation.

• Fisher’s geometric model of mutation shows that
mutations with small effects on phenotype are
more likely to be fixed by natural selection since
these are the mutations with the greatest chance
of improving fitness.

• The combination of mutation, genetic drift, and
natural selection in genomes where recombina-
tion is absent or restricted leads to a growing
accumulation of deleterious mutations in a 
phenomenon known as Muller’s Ratchet.

• The infinite alleles model assumes discrete allelic
states where each mutation creates an allele not
currently present in the population. The infinite
sites model assumes alleles are DNA sequences
and that each mutation changes a single nucleo-
tide at a site that has never before experienced
mutation. Since mutation cannot form the same
allele twice in both of these models, identity in
state is always equivalent to identity by descent.

• Irreversible mutation will eventually lead to 
loss of the original allele in a population since

1
2Ne

1
2Ne

1
2Ne

1
2

⎛

⎝
⎜

⎞

⎠
⎟

k

there is no process to restore the original allele.
Bi-directional mutation leads to a net balance of 
two alleles changing state and an intermediate
allele frequency that depends on the forward 
and reverse mutation rates. Both models show
that mutation alone will take thousands or tens
of thousands of generations to attain equilibrium
allele frequency in a population, depending on
the mutation rate.

• The process of mutation can be added to coalescent
genealogies by modeling the waiting time to any
event with an appropriate cumulative exponential
distribution. When an event does occur, it can 
be either a coalescence or a mutation that is then
reflected in the genealogy. More mutations are
likely to occur on longer branches in genealogies
since the chance of mutation is constant through
time.

• Each mutation event in a genealogy can be inter-
preted under a specific mutation model such as
infinite alleles or infinite sites. The combination 
of a coalescent genealogy containing mutations
and a mutation model yields a prediction for 
the number and frequency of alleles expected
under the process or processes that produced the
genealogy.

Further reading

For a detailed review of mutation rate estimates and
the processes influencing the evolution of mutation
rates see:

Drake JW, Charlesworth B, Charlesworth D, and Crow JF.
1998. Rates of spontaneous mutation. Genetics 148:
1667–86.

For an overview of the numerous evolutionary and
population genetic phenomena related to mildly
deleterious mutation see:

Charlesworth B and Charlesworth D. 1998. Some 
evolutionary consequences of deleterious mutation.
Genetica 102/103: 3–19.

A full explanation of the experimental methods,
assumptions, and statistical analysis used in mutation-
accumulation studies along with a critical review of
past results can be found in:

Lynch M, Blanchard J, Houle D, Kibota T, Schultz S,
Vassilieva L, and Willis J. 1999. Perspective: spont-
aneous deleterious mutation. Evolution 53: 645–63.

··
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This paper provides an overview of the role mutation
plays as the source of genetic variation in the larger
process of adaptation by natural selection:

Orr HA. 2005. The genetic theory of adaptation: a brief
history. Nature Reviews Genetics 6: 119–27.

For more detail on incorporating mutation into
genealogical branching models see:

Hein J, Schierup MH, and Wiuf C. 2005. Gene Genea-
logies, Variation and Evolution. Oxford University Press,
New York.
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6.1 Natural selection

• Translating Darwin’s ideas into a model.
• Natural selection as differential population growth.
• Natural selection with clonal reproduction.
• Natural selection with sexual reproduction and

its assumptions.

Charles Darwin’s (1859) statement of the process of
natural selection can be summarized as three basic
observations about populations:

• all species have more offspring than can possibly
survive and reproduce,

• individual organisms vary in phenotypes that influ-
ence their ability to survive and reproduce, and

• within each generation, the individuals possess-
ing phenotypes that confer greater survival and
reproduction will contribute more offspring to
the next generation.

The result is that phenotypes which cause a predict-
ably greater chance of survival and reproduction will
increase in frequency over generations to the extent
that such traits have a genetic basis. Darwin’s observa-
tions initially served as a qualitative model, since an
accurate model of genetic inheritance was lacking
until Mendel’s results were recognized. Once par-
ticulate inheritance was understood, the unification
of genetics with the principle of natural selection took
place in what is now called the modern synthesis or
neo-Darwinian synthesis of evolutionary biology.
The major challenge in the modern synthesis for
population genetics was to develop expectations for
the genetic changes that are caused by natural selec-
tion. This section of the chapter develops these basic
population genetic expectations for natural selection.

Natural selection with clonal reproduction

At its core natural selection is actually a process of
population growth, so let’s start off by examining a

simple population growth model. If a population is
assumed to have no upper limit in its size, the num-
ber of individuals one generation in the future (Nt+1)
is a product of the number of individuals present 
now (Nt) multiplied by the finite rate of increase of 
the population λ (pronounced “lambda”) to give the
expression:

Nt+1 = λNt (6.1)

In this equation for unbounded population growth,
λ is a multiplier that represents the net difference
between the number of individuals lost from the 
population due to death and the number of new indi-
viduals recruited to the population by reproduction
each generation. If the number of births and deaths
are exactly equal then λ is one and the population
does not change in size. If there are more births than
deaths then λ > 1.0 and the population grows whereas
if there are more deaths than births then λ < 1.0 and
the population shrinks. The population growth rate
can be thought of as the chance that an individual
contributes one offspring to the next generation.

Natural selection is really just a special case of this
basic population growth model where each genotype
has its own growth rate. To see how this works, let’s
consider a population composed of two genotypes 
of an asexual organism like a bacterial species that
reproduces only by clonal division over discrete 
generations. Call the two genotypes A and B with
genotype-specific growth rates or absolute fitnesses
of λA and λB. The proportions of each genotype in the
total population in any generation are:

(6.2)

and

(6.3)
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where NA + NB is the total population size. Figure 6.1a
shows numbers of individuals over time for an example
where genotype A grows faster than genotype B. In
absolute numbers of individuals, the population sizes
of both genotypes increase over time. However, the
proportion of the population made up of individuals
with A and B genotypes changes over time in the
population (Fig. 6.1b). Since the A genotype grows
faster, A individuals represent an increasing propor-
tion of the individuals in the total population. This is
equivalent to saying that p increases over time while
q decreases over time. Thus, Fig. 6.1 shows a case of
natural selection favoring the A genotype since it
has a higher level of absolute fitness.

An alternative way to represent the changing 
proportions of the two genotypes in the population 
is to follow the ratio of the number of A and B indi-
viduals, NA/NB, over time. The value of the ratio at
any point in time will depend on the initial numbers
of A and B individuals (call them NA(0) and NB(0)),
the growth rates of the two genotypes, and the 
number of generations that have elapsed. The ratio
NB/NA after one generation of population growth is
given by

(6.4)

which is akin to dividing a version of equation 6.1 for
genotype A by a version of equation 6.1 for genotype
B. In general, we can predict the ratio of NA/NB at
any time t using

(6.5)

by assuming that genotype-specific growth rates 
(λA and λB) remain constant through time.

The ratio of genotype-specific growth rates is
called the relative fitness and is represented by 
the symbol w in models of natural selection with 
discrete generations. Substituting the relative fitness
for the ratio of the genotype-specific growth rates 
in equation 6.5 gives

(6.6)
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Figure 6.1 Population growth in two genotypes with clonal reproduction, starting out with equal numbers of individuals 
and therefore equal proportions in the total population. Genotype A grows 3% per generation (λ = 1.03) and genotype B grows 
1% per generation (λ = 1.01). (a) Individuals of both genotypes increase in number over time. (b) Because the genotypes grow 
at different rates, their relative proportions in the total population change over time. The solid line shows the initial equal
proportions. Eventually, genotype A will approach 100% and genotype B 0% of the total population. Values are plotted for every
third generation.
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Recalling that NA + NB gives the total population size
N at any point in time and then multiplying both 

sides of equation 6.6 by gives

(6.7)

which can be simplified by utilizing equations 6.2
and 6.3:

(6.8)
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N t
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to represent each genotype by its proportion of the
total population at any time t. When w = 1.0 the two
genotypes have identical growth rates and the pro-
portion of each genotype remains constant in the
population through time. If w > 1.0 then the geno-
type in the numerator grows faster than the geno-
type in the denominator and it will represent a larger
proportion of the population over time. Conversely, 
if w < 1.0 then the genotype in the numerator grows
less rapidly than the genotype in the denominator
and it will represent a shrinking proportion of the
population over time. Using the A genotype as the
standard of comparison and the absolute fitness 
values from Fig. 6.1, wA = 1.03/1.03 = 1.0 and wB =
1.01/1.03 = 0.981 and so the frequency of the A
genotype is expected to increase over time.

The relative fitness can be used to determine the
change in frequency of a genotype over time, as shown
in Table 6.1. The change in genotype frequency is the

··

Table 6.1 The expected frequencies of two genotypes after natural selection, for the case of clonal
reproduction. The top section of the table gives expressions for the general case. The bottom part of the table
uses absolute and relative fitness values identical to Fig. 6.1 to show the change in genotype proportions for
the first generation of natural selection. The absolute fitness of the A genotype is highest and is therefore used
as the standard of comparison when determining relative fitness.

Genotype

A B

Generation t
Initial frequency pt qt
Genotype-specific growth rate (absolute fitness) λA λB

Relative fitness

Frequency after natural selection ptwA qtwB

Generation t + 1

Initial frequency pt+1

Change in genotype frequency Δp = pt+1 − pt Δq = qt+1 − qt

Generation t
Initial frequency pt = 0.5 qt = 0.5
Genotype-specific growth rate (absolute fitness) λA = 1.03 λB = 1.01

Relative fitness

Frequency after natural selection ptwA = (0.5)(1.0) = 0.5 qtwB = (0.5)(0.981) = 0.4905

Generation t + 1

Initial frequency pt+1

Change in genotype frequency 0.5048 − 0.5 = 0.0048 0.4952 − 0.05 = −0.0048
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difference between frequencies in two generations,
pt+1 − pt. A difference is commonly symbolized with
the Greek capital letter delta (Δ), so we could say that
the change in the frequency of the A genotype is
given by Δp = pt+1 − pt. To generate an expression for
Δp we can compare the initial genotype frequency 
pt with its frequency a generation later after natural
selection has acted via differential growth. We start
with the basic expression for the difference in geno-
type frequency

Δp = pt+1 − pt (6.9)

If Δp is positive then the A genotype will increase in
proportion in the population while it will decrease in
proportion if Δp is negative. Substituting the expres-
sion for the expected frequency of the A genotype
after natural selection (Table 6.1) gives

(6.10)

The ptwA + ptwB term in the denominator on the
right side of equation 6.10 is the average relative
fitness of the population (it is a frequency-weighted
average and so depends on the sum of the product of
the frequency and relative fitness for each genotype).
Positive values of Δp occur when the frequency of 
the A genotype after natural selection is greater than
the average fitness of both genotypes after natural
selection. The computations in Table 6.1 show that
the frequency of the A genotype multiplied by its 
relative fitness (ptwA) is greater than the average
fitness so the A genotype will increase in proportion
in the population over time. The average fitness will
be covered in more detail when considering natural
selection in sexual diploid populations.

One advantage of using the relative fitness is that
the population growth rates of each genotype do 
not have to be known to model the proportions of 
the genotypes over time. Rather, the outcome of the
growth process in terms of the relative frequencies of
genotypes can be predicted strictly from the ratio of
growth rates. This means that equation 6.8 poten-
tially applies to organisms with very high absolute
growth rates like bacteria as well as to species with
absolute growth rates very near one such as elephants.
Equation 6.8 even applies to cases where population
sizes are declining through time. If a population is
headed to extinction because it is composed of geno-
types that all have growth rates less than one, the
relative fitness will nonetheless accurately express the

  
Δp

p w

p w q w
pt

t t
t=

+
−A

A B

change in the proportion of genotypes in the popula-
tion over time. In practice, the relative fitness can be
estimated in competition experiments where two or
more genotypes are placed in the same environment
and their proportions estimated at a later point in
time (see Problem box 6.1, below).

Although simplistic and requiring many assumptions,
the model of natural selection among genotypes in
organisms with clonal reproduction is nonetheless
pertinent to a range of practical situations. One
example is the evolution of drug resistance by nat-
ural selection in the human immunodeficiency virus
(HIV). The genome of HIV (and other retroviruses) is
single-stranded RNA. All the proteins inside a virus
particle as well as the viral protein envelope itself 
are encoded by genes in this RNA genome. After
infecting a host cell, HIV uses reverse transcriptase
produced from its own gene to reverse-transcribe 
its genome into double-stranded DNA. This DNA
version of the retrovirus genome is then integrated
into the DNA of the host cell, where it is transcribed
by the host cell into many new virus RNA genomes.
These new viral RNA genomes are packaged into
virus particles released from the host cell through 
a viral protease. One treatment strategy for HIV has
utilized drugs that mimic nucleosides (nucleotides
without phosphate groups) that interfere with the
virus reverse transcriptase but do not interfere with
host cell DNA polymerase. Another treatment uses
protease inhibitors that interfere with polyprotein

Absolute fitness The genotype-specific 
rate of increase or population growth that
predicts the absolute number of individuals 
of a given genotype in a population over time.
Commonly symbolized as W or λ.
Average or mean fitness (T) The frequency-
weighted sum of the relative fitness values of
each genotype in the population.
Relative fitness The growth rate of genotypes
relative to one genotype picked as the
standard of comparison (often the genotype
with the highest absolute fitness). Called
Darwinian fitness after Charles Darwin and
symbolized as w in models where time 
is represented in discrete generations (also
called Malthusian fitness after Thomas Malthus
and symbolized as m in models where time 
is continuous).

9781405132770_4_006.qxd  1/16/09  5:43 PM  Page 188



Fundamentals of natural selection 189

cleavage necessary to produce new infectious virus
particles. Unfortunately, HIV has shown rapid evolu-
tion of drug-resistant genotypes via natural selection.
Figure 6.2 shows allele frequencies over time in 
the population of HIV particles infecting two patients
who began protease inhibitor treatment at day 0.
Individual HIV particles with protease alleles resist-
ant to the drug have higher replication rates than
HIV particles with wild-type protease alleles. This 
differential growth rate of HIV genotypes, or natural
selection at the protease locus, rapidly changed the
protease gene allele frequencies in the HIV popula-
tion found within each patient. The combination 
of short generation time, high mutation rate, and
large effective population size make natural selection
a rapid process acting to change allele frequencies 
in HIV populations.

Natural selection with sexual reproduction

The model of natural selection with clonal reproduc-
tion leaves out a critical part of the biology of many
organisms, namely sexual reproduction. To build a
model of natural selection for sexual reproduction,
we can combine the Hardy–Weinberg model of geno-
type frequencies with genotype-specific growth rates
to get a general model of natural selection operating
on the three genotypes produced by a single locus
with two alleles. The blending of these two models
leads to a number of assumptions that are listed in
Table 6.2 (compare with the assumptions of Hardy–
Weinberg alone given in Chapter 2). For now, let’s
utilize the assumptions that yield expected genotype
frequencies. The consequences of many of the other
assumptions are explored throughout the chapter.

Imagine a population of N diploid individuals
formed by random mating among the parents and
then random fusion of gametes to produce zygotes.

··
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Figure 6.2 Allele frequencies at the protease locus over
time in the HIV populations in two patients undergoing
protease inhibitor (ritonavir) treatment (Doukhan & Delwart
2001). Alleles found at very low frequencies before drug
treatment come to predominate in the HIV population after
drug treatment, due to natural selection among HIV
genotypes for drug resistance. Alleles are bands observed in
denaturing-gradient gel electrophoresis (DGGE), a technique
that is capable of discriminating single-base-pair differences
among different DNA fragments. DGGE was used to identify
the number of different protease locus DNA sequences present
in a sample of HIV particles. Protease inhibitor treatment
began on day 0. Dr. E. Delwart kindly provided the original
data used to draw this figure.

It is commonly thought that drug-resistant
alleles have lower relative fitness than 
non-resistant alleles in the absence of 
drug exposure. To test this hypothesis for
HIV-1, Goudsmit et al. (1996) monitored
the frequency of alleles at codon 215 of 
the reverse transcriptase gene in an
individual newly infected with HIV but 
who was not undergoing treatment with
the nucleoside analog azidothymidine
(AZT). Initially, the HIV alleles were all
sequences (90% TAC and 10% TCC
codons) known to confer AZT resistance.
Over time, the non-resistant allele (a 
TCC codon) increased in frequency to 
49% after 20 months.

Use this change in allele frequencies 
over 601 days and equation 6.8 to estimate
the relative fitness of the non-resistant 
allele in the absence of AZT. Assume that
the generation time of HIV is 2.6 days and 
that generations are discrete, and that the
wild-type allele was initially present at a
frequency of 1.0% and so was not initially
detectable. Note that the exponent in 
an equation like a = y(xt) where a, y and 
x are constants can be removed by 
taking the log of both sides to get 
log(a) = log(y) + t log(x).

Problem box 6.1
Relative fitness of HIV genotypes
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When the N zygotes have just formed, before any
natural selection, the genotypes are in Hardy–
Weinberg expected frequencies. If the total popula-
tion size at this time is Nt, then the number of zygotes
of each genotype is

AA : p2Nt Aa : 2pqNt Aa : q2Nt (6.11)

which defines the initial number of each of the three
genotypes analogously to NA(0) and NB(0) used in
the case of clonal reproduction.

After the initial population of zygotes is formed,
natural selection will then operate on the three geno-
types. The mechanism of natural selection takes a
particular form under the assumptions of the one

locus selection model. Each genotype is assumed 
to experience genotype-specific survival and repro-
duction during the course of a single generation 
as diagrammed in Fig. 6.3. This leads to a possible
reduction in the number of zygotes of each genotype
present in the population at the very beginning of 
the life cycle of a single generation. For the time
being let’s assume that any reduction in the numbers
of individuals of any genotype comes exclusively 
from failure to survive to reproductive age but that
all adults reproduce equally regardless of genotype. 
In this situation the fitness values of each genotype
specify the probability of survival to reproduction,
termed viability. Natural selection then takes the
form of viability selection.

Table 6.2 Assumptions of the basic natural selection model with a diallelic locus.

Genetic
• Diploid individuals
• One locus with two alleles
• Obligate sexual reproduction

Reproduction
• Generations do not overlap
• Mating is random

Natural selection
• Mechanism of natural selection is genotype-specific differences in survivorship (fitness) that lead to variable

genotype-specific growth rates, termed viability selection
• Fitness values are constants that do not vary with time, over space, or in the two sexes

Population
• Infinite population size so there is no genetic drift
• No population structure
• No gene flow
• No mutation

Zygotes
Reproductive

adults
Mating

pairs
ZygotesGametes

Generation t Generation t + 1

Viability Fecundity

Mating success

Gamete compatibility
Meiotic drive

Figure 6.3 A diagram of the life cycle of organisms showing some points where differential survival and reproduction among
genotypes can result in natural selection. Viability is the probability of survival from zygote to adult, mating success encompasses
those traits influencing the chances of mating and the number of mates, and fecundity is the number of gametes and progeny
zygotes produced by each mating pair. Gametic compatibility is the probability that gametes can successfully fuse to form a zygote
whereas meiotic drive is any mechanism that causes bias in the frequency of alleles found in gametes. Most models of natural
selection assume a single fitness component such as viability. In reality, all of these components of fitness can influence genotype
frequencies simultaneously.
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As an analog of λ used for clonal reproduction, 
let � (the cursive letter l ) represent the genotype-
specific probability of survival to reproductive age.
The numbers of individuals of each genotype after
viability selection at the point of reproduction is 
then

AA : �AAp2Nt Aa : �Aa2pqNt Aa : �aaq2Nt (6.12)

These are the numbers of individuals of each geno-
type that will engage in random mating to form the
next generation. The total number of individuals in
the population after selection is then

�AAp2Nt + �Aa2pqNt + �aaq2Nt (6.13)

This is a quantity that can be used to determine the
frequency of a genotype or allele in the population
after selection. For example, the proportion of the
total population made up of individuals with an AA
genotype after selection is

Frequency of AA genotype

= (6.14)

Since there are fewer alleles than genotypes, the
results of natural selection are often summarized in
terms of allele frequencies rather than in terms of
genotype frequencies. The allele frequencies in the
gametes made by surviving individuals (under the
assumptions in Table 6.2) are:

Frequency of A allele in gametes

= (6.15)
� �

� � �
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2 22+ +

and

Frequency of a allele in gametes

= (6.16)

In each of these equations the number of hetero-
zygote individuals after selection is multiplied by
one-half since a heterozygote contributes one copy of
a given allele to the gamete pool for every two copies
of that same allele contributed by a homozygote.
These expressions simplify to:

Frequency of A allele in gametes

= (6.17)

and:

Frequency of a allele in gametes

= (6.18)

because Nt can be factored out of each term in the
numerator and denominator and then cancelled,
and the constants of 1/2 and 2 cancel in the 
numerator.

As in the case of clonal reproduction, we can 
utilize relative fitness values for each genotype
rather than absolute values of survivorship to repro-
ductive age. We can then replace the �AA, �Aa, and
�aa values with the relative fitness values wAA, wAa,
and waa to give

(6.19)

and

(6.20)

Notice that the denominator in both expressions is
the sum of the fitness-weighted genotype frequencies,
or the mean relative fitness N. Making this substitu-
tion gives even more compact expressions for the
allele frequencies:

(6.21)
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Viability selection A form of natural selection
where fitness is equivalent to the probability
that individuals of given genotype survive to
reproductive age but all surviving individuals
have equal rates of reproduction.
Marginal fitness The frequency-weighted
and allele-copy-weighted sum of the relative
fitness values of genotypes that contain a
specific allele; a special case of the average
fitness for only those genotypes that contain a
certain allele.
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and

(6.22)

These expressions show that the increase or decrease
in allele frequencies depends on a comparison of the
average fitness of genotypes that contain a certain
allele (the quantity in the numerator), called the
marginal fitness, and the average fitness of all geno-
types in the population. A larger marginal fitness
occurs when individuals with genotypes that make
up the marginal fitness have higher viability for a
given allele frequency. Table 6.3 summarizes the key
quantities used to construct expected genotype and
allele frequencies after one generation of viability
selection.

As in the case of clonal reproduction, the change
in allele frequency over one generation is given by 
Δp = pt+1 − pt. For sexual reproduction,

(6.23)

and

(6.24)

as derived in Math box 6.1. This equation provides
three generalizations that match with our intuitions
about natural selection. Allele frequencies do not

Δq
pq q w w p w w

=
− − −[ ( ) ( )]aa Aa AA Aa

N

Δp
pq p w w q w w

=
− + −[ ( ) ( )]AA Aa Aa aa

N

   
q

w q w pq
t+ =

+
1

2
aa Aa

N

change when pq = 0 or when there is no genetic 
variation since one allele or the other has reached
loss (p or q = 0). Allele frequencies do not change
when all fitness values are identical – meaning there
is no natural selection – so the terms inside the
square brackets give a value of zero. Lastly, allele fre-
quencies do not change when the fitness differences
weighted by an allele frequency (the p(wAA − wAa)
and q(wAa − waa) terms) cancel each other out to
yield a zero inside the square brackets.

6.2 General results for natural selection 
on a diallelic locus

• Selection against a recessive phenotype.
• Selection against a dominant phenotype.
• The general effects of dominance.
• Heterozygote disadvantage and advantage.
• The strength of natural selection.

The previous section presented the basic building
blocks of a model for natural selection acting
through genotype-specific viability on one locus
with two alleles. This section will present the general
results of natural selection under this very basic
model. This task is simpler than it might seem since
all the outcomes of the selection model can be repre-
sented by five general categories of fitness values 
for the three genotypes (Table 6.4). Notice that 
Table 6.4 presents fitness values in terms of selec-
tion coefficients rather than relative fitness. Selec-
tion coefficients are simply the difference between a
relative fitness value and one:

··

Table 6.4 The general categories of relative fitness values for viability selection at a diallelic locus. The variables
s and t are used to represent the decrease in viability of a genotype compared to the maximum fitness of 
1 (1 − wxx = s). The degree of dominance of the A allele is represented by h with additive gene action
(sometime called codominance) when h = 1/2.

Category Genotype-specific fitness

wAA wAa waa

Selection against a recessive phenotype 1 1 1 − s
Selection against a dominant phenotype 1 − s 1 − s 1
General dominance (dominance coefficient 0 ≤ h ≤ 1) 1 1 − hs 1 − s
Heterozygote disadvantage (underdominance for fitness) 1 1 − s 1
Heterozygote advantage (overdominance for fitness) 1 − s 1 1 − t
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To solve the equation for the change in allele frequency over one generation due to natural
selection, start with

(6.25)

where the allele frequencies p and q are all taken in the same generation so the generation subscripts
are dropped. First, put both of the terms over a common denominator so they can be subtracted:

(6.26)

Then notice that a factor of p can be taken from the numerator of the left-hand term of the difference:

(6.27)

which leads to the following (the denominator is hereafter given as N for simplicity):

(6.28)

A trick comes in at this point utilizing the fact that p = 1 − q with a diallelic locus, so that 
pq = p(1 − p) = p − p2. The first and third terms inside the square brackets of the numerator of
equation 6.28 (pwAA − p2wAA) can be expressed alternatively as pqwAA. This then gives

(6.29)

A q can then be factored out of the terms inside the square brackets of the numerator to give

(6.30)

Then, notice the middle two terms inside the square brackets (wAa − 2pwAa). Since p + q = 1, 
wAa − 2pwAa = (p + q)wAa − 2pwAa = qwAa − pwAa. Making this substitution leads to

(6.31)

which can finally be rearranged to

(6.32)

The same approach can be taken to obtain the expression for Δq.
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Math box 6.1
The change in allele frequency each generation under natural selection
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sxx = 1 − wxx or wxx = 1 − sxx (6.33)

where the subscript xx represents a genotype and the
maximum relative fitness is one. Selection coefficients
therefore represent the difference in viability between
a given genotype and the genotype with the highest
viability.

Examining the outcome of selection for each cat-
egory of fitness values or selection coefficients will
illustrate how viability selection is expected to change
genotype and allele frequencies in populations. By
iterating versions of equation 6.14 for all three geno-
types as well as equations 6.21 and 6.22, we can
visualize the action of natural selection. The beha-
vior of allele frequencies under natural selection can
be understood by examining plots of allele frequen-
cies over time to see the direction and rate of allele
frequency change. An important general feature 
of natural selection is the allele frequency reached
when allele frequencies eventually stop changing, 
or the equilibrium allele frequency. The goal of this
section is to understand both how and why geno-
type and allele frequencies change when acted on by
a constant force of natural selection over time.

Although it is common to speak of an allele favored
by natural selection, any change in allele frequencies
is really caused by natural selection on genotypes due
to their different-viability phenotypes. Alleles them-
selves do not have phenotypes nor fitness values 
in most types of natural selection (natural selection
on gametes or haploid genomes are exceptions). 
The changing frequency of genotypes is what causes
allele frequencies to change. Although two allele 
frequencies can be displayed with more economy
than three genotype frequencies, it is critical not to
forget that natural selection directly causes changes
in genotype frequency and that change in allele 
frequencies is an indirect consequence.

The process of natural selection has the special
quality that the genotype frequencies reached at
equilibrium are always the same as long as the 
starting frequencies and relative fitness values are
constant. Processes that always lead to the same out-
come from a given set of initial conditions are called
deterministic because the end state is completely
determined by the initial state. Similar patterns of
genotype frequencies in independent populations are
therefore evidence that the process of natural selec-
tion is operating. In contrast, the stochastic process
of genetic drift would result in random outcomes in
each independent population. This also means that
there is no need to view replicate outcomes of natural
selection for the same set of initial conditions.

Selection against a recessive phenotype

The results of natural selection acting against a 
completely recessive homozygous genotype (see
Table 6.4) are shown in Fig. 6.4. The top panel
shows the frequencies of the three genotypes over
time starting from an initial allele frequency of p = q
= 0.5. The frequency of the recessive homozygote
(aa) declines because that genotype has lower viabil-
ity. At the same time, the frequency of the dominant
homozygote (AA) increases since it has a higher 
viability. Even though the heterozygote also has the
maximum fitness, its frequency declines from a 
maximum of 0.5 as A alleles become more frequent
and a alleles less frequent over time, reducing the
value of 2pq. The bottom panel summarizes the results
of natural selection in terms of allele frequencies 
over time for five initial allele frequencies. (The one
allele frequency trajectory that corresponds to the
genotype frequencies in the top panel is given as a
colored, dashed line.)
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Figure 6.4 The change in genotype and allele frequencies
caused by viability selection against the aa genotype
exhibiting the recessive phenotype. The top panel shows 
the change in genotype frequencies over time and the 
bottom panel shows the frequency of the dominant allele 
(A) over time. The colored, dashed line in the bottom panel
corresponds to the allele frequencies in the top panel. 
Because of changes in genotype frequency caused by natural
selection, the frequency of the dominant allele rapidly
approaches fixation from all five initial allele frequencies. In
this illustration wAA = wAa = 1.0 while waa = 0.8, meaning
that eight individuals with the aa genotype are expected to
survive to reproduce for every 10 individuals with the AA 
or Aa genotype that survive to reproduce each generation.
Genotype frequencies assume random mating.
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Allele frequencies change more rapidly in the
early generations when the initial allele frequency 
is lower because the selectively favored dominant
homozygote and heterozygotes are relatively frequent
in the population. Even at an initial dominant allele
frequency of 0.05, 9.75% (or 1 − q2) of the genotypes
are AA and Aa. As the frequency of the recessive
allele decreases (the dominant allele approaches
higher frequencies), the change in allele frequency
from one generation to the next steadily declines. For
example, starting from an initial allele frequency of
0.05 the allele frequency changes by 0.1 in just a 
few generations early on but requires many genera-
tions when the frequency of the recessive allele is low. 
This occurs because there are progressively fewer
recessive homozygotes and progressively more of the
highest fitness genotypes (the dominant homozygote
and heterozygotes) in the population as selection
changes the genotype and allele frequencies.

Does the dominant allele go to fixation when there
is natural selection against the recessive homozygote?
The answer is no, because the heterozygote fitness is
equal to the maximum fitness and every generation
heterozygotes will produce gametes that can com-
bine to make the recessive homozygote. In essence,
the recessive allele is shielded from natural selection
in the heterozygote due to dominance. This is true no
matter how large the selection coefficient against a
recessive homozygote.

One way to quantify the sheltering effect of hetero-
zygotes is to examine the proportion of recessive 
alleles present in heterozygotes compared to recess-
ive alleles present in homozygotes

(6.34)

where the expected frequency of heterozygotes is
weighted by one-half since each contains only one
recessive allele. When the frequency of the recessive
allele is low, q = 0.05 for example, the proportion of
the genotype frequencies is 0.0475/0.0025 = 19.
This means that there are 19 recessive alleles pro-
tected against natural selection in heterozygotes for
each recessive allele impacted by natural selection 
in a homozygous genotype.

Selection against a dominant phenotype

The results of natural selection acting against a com-
pletely dominant phenotype shared by the dominant
homozygotes and the heterozygotes (see Table 6.4)
are shown in Fig. 6.5. The top panel shows the fre-

  

pq

q

p

q2
=

quencies of the three genotypes over time starting
from an initial allele frequency of p = 0.75. The fre-
quency of the dominant homozygote (AA) declines
due to its lower viability while the frequency of the
recessive homozygote (aa) increases due to its higher
viability. Even though the heterozygote has a lower
relative fitness than the recessive homozygote, its
frequencies initially increases since the frequency of
the two alleles approaches equality. The frequency 
of the heterozygote temporarily peaks at the max-
imum value of 2pq = 0.5 at the same point that the
frequency of the two homozygotes both equal 0.25.
The heterozygote frequency then drops again as the
frequency of the recessive homozygote continues to
increase and the frequency of the dominant homo-
zygote continues to decrease.

The bottom panel of Fig. 6.5 shows that the fre-
quency of the dominant allele decreases toward zero
under this type of natural selection. (Again, the one
allele frequency trajectory that corresponds to the
genotype frequencies in the top panel is given as a
colored, dashed line.) At an initial dominant allele
frequency of p = 0.95, only 0.25% (or q2) of the geno-
types are aa. This makes natural selection slow to
change allele frequencies until the frequency of the
recessive allele increases enough to make the higher
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Figure 6.5 The change in the genotype and allele
frequency of a completely dominant allele (A) when natural
selection acts against the AA and Aa genotypes exhibiting the
dominant phenotype. Notice that the frequency of the 
A allele decreases slowly at first when the A allele is common
in the population since the aa genotype is infrequent. 
The colored, dashed line in the bottom panel corresponds 
to the allele frequencies in the top panel. In this illustration
wAA = wAa = 0.8 while waa = 1.0. Genotype frequencies
assume random mating.

9781405132770_4_006.qxd  1/16/09  5:43 PM  Page 196



Fundamentals of natural selection 197

fitness aa genotype more common in the population.
The allele frequency trajectories that start at lower
initial frequencies for the A allele change more rapidly
and bear out this point. Does the recessive allele go 
to fixation when there is natural selection against
the dominant homozygote and heterozygote? In this
case yes, since both the dominant homozygote and
the heterozygote have a lower fitness than the favored
homozygote and therefore the dominant allele is not
shielded from natural selection in the heterozygote.

General dominance

The previous two examples of natural selection
against dominant and recessive phenotypes cover
the extremes of dominance. The impact of dominant
and recessive alleles on the outcome of natural selec-
tion on a diallelic locus can be made more general 
by employing a dominance coefficient, symbolized h.
Complete dominance (the heterozygote and a homo-
zygote having identical phenotypes) for one allele 
is represented by h = 0 and complete dominance for
the other allele is represented by h = 1. When the
heterozygote has a phenotype that is the average of
the two homozygotes then h = 1/2, a situation some-
times called codominance. A dominance coefficient
of h = 1/2 is more descriptively referred to as additive
gene action since the phenotype of the heterozygote
is the sum of the phenotypic effects of each allele. 
For example, if phenotypes are AA = 3 spots, Aa = 2
spots and aa = 1 spot, an A allele contributes 1.5 spots
and an a allele contributes 0.5 spots in the hetero-
zygote when gene action is additive. Look at Table 6.4
and verify the fitness of the heterozygote when h = 0,
1, and 1/2. This method to specify fitness has the
advantage that the results of natural selection can 
be predicted for any degree of dominance. There 
is also a strong biological motivation, since alleles
commonly show a wide range of dominance or gene
action in actual populations, ranging between being
completely dominant or completely recessive.

The outcome of selection for three cases of gene
action are shown in Fig. 6.6. All three cases start at
the same initial allele frequency and share the same
selection coefficient. However, gene action varies
from completely dominant to completely recessive
with the additive case in between. The results of 
natural selection on a completely dominant allele
(rapid change in allele frequency initially but never
reaching fixation) and on a completely recessive allele
(slow initial change in allele frequency then more
rapid change and eventual fixation) are identical 
to the dynamics seen in earlier examples. The allele

frequency trajectory for additive gene action is inter-
mediate. It combines the rapid initial change in allele
frequency of complete dominance with the later-
stage rapid approach to equilibrium and fixation of
the complete recessive. Equilibrium allele frequency
(fixation or near fixation) is reached most quickly
with additive gene action.

With completely dominant or recessive alleles,
natural selection cannot discriminate between two
of the three genotypes since their fitness values 
are identical. How this lack of difference in fitness
values affects natural selection depends on genotype
frequencies. In the early generations, the recessive
case shows slow change because the heterozygote is
selected against and the fittest genotype is rare. In
the later generations of the dominance case, hetero-
zygotes shelter the recessive allele from natural selec-
tion slowing further change in allele frequency as
the recessive homozygote becomes very infrequent.
In contrast, the fitness values of all three genotypes
are distinct and uniformly different with additive gene
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Figure 6.6 Allele frequencies over time for three types of
gene action with a low initial allele frequency. In all three
cases the equilibrium allele frequency is fixation or near
fixation for the A allele. With complete dominance, natural
selection initially increases the allele frequency very rapidly.
The approach to fixation for the A allele slows as aa
homozygotes become rare since heterozygotes harbor a
alleles that are concealed from natural selection by
dominance. Natural selection initially changes the frequency
of a recessive allele very slowly since homozygote recessive
genotypes are very rare. As the recessive homozygotes
become more common, allele frequency increases more
rapidly. With additive gene action the phenotype of the
heterozygote is intermediate between the two homozygotes 
so all genotypes differ in their viability. Additive gene action
has the most rapid overall approach to equilibrium allele
frequency. The degree of dominance is represented by the
dominance coefficient, h. In this illustration the selection
coefficient is s = 0.1.
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action. Additive gene action gives the maximum 
difference in marginal and average fitness values across
the entire range of possible genotype frequencies
under random mating.

Gene action is an important factor in understand-
ing the fate of new mutations acted on by natural
selection. Imagine a new mutation in a population
that has a high relative fitness when homozygous.
As covered in Chapter 5, the initial frequency of any 

new mutation will be low ( ). A completely or 

nearly recessive mutation will take a very long time
to increase in frequency under natural selection. In
contrast, a completely or nearly dominant mutation
with the same fitness as a homozygote and starting
at the same frequency will increase in frequency 
very rapidly. The examples in Fig. 6.6 where the 
initial frequency of the A allele is 0.05 are equivalent
to a new mutation in a population of Ne = 10.

Heterozygote disadvantage

The results of natural selection acting against the
heterozygote phenotype, a situation known as hetero-
zygote disadvantage, underdominance for fitness, 
or disruptive selection (see Table 6.4), are shown in
Fig. 6.7. Starting from an initial allele frequency of 
p = 0.4, the top panel shows how the aa homozygote
eventually reaches fixation over time. The bottom
panel requires close attention in this case, since the
equilibrium allele frequency depends strongly on the
initial allele frequency in the population. Initial allele
frequencies above p = 0.5 all lead to fixation of the
AA homozygote while all initial allele frequencies
below p = 0.5 lead to fixation of the aa homozygote.
When the initial allele frequency in the population is
exactly p = 0.5, allele frequencies remain constant
over time. It turns out that this equilibrium point is
not robust to any change in allele frequency, and so
is called an unstable equilibrium. Any slight change
in allele frequency will result in the allele frequencies
changing to alternative stable equilibrium points 
of fixation or loss. Such an unstable equilibrium is 
very unlikely to persist in a finite population, since
even a slight amount of genetic drift would alter
allele frequencies in the population toward one of the
stable equilibrium points.

Heterozygote advantage

The results of natural selection acting to increase the
frequency of the heterozygous genotype, commonly

1
2Ne

referred to as heterozygote advantage, overdominance
for fitness, or balancing selection (see Table 6.4), 
are shown in Fig. 6.8. The top panel shows the 
frequencies of the three genotypes over time start-
ing from an initial allele frequency of p = 0.05. The 
heterozygous genotype increases in frequency due 
to its higher relative fitness. At the same time, the 
aa homozygote (initially 90% of the population)
declines due to its lower viability. Although the 
relative fitness of the AA homozygote is lower than
that of the heterozygote, its frequency increases toward
25% as allele frequencies approach p = q = 0.5 due
to the increasing frequency of heterozygotes. The
bottom panel shows that for all initial allele fre-
quencies, natural selection causes the population to
approach p = q = 0.5.

Overdominance for fitness represents a unique
exception for the outcome of natural selection on a
diallelic locus. Selection against a dominant pheno-
type results in fixation of the recessive allele and loss
of the dominant allele. Similarly, selection against 
a recessive phenotype results in near fixation of the
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Figure 6.7 The change in the genotype and allele
frequency when there is underdominance for fitness and
natural selection acts against individuals with Aa genotypes.
The equilibrium allele frequency depends on the initial allele
frequency. Starting below 0.5 populations head toward loss
while starting above 0.5 populations go to fixation. There 
is an unstable equilibrium at an initial allele frequency of
exactly 0.5. From any initial allele frequency the population
converges on a minimum frequency of heterozygotes. 
The colored, dashed line in the bottom panel corresponds 
to the allele frequencies in the top panel. In this illustration
wAA = waa = 1.0 and wAa = 0.9. Genotype frequencies assume
random mating.
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dominant allele and near loss of the recessive allele.
Selection against a heterozygote also results ulti-
mately in fixation of one allele and loss of the other
allele. These three forms of natural selection all 
produce an equilibrium with little or no genetic 
variation, known as a monomorphic equilibrium.
In contrast, when heterozygotes have the highest
fitness natural selection maintains both alleles in 
the population at equilibrium, resulting in a poly-
morphic equilibrium. Thus, overdominance for
fitness is one type of natural selection that is con-
sistent with the permanent maintenance of genetic
variation in populations.

The allele frequencies expected at equilibrium with
overdominance can be obtained from equation 6.23,
as shown in Math box 6.2. The equilibrium allele 
frequencies are

(6.35)

and

(6.36)
 
q

s
s tequilibrium =

+

 
p

t
s tequilibrium =

+

where s and t are the selection coefficients against the
AA and aa homozygotes, respectively (see Table 6.4).
The equilibrium allele frequency is higher for the allele
in the homozygous genotype that has the smaller
selection coefficient (or higher relative fitness).

The strength of natural selection

The strength of selection against a genotype can
vary from weak, such as a viability 0.1% less than
the most fit genotype, to very strong, such as 50%
viability or even zero viability (lethality) of a geno-
type. Allele frequencies over time (starting from the
same initial allele frequency) are plotted in Fig. 6.9
for a wide range of selection coefficients in the case of
natural selection against a homozygous recessive
genotype. Notice that the shapes of the curves in the
top and bottom panels of Fig. 6.9 are very similar 
but that the time scale of each plot is very differ-
ent. Selection coefficients of 10% or greater bring 
the dominant allele to high frequencies within 100 
generations. In contrast, reaching these same allele 
frequencies takes 10,000 generations when the
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Figure 6.8 The change in the genotype and allele frequencies
when there is overdominance for fitness and natural selection
favors individuals with Aa genotypes. From any initial allele
frequency the population converges on a maximum
frequency of heterozygotes. This corresponds to equal allele
frequencies with random mating. The colored, dashed line in
the bottom panel corresponds to the allele frequencies in the
top panel. In this illustration wAA = waa = 0.9 and wAa = 1.0.
Genotype frequencies assume random mating.
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Figure 6.9 The strength of natural selection influences 
the rate of change in genotype and allele frequencies. In this
illustration, selection acts against the recessive homozygote
(aa). The top panel shows strong natural selection where
viability of the aa genotype is 10–50% less than that of the
other genotypes. The bottom panel shows weak natural
selection where viability of the aa genotype is 1–0.1% less
than that of the other genotypes. Note the vastly different
time scales in the two plots.
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selection coefficient is between 1.0 and 0.1%. This
illustrates the general principle that stronger natural
selection (larger selection coefficients or larger fit-
ness differences) results in a more rapid approach to 
equilibrium allele frequencies. This conclusion applies
to all of the situations given in Table 6.4 and to the
process of natural selection in general.

6.3 How natural selection works to increase
average fitness

• Natural selection acts to increase mean fitness.
• The fundamental theorem of natural selection.

In the five fitness situations shown in Table 6.4 
for natural selection on a diallelic locus, there are

always two general outcomes. Directional selec-
tion of any type ends in fixation and loss (selection
against a dominant phenotype) or nearly fixation
and loss (selection against a recessive phenotype).
Underdominance too results in fixation or loss 
(with one exception unlikely to be realized in finite
populations). Overdominance is the exception that
maintains both alleles in the population indefinitely.
So the two outcomes are either fixation and loss 
or intermediate frequencies for both alleles (some-
times called a balanced polymorphism). The 
reason why these two general outcomes occur can
be understood by examining the average fitness of 
a population (N) as well as the rate of change in 
allele frequency (Δp) over the entire range of allele
frequencies.

By definition, equilibrium allele frequencies 
are reached when allele frequencies stop
changing from one generation to the next.
This means that Δp as expressed by

(6.37)

which was first shown as equation 6.23,
should be equal to zero.

Two equilibrium points occur when p = 0 or
q = 0, biologically equivalent to situations where
there is no genetic variation in a population.
When there is genetic variation (both p ≠ 0 and
q ≠ 0), the equilibrium point depends on the
fitness differences contained in the numerator.
Taking the numerator term in square brackets
in equation 6.37 and setting it equal to zero,

p(wAA − wAa) + q(wAa − waa) = 0 (6.38)

and then solving p or q in terms of relative fitness
values, will give allele frequencies where Δq is
zero. The first step is to substitute q = 1 − p:

p(wAA − wAa) + (1 − p)(wAa − waa) = 0 (6.39)

and then expand by multiplying the terms:

pwAA − pwAa + wAa − waa − pwAa + pwaa = 0
(6.40)

Δp
pq p w w q w w

=
− + −[ ( ) ( )]AA Aa Aa aa

T

The relative fitness values that are multiplied
by p can be brought together:

p(wAA − 2wAa + waa) + wAa − waa = 0 (6.41)

and then subtracted:

wAa − waa = −p(wAA − 2wAa + waa) (6.42)

Dividing both sides by −(wAA − 2wAa + waa)
gives

(6.43)

which expresses p as a function of relative
fitness values alone. Substituting the relative
fitness values of wAA = 1 − s, wAa = 1, and 
waa = 1 − t as given in Table 6.4:

(6.44)

and then carrying out the addition and
subtraction then gives the equilibrium allele
frequency in terms of selection coefficients for
the two homozygous genotypes:

(6.45)
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Math box 6.2 Equilibrium allele frequency with overdominance
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Average fitness and rate of change in allele
frequency

The mean fitness (N) over all possible allele frequen-
cies is plotted for each case of natural selection on a
diallelic locus in Figs 6.10 and 6.11. For the cases 
of directional selection in Fig. 6.10, notice that the
highest mean fitness corresponds exactly to fixa-
tion of the A allele for selection against a recessive
phenotype and to loss of the A allele for selection
against a dominant phenotype. This same pattern is
evident in Fig. 6.11 where the highest mean fitness is
found at an intermediate allele frequency for over-
dominance or at fixation or loss for underdominance. 
These plots of mean fitness by allele frequency show
that natural selection acts to increase the mean
fitness of the population to its maximum. It is the
maximum mean fitness in a population that really
defines the equilibrium points for genotype and 
allele frequencies. The plots of N against p reveal the

generalization that the process of natural selection
acts to increase the population mean fitness every
generation if possible and stops when the mean
fitness can no longer increase. In this sense, natural
selection can be metaphorically likened to a moun-
tain climber who continually works to find the high-
est point, but who cannot ever go downhill and will
only rest at the summit. Keeping with this metaphor,
plots of N against p are called fitness surfaces,
adaptive landscapes, or adaptive topographies
and represent a topographic map of the mountain 
at any point where our imaginary mountain climber
might venture.

Figures 6.10 and 6.11 also show the change in
allele frequency over a single generation (Δp) over 
all possible allele frequencies for each case of natural
selection. Plots of Δp against p reveal when allele 
frequencies are increasing (Δp is positive) or decreas-
ing (Δp is negative) as well as when allele frequencies
are changing rapidly (the absolute value of Δp is
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Figure 6.10 Mean fitness in a population (N) and change in allele frequency over a single generation (Δp) as a function of allele
frequency for directional selection. Directional selection reaches allele frequency equilibrium at either fixation or loss, the point of
highest mean fitness. Positive values of Δp (above the dashed line) indicate that allele frequency is increasing under selection while
negative values of Δp (below the dashed line) indicate that allele frequency is decreasing under selection. The change in allele
frequencies is faster when average fitness changes more rapidly (the slope of N is steeper). Here wAA = wAa = 1.0 and waa = 0.8 for
selection against a recessive phenotype and wAA = wAa = 0.8 and waa = 1.0 for selection against a dominant phenotype.
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large) or slowly (the absolute value of Δp is small).
When allele frequencies are not changing at all (Δp is
zero), then an equilibrium allele frequency has been
reached. Notice that fixation or loss of the A allele
corresponds to Δp = 0 for directional selection. For
overdominance and underdominance, Δp = 0 for
fixation and loss as well as for the intermediate allele
frequency of p = 0.5. These allele frequencies are
therefore equilibrium points because natural selec-
tion is not causing any change in allele frequency at
these specific allele frequencies.

Also compare each plot of Δp against p to the 
corresponding plot of N against p. There is a striking
relationship between Δp and N. Both the magnitude
and sign of Δp correspond exactly to the slope of 

the N line at any value of p. The slope of N is always
positive, just as Δp is always positive for selection
against a recessive, while the slope of N is always 
negative, just as Δp is always negative for selection
against a dominant (Fig. 6.10). This same pattern is
seen in Fig. 6.11 for overdominance and underdomin-
ance, where the slope of N is zero at fixation and loss
as well as at p = 0.5. The slope of N explains why the
polymorphic equilibrium point for overdominance is
stable while that for underdominance is unstable.
With overdominance, if there is any shift of allele 
frequencies away from p = 0.5, say by genetic drift or
mutation, natural selection will return the popula-
tion back to the equilibrium of p = 0.5 (Δp is positive
for p < 0.5 and negative for p > 0.5). In contrast,
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Figure 6.11 Mean fitness in a population (N) and change in allele frequency over a single generation (Δp) as a function of allele
frequency for balancing and disruptive selection. Natural selection changes allele frequencies to increase the average fitness in
each generation, eventually reaching an equilibrium when the mean fitness is highest. The change in allele frequencies is faster
when average fitness changes more rapidly (the slope of N is steeper). The dashed line in the plots of Δp by p shows where allele
frequencies stop changing (Δp = 0) and thus are allele frequency equilibrium points. With underdominance for fitness, Δp is zero
when p = 0.5 and so defines an equilibrium point marked by the circle. However, this equilibrium point is unstable since Δp on
either side of p = 0.5 changes allele frequencies away from the equilibrium point (below p = 0.5 Δp is negative leading toward loss
and above p = 0.5 Δp is positive leading toward fixation). In contrast, with overdominance Δp on either side of p = 0.5 changes
allele frequencies toward the equilibrium point (below p = 0.5 Δp is positive and above p = 0.5 Δp is negative) and thus p = 0.5 
is a stable equilibrium point. Here wAA = waa = 1.0 and wAa = 0.7 for underdominance and wAA = waa = 0.7 and wAa = 1.0 for
overdominance.
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with underdominance, if there is any shift of allele 
frequencies away from p = 0.5, natural selection will
change allele frequencies to the maximum mean fit-
ness values found at fixation and loss (Δp is negative
for p < 0.5 and positive for p > 0.5).

The fundamental theorem of natural selection

To close this section, let’s examine one last general-
ization about the action of natural selection on a
diallelic locus. Sir Ronald Fisher (Fig. 6.12) proposed
the impressive sounding fundamental theorem 
of natural selection (Fisher 1999, originally 
published in 1930) as a way to summarize and 
generalize the process. In Fisher’s words, the funda-
mental theorem of natural selection was that “the
rate of increase in fitness of any organism at any time
is equal to its genetic variance in fitness at that time.”
A modern restatement of the theorem is that “the
rate of increase in the mean fitness of any organism
at any time ascribable to natural selection acting
through changes in gene frequencies is exactly equal
to its genic variance in fitness at that time” (Edwards
1994). The fundamental theorem has also been inter-
preted as showing that any change in mean fitness
caused by natural selection must always be positive.
As Crow (2002) and Edwards (2002) recount, this
cryptic yet simultaneously insightful statement about
natural selection has lead to a great deal of contro-
versy, misunderstanding, and just plain confusion
over many years.

··

Launch Populus. In the Model menu, choose Natural Selection and then Selection on a Diallelic
Autosomal Locus. In the options dialog box set view to p vs. t and use fitness coefficients. Set the
fitness values as given below. Click on the button for One Initial Frequency and set the initial allele
frequency to 0.5. Press the View button to see the simulation results. Clicking on the different radio
buttons for Plot Options switches the view among the four different modes of display (p vs. t,
Genotypic frequency vs. t, Δp vs. p, and T vs. p). When selection is weak, set the generations to 
view in the range of 500 to 1000, but when selection is strong 50 to 100 generations will be more
appropriate. Using the Six Initial Frequencies option shows the outcome of natural selection for
six different initial allele frequencies like Figs 6.4–6.8, but the Genotypic frequency vs. t plot will
not be available.

Here are some fitness values to simulate.

• Weak selection against recessive: wAA = 1; wAa = 1; waa = 0.9 (h = 0, s = 0.1). Compare with
selection against recessive lethal: wAA = 1; wAa = 1; waa = 0.0 (h = 0, s = 1.0)

• Weak selection with additive gene action: wAA = 1; wAa = 0.95; waa = 0.9 (h = 0.5, s = 0.1).
Compare with strong selection with additive gene action: wAA = 1; wAa = 0.7; waa = 0.4 
(h = 0.5, s = 0.6)

• Weak selection with overdominance: wAA = 0.98; wAa = 1; waa = 0.95. Compare with strong
selection with overdominance: wAA = 0.2; wAa = 1; waa = 0.4.

• Selection against the heterozygote: wAA = 1; wAa = 0.8; waa = 1. For this case be sure to examine
the Genotypic frequency vs. t plot for several different initial allele frequencies such as 0.2, 0.5
and 0.8.

Interact box 6.1 Natural selection on one locus with two alleles

Using equations 6.35 and 6.36 allows us to
predict the allele frequencies at equilibrium
for selection with overdominance for fitness.
We also need to understand why the
equilibrium is the point at which genotype
frequencies stop changing. Let the fitness
values be wAA = 0.9, wAa = 1.0, and waa = 0.8.
First, calculate expected frequency of the 
A allele at equilibrium or pequilibrium. Then
compute Δp and T at pequilibrium , p = 0.9,
and p = 0.2. How do the values of Δp and T
at the three allele frequencies compare? Use
Δp and T to explain why equilibrium allele
frequency is between p = 0.9 and p = 0.2.

Problem box 6.2
Mean fitness and change 

in allele frequency
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One way to illustrate the idea behind the funda-
mental theorem is to examine natural selection and
the change in the average fitness of a population over
time. For simplicity, assume that the organisms are
entirely haploid and reproduce asexually or clonally
and that generations are discrete (these assumptions
are not required by the fundamental theorem itself
but make the math much simpler). In the haploid
case, the average fitness is fitness of each haplotype
weighted by its frequency summed over all haplo-
types in the population (recall equation 6.10). In an
equation the mean fitness is

(6.46)
   
N =

=
∑( )p wi i
i

k

1

where k is the total number of haplotypes in the 
population. Extending the results in Table 6.1 to 
an arbitrary number of alleles, the frequency of any 
single haplotype, call it haplotype i, after natural
selection is

(6.47)

where the prime symbol is used to represent quant-
ities after one generation of natural selection. Based
on this haplotype frequency after selection, the aver-
age fitness after one generation of selection is then

(6.48)

which when substituting in the expression for p ′i
gives

(6.49)

The change in fitness from one generation to the
next standardized by the mean fitness in the initial
generation is

(6.50)

which when substituting in the expression for N′
from equation 6.48 gives

(6.51)

an equation that can be rearranged by multiplying 

by rather than dividing by N to give

(6.52)

It turns out that the term is the variance 

in fitness (the variance is ∑(piwi − N)2 which is
equivalent to ∑ piw

2
i − N2 and when both terms are 

multiplied by the constant it gives the term in 
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Figure 6.12 Sir Ronald A. Fisher (1890–1963)
photographed in 1943, was a pioneer in the theory and
practice of statistics. He invented the techniques of analysis of
variance and maximum likelihood as well as numerous other
statistical tests and methods of experimental design. Fisher’s
1930 book The Genetical Theory of Natural Selection established
a rigorous mathematical framework that coupled Mendelian
inheritance and Darwin’s qualitative model of natural selection
and is one of the foundation works of modern population
genetics. Much of Fisher’s work stressed the effectiveness of
natural selection in changing gene frequencies in infinite,
panmictic populations. Photograph courtesy of the Master
and Fellows of Gonville and Caius College, Cambridge.
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brackets in equation 6.52). In addition, the relative
fitness values of all the haplotypes can be scaled so
that N = 1. This then leads to

ΔN = var(w) (6.53)

and the conclusion that the change in mean fitness
of the population after one generation of natural
selection is equal to the variation in fitness. This vari-
ation in fitness is really genetic variation in the case
of haploids, due to the frequencies of the different
haplotypes in the population as well as to the differ-
ent fitness values of each haplotype. Therefore, the
change in fitness under natural selection is equal to
the genetic variation in fitness. Further, since a vari-
ance can never be negative, the change in mean
fitness by natural selection must then be greater
than or equal to zero.

The point of Fisher’s fundamental theorem can
also be shown graphically for a diploid diallelic locus
using a De Finetti diagram (introduced in Chapter 2)
that also displays the mean fitness of the population
(Fig. 6.13). To see this, let 2Q, P, and R represent the
frequencies of the genotypes Aa, AA, and aa, respect-
ively. The ratio of the genotype frequencies can be
expressed as the square of half the heterozygote fre-
quency divided by the product of the homozygote 
frequencies or λ = Q2/PR, where λ is a measure of
departure from Hardy–Weinberg genotype frequen-
cies akin to the fixation index F. When genotype 
frequencies are in Hardy–Weinberg proportions, geno-
type frequencies are then 2Q = 2pq, P = p2, R = q2,
and λ = 1. The two dashed lines in Fig. 6.13 have
values of λ less than one. Each point of the De Finetti
diagram in Fig. 6.13 will also represent a value of 
the mean fitness of the population, depending on the
specific values of the relative fitness values of the
genotypes. Mean fitness on the De Finetti diagram 
is represented by the grayscale gradient with darker
tones representing higher mean fitness.

The change in mean fitness under natural selec-
tion can be thought of as a two-step process on the De
Finetti diagram (Edwards 2002). In the first step,
allele frequencies change from their current value to
some new value while keeping the ratio of genotype
frequencies constant. This is equivalent to moving
from point z1 to point z2 while remaining on the line
that defines a constant value of λ. In the second step,
the population moves from point z2 to point z3 by
changing its genotype frequencies but not altering
its allele frequencies. The first part of the change in
mean fitness caused by selection is due to the change

in allele frequencies alone with everything else held
constant. This partial change in the mean fitness 
due exclusively to the change in allele frequencies 
is exactly the same as the genic variance or the
additive genetic variance that is present in the
population at point z1. The second part of the change
in mean fitness is due to changes in genotype fre-
quency and is therefore caused by factors such as
mating patterns or physical linkage resulting in
gametic disequilibrium that will change the value 

··

Frequency
of AA P

Frequency
of aa R

p
Allele frequency before selection

p′
Allele frequency after selection

z3

z1 z2

Hardy–Weinberg
genotype frequencies

Frequency of Aa
2Q

Figure 6.13 A graphical illustration of R.A. Fisher’s
fundamental theorem of natural selection. The curved 
lines represent the product of the homozygote frequencies 
(P = p2 and R = q2) as a constant proportion of the square of
the product of the allele frequencies (Q = pq) or λ = Q2/PR.
Hardy–Weinberg genotype frequencies produced by random
mating represent the special case of λ = 1 (solid colored line).
Mean fitness is represented by the grayscale gradient with
darker tones representing higher mean fitness. In this
illustration, genotype frequencies start out at z1. Suppose 
that natural selection over one generation changes genotype
frequencies to point z3 (under the conditions that genotype
AA has the highest fitness and additive gene action, for
example). This change in genotype frequencies can be
decomposed into two distinct parts. One part is the change
from z1 to z2 moving along the curve where λ is constant but
allele frequencies change from p to p′. The other part is the
change in the genotype frequencies (changing the value of λ)
that occurs by moving vertically on the De Finetti diagram
from z2 to z3 but keeping allele frequencies constant. The
fundamental theorem says that the change in the mean
fitness by natural selection is proportional to the change 
in allele frequency alone. Processes other than natural
selection, such as mating system, dictate the change in
genotype frequencies. When natural selection moves the
genotype frequencies along a curve of constant λ, then the
total change in mean fitness is completely due to changes in
allele frequency and genetic variation in fitness is completely
additive. Modified from Edwards (2002).
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of λ as allele frequencies change. The fundamental
theorem says that natural selection will change
mean fitness by an amount proportional to the addi-
tive genetic variance alone. If λ is constant, the total
change in mean fitness is just the change due to the
variation in allele frequencies. When λ is not con-
stant, changes in genotype frequencies can either
increase or decrease mean fitness and can be thought
of as causing an average change of zero.

Genetic variation in phenotype due to the sub-
stitution of alleles (additive genetic variation) and due
to the effects of genotypes is examined from a com-
pletely distinct perspective in Chapters 9 and 10 on
quantitative genetics. Those chapters also demon-
strate the distinction that is made in the fundamental
theorem between genetic variation due to changes
in allele frequencies and changes in genotype fre-
quencies. Both approaches give the same result that
additive genetic variation is the basis of changes in
mean phenotype due to natural selection.

Chapter 6 review

• For haploid organisms, natural selection is a 
population growth process where different geno-
types vary in genotype-specific population growth
rates. The ratio of genotype-specific growth rates
is the relative fitness and it predicts the genotype
that will approach fixation in an infinitely expand-
ing population over time.

• Natural selection in diploid organisms also relies
on the relative fitness to express genotype-specific
growth rates with the addition of sexual repro-
duction such that pairs of parents can produce a
predictable frequency of genotypes in their pro-
geny under random mating.

• The outcomes of natural selection on viability for
a diallelic locus can be generalized into directional
selection (a homozygote most fit) that results in
fixation and loss (or very nearly fixation and loss),
balancing selection (heterozygote advantage) that
maintains both alleles forever, and disruptive
selection (heterozygote disadvantage) that results
in fixation or loss depending on initial genotype
frequencies.

• The fundamental theorem of natural selection
shows us that the change in mean fitness by 
natural selection is proportional to the additive
genetic variation in fitness.

• The degree of dominance and recessivity for 
viability phenotypes impacts the rate of change 
of genotype frequencies under natural selection
because there is not a perfect relationship between
genotype and phenotype. Natural selection
changes genotype frequencies fastest when gene
action is additive.

Further reading

Arguably the first comprehensive treatment of 
natural selection that came out of the modern syn-
thesis and still a stimulating read today is:

Fisher RA. 1999. The Genetical Theory of Natural Selec-
tion: a Complete Variorum Edition. Oxford University
Press, Oxford (originally published in 1930).

Another early classic of the modern synthesis that
established the mathematical connections between
Mendelian genetics and natural selection is:

Haldane JBS. 1990. The Causes of Evolution. Princeton
University Press, Princeton, NJ (originally published
in 1932).

Problem box 6.1 answer

To solve for relative fitness given initial and
final allele frequencies and time elapsed, we
need to rearrange equation 6.8 by taking the
logarithm of both sides:

log log( ) log
q

p
t w

q

p
t

t

⎛

⎝
⎜⎜

⎞

⎠
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⎝
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⎞

⎠
⎟⎟

0

0

to remove the exponent. We will let p
represent the frequency of the wild-type allele
and q the combined frequency of the drug-
resistant alleles. Based on 601 days between
allele frequency estimates, t = 231 generations
elapsed. Substituting these values gives

  
log

.
.

( ) log( ) log
.
.

0 51
0 49
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0 99
0 01
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Problem box answers
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0.01737 = (231) log(w) + 1.9956
−1.9782 = (231) log(w)

−1.9782/231 = log(w)
−0.008564 = log(w)
10−0.008564 = w

w = 0.9805

The relative fitness of the drug-resistant 
alleles is 98% of the wild type allele and
therefore the wild-type allele increases 
in frequency over time when AZT is not
present.

Problem box 6.2 answer

pequilibrium = t/(s + t) = 0.2/(0.1 + 0.2) = 2/3

For equilibrium allele frequencies:

T = 0.9(0.667)2 + (1)2(0.667)(0.333)
+ 0.8(0.333)2

= 0.9333

= 0

or calculated using the marginal fitness

= 0.667

Δp = 0.667 − 0.667 = 0

At p = 0.9 (p > pequilibrium)

T = 0.9(0.9)2 + (1)2(0.9)(0.1) + 0.8(0.1)2

= 0.917

  
pt+ =

+
1

20 9 0 667 1 0 667 0 333
0 9333

. ( . ) ( . )( . )
.

Δp =
− + −( . )( . )[ . ( . ) . ( . )0 667 0 333 0 667 0 9 1 0 333 1 0 8 ]]

.0 9333

= −0.0069

or calculated using the marginal fitness

= 0.8931

Δp = 0.8931 − 0.9 = −0.0069

At p = 0.2 (p < pequilibrium)

T = 0.9(0.2)2 + (1)2(0.2)(0.8) + 0.8(0.8)2

= 0.868

= 0.0258

or calculated using the marginal fitness

= 0.2258

Δp = 0.2258 − 0.2 = 0.0258

At p = 0.9, T is lower than at pequilibrium.
Therefore, Δp is negative meaning that 
natural selection is causing allele frequencies
to decrease. At p = 0.2, T is also lower than 
at pequilibrium. Therefore, increasing allele
frequencies (positive Δp) by natural selection
causes an increase in mean fitness. At
pequilibrium , T is at its maximum for these 
relative fitness values and so Δp is zero 
because selection will no longer change 
the allele frequencies.

  
pt+ =

+
1

20 9 0 2 1 0 2 0 8
0 868

. ( . ) ( . )( . )
.

  
Δp =

− + −( . )( . )[ . ( . ) . ( . )]
.

0 2 0 8 0 2 0 9 1 0 8 1 0 8
0 868

  
pt+ =

+
1

20 9 0 9 1 0 9 0 1
0 917

. ( . ) ( . )( . )
.

Δp =
− + −( . )( . )[ . ( . ) . ( . )]

.
0 9 0 0 0 9 0 9 1 0 1 1 0 8

0 917
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7.1 Viability selection with three alleles 
or two loci

• Mean fitness surfaces.
• Natural selection on one locus with three alleles.
• Natural selection on two diallelic loci.

Chapter 6 established a series of general predictions
about the action of natural selection when fitness is
equivalent to genotype-specific viability determined
by a single locus with two alleles. The conditions
required for the basic diallelic locus model of natural
selection are quite restrictive and are probably not
met often in biological populations. The goal of 
this chapter is to extend our understanding of the 
model of natural selection to increasingly complex
and general genetic situations. In a sense then, this
chapter explores the process of natural selection under
assumptions that might better approximate condi-
tions found in some natural populations. In the first
section, we will retain the viability natural selection
model and its assumptions but modify the numbers
of alleles at a locus and the number of loci. The goal is
to examine the outcomes of viability selection when
fitness is determined by either a single locus with
three alleles or two loci each with two alleles.

A useful tool that we will employ to understand the
dynamics of genotype frequencies, allele frequencies,
and mean fitness under natural selection is called 
a fitness surface. A fitness surface is a graph that
shows genotype frequencies of a population on some
axes along with the mean fitness of the population 
at each possible point in the range of genotype fre-
quencies. For one locus with two or three alleles, a 
De Finetti diagram can be used as a fitness surface, as
shown in Fig. 7.1. The three axes represent genotype
frequencies of a population on the plot. Each point
inside the triangle defines three genotype frequencies
that are then used to compute the mean fitness of 
the population. The mean fitness is represented by
shading as well as contour lines that connect points

of equal mean fitness. Since contour plots of mean
fitness are interpreted exactly like topographic maps
where contour lines are used to represent elevation,
they are also called fitness landscapes or adaptive
landscapes. The highest point on a fitness surface
represents equilibrium genotype frequencies under
natural selection. A fitness surface also shows how
natural selection will change genotype frequencies
over time if the process of natural selection oper-
ates like a hiker who can only travel uphill. For any
point on a fitness surface, natural selection will act 
to increase mean fitness of the population and shift
genotype frequencies in a direction that increases
the mean fitness. Once the population is at a point
where mean fitness cannot increase, natural selec-
tion has reached an equilibrium and stops changing
genotype frequencies. In Fig. 7.1, the entire surface
is a tilted plane that is has its highest point at the 

CHAPTER 7

Further models of natural selection
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Figure 7.1 A fitness surface made by including mean 
fitness on a De Finetti plot of the three genotype frequencies
for a diallelic locus. The colored lines indicate the possible
trajectories of genotype frequencies as natural selection
increases the mean fitness of the population. The fitness
values are wAA = 1.0, wAa = 0.6, and waa = 0.2 so the 
highest mean fitness is found in the lower left apex when 
the population is fixed for the AA genotype. This highest
fitness point can be reached by continually increasing mean
fitness from any initial point on the surface. Gene action is
additive because alleles have a constant impact fitness
regardless of the allele they are paired with in a genotype. 
An A allele always contributes 0.5 and an a allele 0.1 toward
the fitness of a genotype.
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left vertex or where the AA genotype is fixed in the
population. Therefore, natural selection will change
genotype frequencies such that the population climbs
in mean fitness until reaching fixation for AA.

Natural selection on one locus with three alleles

With an understanding of fitness surfaces, let’s now
turn to the classic case of natural selection on three
alleles at the human hemoglobin β gene (see Allison
1956; Modiano et al. 2001). The hemoglobin pro-
tein is found in red blood cells and is responsible 
for binding and then carrying oxygen from the lungs 
to the entire body. Adult hemoglobin is formed from
four separate proteins, two α (or “alpha”) proteins
and two β (or “beta”) proteins. The hemoglobin β
gene encodes the β protein, which is often referred 
to as β-globin or Hb. The Hb A allele is the most 
common allele in human populations. Although
several hundred Hb alleles have been identified in
human populations, the Hb S allele is a common low-
frequency allele. The S allele is characterized by a
nucleotide change that results in substitution of the
hydrophobic amino acid valine in place of the hydro-
philic glutamic acid at the sixth amino acid position of
the β-globin protein. Individuals homozygous for the
S allele exhibit changes in red blood cell morphology
(“sickling”) and impaired oxygen transport that leads
to chronic anemia (Ashley-Koch et al. 2000). The 
Hb C allele is also present at low frequencies in West
African and southeast Asian populations. Individuals
who are CC homozygotes have mild to moderate
anemia and enlargement of the spleen that is often
asymptomatic (e.g. Fairhurst & Casella 2004).

The fitness of Hb genotypes depends on the environ-
ment where people live. In areas of the world without
the malarial parasite Plasmodium falciparum, genotypes
that result in anemia and related conditions have
lower fitness. However, in regions where malarial
infection is common, certain Hb genotypes confer
resistance to infection by P. falciparum that may partly
or completely compensate for any disadvantage due
to anemia. Two estimates of the relative fitnesses 
of the six Hb genotypes in Western Africa where
malaria is common are shown in Table 7.1.

A seemingly obvious prediction from Table 7.1 is
that natural selection in populations where malaria
is common would increase the frequency of the CC
genotype and eventually fix the C allele. But is this
really what will happen? The answer comes from
examining fitness surfaces for the six Hb genotypes.
With three alleles there are six genotype frequencies,
which is too many to represent in a De Finetti plot
like Fig. 7.1. But since the allele frequencies must
sum to one, we can represent the fitness surface on a
ternary graph where each axis represents one of the
three allele frequencies. Fitness surfaces drawn in
this way are shown Fig. 7.2 for the two sets of fitness
values given in Table 7.1. These three allele fitness
surfaces are now rippled or hilly compared to the
fitness surface in Fig. 7.1.

Understanding how genotype frequencies will
change on a fitness surface requires calculating 
the change in allele frequencies due to selection 
for a series of points on the surface. The sign and 
magnitude of the change in allele frequency will be 
a function of the slope of the fitness surface at any
point we examine. To do this for the fitness surfaces

··

Table 7.1 Relative fitness estimates for the six genotypes of the hemoglobin β gene estimated in Western
Africa where malaria is common. Values from Cavallo-Sforza and Bodmer (1971) are based by deviation from
Hardy–Weinberg expected genotype frequencies. Values from Hedrick (2004) are estimated from relative 
risk of mortality for individuals with AA, AC, AS, and CC genotypes and assume 20% overall mortality from
malaria.

Relative fitness (w)

Genotype . . . AA AS SS AC SC CC

From Cavallo-Sforza and Bodmer (1971)
Relative to wCC 0.679 0.763 0.153 0.679 0.534 1.0
Relative to wAS 0.89 1.0 0.20 0.89 0.70 1.31

From Hedrick (2004)
Relative to wCC 0.730 0.954 0.109 0.865 0.498 1.0
Relative to wAS 0.765 1.0 0.114 0.906 0.522 1.048
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in Fig. 7.2, we need to extend the viability model of
natural selection to three alleles at one locus. We 
can compute the mean fitness of the population:

N = wAAp2 + wBBq2 + wCCr2 + wAB2pq
+ wAC2pr + wBC2qr

(7.1)

where p, q, and r represent the frequencies of the three
alleles A, B, and C. We can also use the marginal fit-
ness of the genotypes that contain each of the alleles
to compute whether an allele will increase or decrease
in frequency due to the average fitness of all the geno-

types that carry the allele. When there is random
mating, the marginal fitness for the A allele is

NA =

= wAAp + wABq + wACr
(7.2)

where the frequencies of the heterozygous genotypes
are multiplied by 1/2 since they carry one copy of the
A allele. The marginal fitness is a way to compare the
ratio of p in the current generation with frequency of
p in the next generation that will result from natural
selection changing genotype frequencies. Allele fre-
quencies change each generation due to differences
between the marginal fitness of each allele and the
average fitness of the entire population. The change
in the frequency of the A allele is

(7.3)

Allele frequency after one generation of selection 
is then simply pt+1 = p + Δp. Similar expressions are
obtained easily for the B and C alleles. Also note 
that this approach can be extended to an arbitrary 
number of alleles at one locus as long as genotypes
are in Hardy–Weinberg frequencies at the start of
each generation before the action of selection.

Returning to the fitness surfaces, Fig. 7.2a is an
interesting case because it has two stable equilibrium
points. One of the equilibrium points matches our
intuition after inspecting Table 7.1 that the CC geno-
type should be fixed by selection. When the initial
frequency of the C allele is relatively high, all three
trajectories of allele frequencies over 10 generations
of selection calculated with equation 7.3 are clearly
headed for fixation of CC. In contrast, when the 
initial frequency of the C allele is low the trajectories
of allele frequencies show that the C allele will be lost
from the population. This is counterintuitive given
that the CC genotype has the highest relative fitness.
This result is a consequence of the fitness surface.
When C is at low frequency its marginal fitness is
actually less than the mean fitness. In other words,
the fitness surface is going down in elevation toward
higher frequencies of the C allele. Since natural selec-
tion only works to increase mean fitness, the C allele
is reduced in frequency to loss.

To see one possible consequence of this fitness 
surface, imagine that the A and S alleles are older 
in human populations than the C allele and the A
and S alleles have reached equilibrium frequencies. 
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Figure 7.2 Fitness surfaces for the A, S, and C alleles at 
the human hemoglobin β gene when malaria is common. 
The surface in (a) corresponds to the top set of fitness values 
in Table 7.1 and (b) shows the surface for the bottom set 
of values. The tracks of circles represent generation-by-
generation allele frequency trajectories due to natural
selection over 50 generations calculated with equation 7.3.
In (a), when the initial frequency of the C allele is relatively
high, the equilibrium of natural selection is the fixation of the
CC genotype. In contrast, when the C allele is initially rare 
(a frequency of less than about 7%) selection reaches an
equilibrium with only the A and S alleles segregating and the
C allele going to loss. In (b), selection will eventually fix the CC
genotype from any initial frequency of the C allele. However,
when the C allele is at low frequencies, the increase in the C
allele each generation is extremely small so that selection
would take hundreds of generations to fix the CC genotype.
The six initial allele frequency points, shown as open circles,
are identical for the two surfaces.
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Using equation 6.35 and Table 7.1, the equilibrium
frequency of the A allele would be t/(s + t) = 0.8/
(0.11 + 0.8) = 0.88 and therefore the equilibrium fre-
quency of S would be 1 − 0.88 = 0.11. Next imagine
that the C allele occurs in the population at a later time
due to mutation. Since mutation rates are low, the
resulting frequency of the C allele will also be low 
and most C alleles would occur in AC and SC hetero-
zygotes. All heterozygotes have overdominance (AS)
or underdominance (SC and AC) for fitness. In 
particular, the SC heterozygote has a lower relative
fitness than AA and AS genotypes and so its mar-
ginal fitness would be negative when C is at a low 
frequency. Thus, to get from a mean fitness state
where C is infrequent we would have to go through a
dip of lower mean fitness as C initially increases. At
higher initial frequencies of C, however, mean fitness
increases steadily until CC fixes. So if A and S alleles
were ancestral, natural selection alone would drive 
a newly introduced C allele to loss despite the high
relative fitness of the CC homozygote.

For the fitness surface in Fig. 7.2b, natural selection
will eventually fix the CC genotype from any initial
frequency of the C allele. However, when the C allele
is at low frequency selection increases the frequency
of the C allele very slowly. This is because the mar-
ginal fitness of the C allele is only very slightly greater
than the mean fitness below a frequency of about
15% when the frequency of the A allele is also high.
This can be seen on the fitness surface by noting the

wide spacing between contour lines toward the left
vertex. Widely spaced contour lines indicate areas
with little slope. These are areas where the mean
fitness of the population is either constant or nearly
constant for a range of genotype frequencies. Such
flat areas on fitness surfaces can be stable or unstable
equilibrium points and are regions where selection 
is a weak process because the marginal fitnesses are
very close in value to the mean fitness.

Determining which of the different hemoglobin 
β genotype fitness values best describe actual 

··

Compute the mean fitness, marginal fitness
of the C allele, and the change in the C allele
using the two sets of initial allele frequencies
given below and relative fitness values from
the top of Table 7.1. Use Δp along with 
Fig. 7.2a to predict the equilibrium that will
be reached by natural selection for both
initial allele frequencies.

Initial allele frequencies set 1: p = 0.75, 
q = 0.20, r = 0.05
Initial allele frequencies set 2: p = 0.70, 
q = 0.20, r = 0.10

Problem box 7.1
Marginal fitness and ΔΔp

for the Hb C allele

Direct simulation of selection on one locus with three alleles is an easy way to see that equilibrium
points depend strongly on over- and underdominance for fitness. Populus has the ability to
simulate selection on a locus with three or more alleles. Launch Populus and, in the Model menu,
choose Natural Selection and then Selection on a Multi-allelic Locus. Click on each of the radio
buttons for the display options to see how the results can be displayed. Note that when using the
default fitness values the P3 allele goes to fixation. The options dialog box can be made larger by
dragging the tab at the bottom right, making it easier to see the parameter fields.

Then try some different fitness values:

Additivity: w11 = 0.6, w12 = 0.7, w13 = 0.8; w21 = 0.7, w22 = 0.8, w23 = 0.9; w31 = 0.8, w32 = 0.9, 
w33 = 1.0
Overdominance: w11 = w22 = w33 = 0.3; w12 = w13 = w21 = w23 = w13 = w31 = 1.0
Underdominance: w11 = w22 = w33 = 1.0; w12 = w13 = w21 = w23 = w13 = w31 = 0.3

Also be sure to vary the allele frequencies for each set of fitness values. You might try frequencies 
of all alleles equal at 1/3, and then one allele more common, with 0.67, 0.12, and 0.21 (the default
values).

Interact box 7.1 Natural selection on one locus with three or more alleles
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populations is not the main point of this example.
Rather, the hemoglobin β gene serves to illustrate
that dominance for fitness, the order of appearance
of alleles in a population and the relative fitness 
values may all interact to determining the outcome
of natural selection with three alleles.

Natural selection on two diallelic loci

Since phenotypes, and therefore fitness, may be caused
by more than one locus, a logical step is to extend the
model of natural selection to two loci. Biologically
there is strong motivation to consider selection at
more than one locus since many phenotypes are
known to show variation caused by multiple loci 
(see Chapter 9). The fate of two mutations could also
be considered as two-locus selection. Natural selec-
tion on two loci is inherently more complicated than
at a single locus because of gametic disequilibrium. 
As covered in Chapter 2, both linkage and natural
selection itself produce gametic disequilibrium that
must be accounted for in a two-locus model of natural
selection. Because natural selection on two loci is con-
siderably more complex than on just one locus, the
goal of this section is to provide a general introduc-
tion to two-locus models. It is important to recognize
at the outset that there is no easily summarized set 
of equilibria for two-locus selection as there are for
selection on a diallelic locus. The outcome of two-locus
selection depends on the balance between natural
selection and recombination between loci as well as
the initial genotype frequencies in the population.

Two-locus natural selection is commonly
approached from the perspective of gametes because
gametic disequilibrium is expressed in terms of gamete
frequencies. With two diallelic loci there are 16 
possible genotypes that result from the union of four
possible gametes. Let the frequencies of the gametes
AB, Ab, aB, and ab be x1, x2, x3, and x4. Table 7.2
shows the relative fitness values for all possible com-
binations of four gametes. There are only 10 unique
fitness values if the same gamete inherited from either
parent has the same fitness in a progeny genotype.
For example, if an Ab gamete from either a male or
female parent has the same fitness in an AB/Ab pro-
geny genotype, then w12 = w21 in the fitness matrix.
Table 7.3 then gives the expected frequencies of each
progeny genotype under the assumption of random
mating (compare with Table 2.12). The frequencies of
each gamete in the next generation can be obtained
by summing each of the columns in Table 7.3 while
also weighting each expected frequency by the 
relative fitness of each genotype. For example, the

expected frequency of AB gametes after one genera-
tion of natural selection and recombination is

(7.4)

which is directly comparable with equation 6.21 for
one allele at a diallelic locus. This can be simplified by
expanding the (1 − r)w14x1x4 term:

(7.5)

and then factoring an x1 out of the first four terms
and an r out of the last two terms

(7.6)

An additional simplification is possible if we assume
that the fitness of genotypes with the same number
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Table 7.2 Matrix of fitness values for all
combinations of the four gametes formed at 
two diallelic loci (top). If the same gamete
inherited from either parent has the same fitness
in a progeny genotype (e.g. w12 = w21), then
there are 10 gamete fitness values shown outside
the shaded triangle. These 10 fitness values can
be summarized by a genotype fitness matrix
(bottom) under the assumption that double
heterozygotes have equal fitness (w14 = w23) 
and representing their fitness value by wH. The
double heterozygote genotypes are of special
interest since they can produce recombinant
gametes.

AB Ab aB ab

AB w11 w12 w13 w14

Ab w21 w22 w23 w24

aB w31 w32 w33 w34

ab w41 w42 w43 w44

BB Bb bb

AA w11 w12 w22

Aa w13 wH w24

aa w33 w34 w44
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of A and B alleles is equal. For example, the double
heterozygotes AB/ab and Ab/aB have the same
number of A and B alleles and so we can reasonably
assume they have equal fitness values (Table 7.2). This
assumption allows us to equate the fitnesses of those
double heterozygotes where recombination plays a
role in the gametes that are produced. Applying this
assumption to equation 7.6, we can set w14 = w23
and then the r(w14x1x4 + w23x2x3) term becomes
rw14(x1x4 + x2x3) to give

(7.7)

This helps because the gametic disequilibrium para-
meter D is the difference between the product of the
coupling gametes and the product of the repulsion
gametes (see equation 2.24). In the notation of this
section D = x1x4 − x2x3. We can then substitute −D
for x1x4 + x2x3 in equation 7.7 to give

(7.8)

Equation 7.8 shows that the frequency of AB gametes
after one generation of natural selection is a func-
tion of three things. First, the viabilities of the three
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genotypes that produce AB gametes can change geno-
type frequencies and thereby impact the frequency 
of AB gametes in the next generation (recombination
does not alter the frequency of AB gametes produced
by the AB/AB, AB/Ab, and AB/aB genotypes). Then,
an additional part of the frequency of AB gametes 
is determined by the combination of recombination,
fitness values of the double heterozygotes, and initial
gametic disequilibrium in the population. Double
heterozygotes could be more or less frequent than
expected by random mating as measured by D. Also
the frequency of recombination and the relative
fitness of the genotypes will determine how many AB
gametes are produced. If D and r could be ignored,
the frequency of AB gametes would be analogous to
the frequency of one of the four possible gametes for 
a single locus with four alleles.

Expanding on the idea that the four gamete fre-
quencies can be treated like the frequencies of 
four alleles at one locus, we can utilize some of the
expressions developed earlier in the chapter for a 
single locus. The marginal fitness for each of the 
two-locus gametes (Ni) is obtained by summing 
the frequency-weighted fitness value of each of the
gametes that a given gamete could pair with to 
make a genotype:

(7.9)Ni j ij
j

x w=
=
∑

1

4

··

Table 7.3 Expected frequencies of gametes under viability selection for two diallelic loci in a randomly
mating population with a recombination rate of r between the loci. The expected gamete frequencies 
assume that the same gamete coming from either parent will have the same fitness in a progeny genotype
(e.g. w12 = w21). Eight genotypes have non-recombinant and recombinant gametes that are identical and 
so do not require a term for the recombination rate. Two genotypes produce novel recombinant gametes,
requiring inclusion of the recombination rate to predict gamete frequencies. Summing down each column of
the table gives the total frequency of each gamete in the next generation due to mating and recombination.

Frequency of gametes in next generation

Genotype Fitness Total frequency AB Ab aB ab

AB/AB w11 x2
1 x2

1
AB/Ab w12 2x1x2 x1x2 x1x2
AB/aB w13 2x1x3 x1x3 x1x3
AB/ab w14 2x1x4 (1 − r)x1x4 (r)x1x4 (r)x1x4 (1 − r)x1x4
Ab/Ab w22 x2

2 x2
2

Ab/aB w23 2x2x3 (r)x2x3 (1 − r)x2x3 (1 − r)x2x3 (r)x2x3
Ab/ab w24 2x2x4 x2x3 x2x3
aB/aB w33 x3

2 x3
2

aB/ab w34 2x3x4 x3x4 x3x4
ab/ab w44 x4

2 x4
2
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Similarly, the average fitness of the population is the
frequency-weighted average of the fitness values for
all of the possible gamete combinations:

(7.10)

The marginal fitness and mean fitness can be com-
bined with equation 7.8 to give an expression for 
the change in a gamete frequency under selection
and recombination.

To continue with the AB gamete as an example,
notice that the marginal fitness N1 is equal to x1w11
+ x2w12 + x3w13 + x4w14. Making this substitution
in equation 7.8, dividing by the mean fitness, and
substituting wH for w14 or w23 gives the change in the
AB gamete frequency over one generation of natural
selection:

(7.11)

This is exactly like the expression for Δp for a diallelic
locus (compare with equation 6.23). Using analogous
steps for the other three gametes gives the recursion
equations for change in gamete frequency after one
generation of natural selection and recombination:

(7.12)

(7.13)

(7.14)

Equations 7.11–7.14 show that the change in
gamete frequency under natural selection is due to
both fitness values and recombination. If there is no
recombination (r = 0), then each gamete is analogous
to a single allele. The outcome of selection is then like
four alleles at a single locus as dictated by the gamete
fitness values. The process of recombination may
either reinforce or oppose the changes in gamete 
frequencies due to natural selection. For example, if
gametes Ab and aB have the highest fitness values
and there is no recombination then Δx2 and Δx3 would
be positive while Δx1 and Δx4 would be negative (when
not at equilibrium). The gamete frequency changes
caused by recombination would amplify the effect of
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natural selection on gamete frequencies since the
rwHD term would increase Δx2 and Δx3 but decrease
Δx1 and Δx4. In contrast, if gametes AB and ab have
the highest fitness and there is recombination, then the
rwHD term would decrease Δx1 and Δx4 but increase
Δx2 and Δx3 in opposition to natural selection.

Examining natural selection on two loci with 
and without recombination demonstrates that selec-
tion and recombination working in opposition can
produce counterintuitive equilibrium gamete fre-
quencies. Figure 7.3 shows a fitness surface where
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Figure 7.3 A fitness surface for two loci that each have 
two alleles where gene action is additive. The blue dots 
show generation-by-generation allele frequencies based 
on equations 7.11–7.14 for seven different initial sets of 
four gamete frequencies. When recombination is a weak 
force (r = 0.05), equilibrium allele frequencies are dictated 
by natural selection and all initial gamete frequencies
eventually reach the highest mean fitness point (a). In
contrast, when recombination is a strong force (r = 0.5) 
then equilibrium allele frequencies depend on initial gamete
frequencies (b). When recombination is strong, equilibrium
allele frequencies may not correspond to the highest mean
fitness. Relative fitness values are wAABB = 0.9, wAABb = 0.8,
wAAbb = 0.7, wAaBB = 0.7, wAaBb = 0.6, wAabb = 0.5, 
waaBB = 0.5, waaBb = 0.4, and waabb = 0.3. The seven initial
allele frequency points, shown as open circles, are identical
for the two surfaces.
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gene action is completely additive. Since the fitness
surface is a tilted plane, our earlier experience with
one locus selection suggests that the equilibrium
under natural selection should be the highest fitness
point. When recombination is a weak force relative
to selection (Fig. 7.3a), then the change in gamete
frequencies follows the slope of the fitness surface
and the equilibrium point reached from all initial
gamete frequencies is the highest mean fitness.
However, when recombination is strong relative to
selection (Fig. 7.3b), then equilibrium gamete frequen-
cies depend strongly on initial gamete frequencies.
Figure 7.4 shows another example of two-locus selec-
tion on a fitness surface with two peaks shaped like a
saddle due to dominance and epistasis at the two loci.
When recombination is weak (Fig. 7.4a), then the
equilibrium points depend on the slope of the fitness
surface at the initial gamete frequencies since popula-
tions move uphill due to the strong force of selection.
However, when recombination is strong relative to
selection (Fig. 7.4b) then gamete frequencies will
change in opposition to selection and change in direc-
tions that decrease mean fitness. When recombination
is strong in Figs 7.3 and 7.4, the gamete frequency
trajectories take sharp turns and move downhill on
the fitness surfaces due to the force of recombination.
This happens because recombination works toward
gametic equilibrium (D = 0) whereas selection works
toward the highest mean fitness. When one process
is much stronger then it will win out over the other
process to determine the equilibrium. When the 
two processes are of approximately equal strength
then the result is a compromise that may produce an 
equilibrium that is neither gametic equilibrium nor
maximum mean fitness.

The fitness surface in Fig. 7.4 demonstrates an
additional point about the action of natural selection
on two loci. Gene action is a key variable in deter-
mining the equilibrium reached by natural selection.
With additive gene action for two loci, the genotype
at one locus has the same fitness value regardless 
of the genotype at the other locus. This means con-
tinual small changes in genotype frequencies that
each increase mean fitness will eventually reach the
highest mean fitness. In contrast, with non-additive
gene action (dominance and epistasis) those same
small, generation-by-generation changes in allele
frequencies may lead to local maxima because the
fitness surface is not a plane. Such peaks and valleys
of mean fitness occur when the genotype at one locus
has an impact on fitness values at another locus.
Fitness surfaces therefore have increasingly com-

plex topography as dominance and epistasis increase 
and additive gene action decreases. For this reason,
natural selection is sometimes described as short-
sighted or myopic because it operates based on 
mean fitness each generation rather than on some
plan that accounts for the entire mean fitness sur-
face. The result is that the equilibrium produced by
natural selection when mean fitness surfaces possess
multiple maxima depends strongly on initial geno-
type frequencies.
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Figure 7.4 A fitness surface for two loci that each have 
two alleles where gene action exhibits epistasis. When
recombination is a weak force (r = 0.05), equilibrium allele
frequencies are dictated by natural selection. Equilibrium
allele frequencies depend on initial gamete frequencies since
the two highest mean fitness points are separated by a fitness
valley (a). When recombination is strong (r = 0.5), allele
frequencies change such that mean fitness actually decreases
for a time before increasing again to eventually reach the
lower of the two mean fitness peaks (b). The two initial
gamete frequencies in the upper right of the surface reach an
equilibrium point where fitness is not maximized and there is
gametic disequilibrium (D = 0.041). Relative fitness values
are wAABB = 0.61, wAABb = 0.58, wAAbb = 0.50, wAaBB = 1.0,
wAaBb = 0.77, wAabb = 0.50, waaBB = 0.64, waaBb = 0.62, and
waabb = 0.92. The seven initial allele frequency points, shown
as open circles, are identical for the two surfaces.
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Although there is no general set of equilibrium
gamete frequencies for two-locus selection with an
arbitrary set of fitness values, many special cases have
been examined that have produced some general
conclusions (see Hastings 1981, 1986; reviewed by
Ewens 2004). By itself, low frequencies of recombina-
tion (small r) make it more likely that selection will
result in gametic disequilibrium at equilibrium gamete
frequencies even with random mating. The com-
bination of non-additive gene action and infrequent
recombination also make gametic disequilibrium at
equilibrium gamete frequencies more likely. High rates
of self-fertilization (strong departure from random
mating) adds an additional force on gamete frequen-
cies that can either compliment or act in opposition
to selection and recombination (Hastings 1985;
Holsinger & Feldman 1985). Since mean fitness may
decrease with selection and recombination, Fisher’s
fundamental theorem does not hold for two-locus
selection (see Turner 1981; Hastings 1987). A critical
conclusion from examining two-locus natural selec-
tion is that generalizing from the results of one-locus
selection models to multiple loci may be biologically
misleading except in limiting cases such as when there
is very little recombination and there is no epistasis.

7.2 Alternative models of natural selection

• Moving beyond the assumptions of fitness as con-
stant viability in an infinitely growing population.

• Natural selection via different levels of fecundity.
• Natural selection with frequency-dependent fitness.
• Natural selection with density-dependent fitness.

The model of natural selection considered thus far
equates fitness with the viability of genotypes. This 
is equivalent to assuming that while individuals of
different genotypes vary in survival to adulthood, all
genotypes are equal in terms of any other phenotypes
that may impact numbers of progeny an individual
contributes to the next generation. Looking again at
Fig. 6.3, you can see that there are numerous points
in the reproductive life cycle where genotypes may
have differential success or performance. Genotypes
may differ in phenotypes such as the production and
survival of gametes, mating success, gamete genetic
compatibility with other gametes, and parental care.
It is even possible that some alleles at a locus have 
an advantage during segregation of homologous
chromosomes and are more likely to be found in
gametes, a phenomenon called meiotic drive (see
the historical background on this process in Birchler

et al. 2003). Each of these points in the life cycle is 
a situation where genotypes will potentially have 
different levels of performance, eventually leading 
to different frequencies of genotypes in the progeny.
The basic viability model of natural selection also
assumes that fitness values are constant through time
and space. Instead, it may be that fitness actually
changes in response to the conditions found in differ-
ent populations or in response to the changes in
genotype frequency brought on by natural selection.
In order to accommodate these potential biological
situations, modifications to the model of natural selec-
tion are required. This section is devoted to extending
the basic viability model of natural selection in a
variety of ways to predict how natural selection works
for different components of fitness and for changing
fitness values. It is not possible to cover all possible
models of natural selection exhaustively since there
are many. Instead, each of the three models detailed
in this section gives some insight into the dynamics
of natural selection when one of the major assump-
tions of the one-locus, two-allele viability model is
changed.

Natural selection via different levels of fecundity

Natural selection due to differences in genotype viabil-
ity is sometimes called hard selection since genotype
frequency changes come about from the death of
individuals and their complete failure to reproduce.
In contrast, natural selection due to differences in the
fecundity (production of offspring) of individuals with
different genotypes causes changes in the frequency
of genotypes within the progeny of each generation.
Fecundity selection is called soft selection because
all individuals in the parental generation reproduce,
although by differing amounts.

A fecundity model for natural selection on a 
diallelic locus requires a different approach than 
was taken for viability selection. A major difference 
is that fitness depends on the pair of genotypes that
mate. This means that there are nine different fitness
values in a fecundity selection model, as shown in
Table 7.4. Another difference is that predicting the
genotype frequencies of the progeny is going to be
slightly more complicated than for simple random
mating. Variation in fecundity may alter the number
of progeny produced by each mating pair from the
frequency expected by random mating alone. This
requires accounting for the expected progeny geno-
type frequencies that arise from each mating pair
weighted by the fecundity of that mating pair as
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shown in Table 7.4. X, Y, and Z are the frequencies 
of the genotypes AA, Aa, and aa, respectively. This 
is the same notation used for the proof of Hardy–
Weinberg in Chapter 2.

This fecundity selection model is more complex
than a viability model because the equations used 
to solve for genotype frequencies after one genera-
tion are functions of genotype frequencies in the
parental generation. The mean number of offspring
of each genotype after one generation of fecundity
selection are found by summing the offspring fre-
quencies (columns in Table 7.4) each weighted by 
its fecundity. For the progeny with the AA genotype
the average fecundity, or X, is

XXt+1 = f11X2 + f12
1/2XY + f21

1/2YX + f22 (7.15)

which simplifies to

XXt+1 = f11X2 + ( f12 + f21)1/2YX + f22
1/4Y2 (7.16)

Using similar steps, the equations for the average
fecundities of the Aa and aa genotypes are

Y2

4

X Yt+1 = ( f12 + f21)1/2XY + ( f13 + f31)XZ

+ 1/2f22Y2 + ( f23 + f32)1/2YZ (7.17)

and

X Zt+1 = f33Z2 + ( f32 + f23)1/2YZ + f22
1/4Y2 (7.18)

The total average fecundity ( X ) is the sum of the aver-
age fecundity for each genotype, so that X Xt+1, X Yt+1,
and X Zt+1 give the proportion of the total number of
offspring composed of any genotype after one bout of
reproduction. Compare these equations for the aver-
age fecundity as functions of genotype frequencies with
equations 6.21 and 6.22 that are in terms of allele
frequencies. Since random mating does not occur by
definition when there is fecundity selection, general
equilibrium points cannot be found for arbitrary 
sets of the nine fecundity values shown in Table 7.4.
Rather, the change in genotype frequencies caused
by fecundity selection model must be understood by
considering special cases of fecundity values.

One special case of fecundity selection occurs when
the total fecundity of a mating is always the sum of
the fecundity value of each genotype for each sex, 

··

Table 7.4 Fitness values based on the fecundities of mating pairs of male and female genotypes for a diallelic
locus along with the expected genotype frequencies in the progeny of each possible male and female mating
pair weighted by the fecundity of each mating pair. The frequencies of the AA, Aa, and aa genotypes are
represented by X, Y, and Z respectively.

Fitness value
Male Female
genotype genotype . . . AA Aa aa

AA f11 f12 f13
Aa f21 f23 f23
aa f31 f32 f33

Expected progeny 
genotype frequency

Parental mating Fecundity Total frequency AA Aa aa

AA × AA f11 X2 X2 0 0
AA × Aa f12 XY 1/2XY 1/2XY 0
AA × aa f13 XZ 0 XZ 0
Aa × AA f21 YX 1/2YX 1/2YX 0
Aa × Aa f22 Y2 Y2/4 (2Y2)/4 Y2/4
Aa × aa f23 YZ 0 1/2YZ 1/2YZ
aa × AA f31 ZX 0 ZX 0
aa × Aa f32 ZY 0 1/2ZY 1/2ZY
aa × aa f33 Z2 0 0 Z2
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a situation called additive fecundities, analogous to
additive gene action (Penrose 1949). Let the fecundity
values of females be fAA, fAa, and faa and the fecundity
values of males be mAA, mAa, and maa. With an addit-
ive fecundity model, the fecundity values given in
Table 7.4 would be f11 = fAA + mAA and f12 = fAA + mAa
as two examples. With additive fecundities, higher
fecundities for heterozygotes result in both alleles being
maintained in a population at equilibrium, as is true
for overdominace in the viability selection model. A
second special case is when fecundities are multi-
plicative (Bodmer 1965). For example, f11 = fAAmAA
and f12 = fAAmAa. Depending on fecundity values for
the three genotypes, there can be equilibrium points
where both alleles are maintained in the population.
A third special case that has been examined exten-
sively is when there are four fecundity parameters that
correspond to the degree of heterozygosity of each
mating pair (Hadeler & Liberman 1975; Feldman 
et al. 1983). In these cases, depending on the specific
fecundity values used, it is also possible that fecundity
selection can maintain both alleles in the popula-
tion, since equilibrium points are reached when all
three genotypes have non-zero frequencies. Never-
theless, the fecundity selection model does not result
in the maintenance of genetic variation for arbitrary
fitness values more often than the basic viability
model of selection (Clark & Feldman 1986). This
means that fecundity models predict that natural
selection frequently results in fixation or loss of 
alleles at equilibrium, just as the viability model 
does for directional selection.

Pollak (1978) has shown that mean fecundity does
not necessarily increase with fecundity selection. This
means that the mean fecundity is not necessarily
maximized at equilibrium genotype frequencies for
fecundity selection, in contrast to the way natural
selection maximizes mean fitness in the viability
model for one locus with two alleles.

Hybridization between genetically modified and
wild sunflowers provides an example of how a simple
fecundity selection model can be used to understand
changes in allele frequencies. Using transgenic bio-
technology, it is now routine practice to permanently
incorporate foreign genes into crop plants. There is
the possibility that such transgenes can escape into
the wild through the hybridization that occurs between
some crop plants and wild relatives that are often
weeds (reviewed by Snow & Palma 1997). In the case
of sunflowers, mating between pure crop genotypes
and wild plants produces hybrids with seed produc-
tion that is only 2% of that shown by wild plants but
hybrids and wild plants have identical survival rates.

Cummings et al. (2002) established three experimental
populations with half crop–wild-plant F1 hybrids
and half wild plants. In these populations the initial
frequency of crop-specific alleles was 25%. The fre-
quencies of the crop-specific alleles at three allozyme
loci dropped to about 5% in the next generation. The
crop-specific allele frequency in the next generation
best matched the allele frequency predicted by a
fecundity selection model with additive fecundities.

Natural selection with frequency-dependent
fitness

In the basic viability model we considered fitness 
values as invariant properties of the genotypes.
Another way to say this is that a fitness value wxx is
constant regardless of conditions or the frequencies
of any of the genotypes. It seems intuitive to expect
that the fitness of a genotype may depend on its fre-
quency in a population and there is direct evidence for
frequency-dependent fitness in natural populations.
For example, mating success of males with differ-
ent chromosomal inversion genotypes in Drosophila
depends on chromosome inversion frequencies in
the population (see Álvarez-Castro & Alvarez 2005).
In plants, the frequency of different flower colors in 
a population may impact the frequency of visits by 
pollinators and thereby cause frequency-dependent
mating success (e.g. Gigord et al. 2001; Jones &
Reithel 2001). A whimsical example of frequency-
dependent fitness values comes from the left and
right curvature of the mouths of Lake Tanganyikan
cichlid fish Perissodus microlepis that pluck and 
eat scales from other fish. There appears to be an
advantage to the rarer phenotype, presumably since
the fish that are attacked anticipate approach of the
cichlid from the side of the more frequent mouth 
phenotype (Hori 1993).

We can also construct a simple selection model
where fitness (as genotype-specific viability) depends
on genotype frequency and therefore changes as
genotype frequencies change. The key concept in 
frequency-dependent selection models is creating a
measure of fitness that changes. Suppose that the
fitness of a genotype decreases as that genotype
becomes more common in the population, called
negative frequency dependence. The relative
fitness values are:

wAA = 1 − sAA p2

wAa = 1 − sAa2pq (7.19)

waa = 1 − saaq2
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where sxx represents the genotype-specific selection
coefficient. Genotypes have higher fitness when 
they are rare since relative fitness decreases as the
product of the selection coefficient and the geno-
type’s frequency increases. Note that the selection
coefficient itself is a constant and can be thought of
as a per-capita decrease in relative fitness.

As with other models of selection, the equilibrium
points in this model of natural selection can be found
by determining when the change in allele frequency
(Δp) is equal to zero. The expression for change in
allele frequency over one generation of fecundity
selection is

(7.20)

for the special case of the selection coefficient being
equal for all genotypes, as derived in Math box 7.1.
Two equilibrium points occur at fixation and loss 

   
Δp

pqs q p p pq q
=

− − +( )( )2 2

N

(p = 1.0 and p = 0.0) since the pq term in the numer-
ator is zero. There is also an equilibrium point at 
p = 1/2 since the q − p term is zero.

Figure 7.5 shows the relative fitness values in equa-
tion 7.19 when all selection coefficients are equal 
to one. It is interesting to note that at p = 1/2 the
fitness of the heterozygote is less than that of the 
two homozygotes, so this model of natural selection
does not require overdominance for fitness to main-
tain genetic variation at equilibrium. However, with
independent selection coefficients for each genotype
there is not a stable polymorphism in general. With
arbitrary fitness values for the three genotypes, there
are many possible outcomes, many without stable
polymorphism.

Natural selection with density-dependent fitness

An assumption in most models of natural selection 
is that populations are able to grow without any 

··

Start with the expression for change in allele frequency under viability selection given in equation 6.23:

(7.21)

and then substitute the definitions of the frequency-dependent fitness values given in equation 7.19.
If the selection coefficients for all genotypes are equal so that they can be represented by s without
any subscripts, this gives

(7.22)

Expanding the terms inside the square brackets gives

(7.23)

which simplifies by canceling the positive and negative p and q terms and factoring out an s to give

(7.24)

The term in square brackets can then be factored to give

(7.25)Δp
pqs q p p pq q

=
− − +( )( )2 2

T

Δp
pqs p p q pq q

=
− + − +[ ]3 2 2 32 2

T

Δp
pq p sp p s p q q s pq q sq

=
− − + + − − +[ ]3 2 2 32 2

T

Δp
pq p sp s pq q s pq sq

=
− − − + − − −[ ( ( )) ( ( ))]1 1 2 1 2 12 2

T

Δp
pq p w w q w w

=
− + −[ ( ) ( )]AA Aa Aa aa

T

Math box 7.1
The change in allele frequency with frequency-dependent selection
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limits. The first section of this chapter developed a
natural selection model where the size of the popula-
tion of any genotype one generation in the future was
its population size currently multiplied by a constant
(refer back to equation 6.1). This model is obviously
unrealistic because no organism can grow without
some eventual limits on population size. Organisms are
limited by the space and resources available to them,
limitations that lead to changes in the rate of growth
as the density of individuals changes over time. To
incorporate such limits in a model of natural selection,
we can alter our basic genotype-specific population
growth equations to incorporate an upper bound 
on the population size as well as a rate of population
growth that changes with population size.

A simple model where population growth has an
upper bound is called logistic growth and the upper
limit is called the carrying capacity (symbolized 
by K). Logistic growth depends on feedback between 
the growth rate and the size of the population accord-
ing to

(7.26)
  
λ = + −1 r

r
K

N

where N is the population size and r is the rate 
of increase (λ used as the growth rate earlier in
Chapter 6 can be equated to r by λ = 1 + r). Biologic-
ally, r represents the rate of growth in excess of the 

replacement rate of one. When N = 0 then is 0 

and the growth rate is at its maximum. But when 

N = K then equals r and the population replaces 

itself but does not change in size.
Logistic population growth can be applied to the

three genotypes at a diallelic locus by defining 
genotype-specific carrying capacities and rates of
increase to obtain absolute fitness values for each
genotype:

(7.27)

(7.28)
  
λAa Aa

Aa

Aa

= + −1 r
r

K
N

  
λAA AA

AA

AA

= + −1 r
r

K
N
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Figure 7.5 The relative fitness of each genotype (wxx) and
the change in allele frequency (Δp) across all frequencies of
the A allele under frequency-dependent natural selection.
There is a stable equilibrium point at p = 0.5 in this particular
case, even though the heterozygote has the lowest fitness.
Two unstable equilibria at fixation and loss are marked 
with open circles. Here the relative fitness values are 
wAA = 1 − sAAp2, wAa = 1 − sAa2pq, and waa = 1 − saaq2

with sAA = sAa = saa.

Launch PopGeneS2 and in the Selection
menu, choose Frequency dependent
selection. In the model dialog you can set
the frequency-sensitive relative fitness
values for the three genotypes produced by
one locus with two alleles. The s1, s2, and
s3 values correspond to sAA, sAa, and saa in
equation 7.19. First try values of s1 = 0.3, 
s2 = 1.0, and s3 = 0.3. Explain why the
graph of genotype-specific fitness by allele
frequency (the middle panel) looks the 
way it does.

Next enter selection coefficients of 
s1 = 0.7, s2 = 1.0, and s3 = 0.2. Then
compare the p by delta p graph in the top
panel with the p by mean fitness graph in
the bottom panel to see the mean fitness at
equilibrium allele frequency. Does natural
selection always cause allele frequencies to
reach an equilibrium that corresponds to
the maximum value of the mean fitness?
Through educated guesses, try to find
selection coefficients where equilibrium
allele frequencies do and do not correspond
to the maximum mean fitness value.

Interact box 7.2
Frequency-dependent 

natural selection
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and

(7.29)

Here the sum of the numbers of individuals with each
genotype is equal to the total size of the population
(NAA + NAa + Naa = N). The average absolute fitness
in the population is the average of the r and r/K
values for each genotype:

(7.30)

where S = pt
2rAA + 2ptqtrAa + qt

2raa and 

.

The final step is to use these results to modify our
previous results for unbounded population growth
to take logistic growth into account. First we can
modify the growth in the total size of the population
(equation 6.1 for unbounded growth) so that

Nt+1 + 3Nt (7.31)

This equation predicts that the total population size
cannot exceed the largest carrying capacity. We can
also follow allele frequencies over time by modifying
the expression for allele frequency after one genera-
tion of selection:

(7.32)

which is the logistic growth version of equation 6.19.
Both the numbers of individuals of each genotype

and the allele frequency under density-dependent
natural selection can be seen in Fig. 7.6 when the AA
genotype has the highest carrying capacity. Starting
out with a very small N, the numbers of individuals
of all genotypes increase over time. However, once N
approaches the lowest carrying capacity, Kaa in this
illustration, the number of aa individuals peaks and
then declines. This happens because the absolute
fitness of aa approaches one in the fewest genera-
tions while the other two genotypes continue to add
individuals to their populations because their carry-
ing capacities are higher. The same phenomenon also
occurs to the Aa genotype because it has the next
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lowest carrying capacity. The AA genotype has the
highest carrying capacity and the number of indi-
viduals of that genotype eventually grows to the
point where it makes up the entire population.

The general result for density-dependent selection
is that the carrying capacities of the three genotypes
will determine the eventual genotype and allele fre-
quencies when populations approach their carrying
capacities. When KAA is the highest then the A allele
goes to fixation and when Kaa is the largest then the a
allele goes to fixation. Alternatively, when KAa is the
largest then there is an equilibrium with both alleles
segregating and when KAa is the smallest then either
A or a will reach fixation depending on initial allele
frequencies. These results are qualitatively identical
to those for unbounded growth.

In contrast, the results of density-dependent and
density-independent natural selection do not agree
when population size is restricted to low numbers.
The total population size N may be much less than
the carrying capacity in highly disturbed or inhos-
pitable environments where individuals have low
reproductive output or high turnover. To see this,
consider equations 7.27–7.29 for genotype absolute

··
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Figure 7.6 The results of density-dependent natural
selection on the numbers of individuals of different genotypes
(NAA, NAa, and Naa) and allele frequencies in a population of
total size N. At the upper limit of N, the equilibrium allele and
genotype frequencies are determined by the genotype with
the highest carrying capacity (K). In contrast, the genotype
with the highest growth rate (r) has the greatest impact on
allele frequency when the population is small. In this example
KAA = 10,000, KAa = 9000, and KAA = 8000 with rAA = 0.2,
rAa = 0.25, and raa = 0.3.

9781405132770_4_007.qxd  1/16/09  7:07 PM  Page 221



222 CHAPTER 7

··

fitnesses. As N for each genotype approaches zero 

the term will also approach zero, leaving each 

absolute fitness increasingly determined by the
genotype-specific growth rate. The genotype with
the highest growth rate should then increase fastest
and dictate genotype and allele frequencies at 
equilibrium (if rAA is highest A fixes, if raa is highest 
a fixes, if rAa is highest both alleles segregate, and 
if rAa is lowest then initial allele frequencies dictate
fixation of either A or a). This effect can be seen in
Fig. 7.6 where allele frequencies change toward a
lower frequency of p when the population is small.
Despite the fact that the population is expected to 
fix for p at carrying capacity, the growth rate of the
aa genotype is the greatest and so it has the greatest
impact on allele frequencies when the population 
is small.

7.3 Combining natural selection with 
other processes

• Natural selection and genetic drift acting 
simultaneously.

• The balance between natural selection and
mutation.

Natural selection takes place at the same time that
other processes are also operating and having an
impact on allele frequencies. These other processes
may work in concert with natural selection and work
toward the same equilibrium allele frequencies, or
they may work against natural selection toward
alternative equilibrium allele frequencies. Since many 
population genetic processes are likely to be acting
simultaneously in actual biological populations, it is

r
K

N

important to put natural selection into the context 
of other processes that impact allele frequencies. 
This section first considers allele frequencies when
natural selection and genetic drift are in opposition
and then natural selection and mutation acting in
opposition. When natural selection and other pro-
cesses act in concert, this simply shortens the number
of generations required to reach equilibrium and
does not alter equilibrium allele frequencies.

Natural selection and genetic drift acting
simultaneously

Wright (1931) showed the probability that a popula-
tion has a given allele frequency when exposed to the
simultaneous processes of natural selection, genetic
drift, and mutation as given by

φ(p) = Cp(4Neμ−1)q(4Neν−1)e(4Nespq) (7.33)

where φ (pronounced “phi”) means a probability
density, p and q are the allele frequencies, Ne is the
effective population size, μ and ν are the forward 
and backward mutation rates, s is the selection
coefficient, and C is a constant used to adjust the total
probability across all allele frequencies to sum to 1.0
for each value of Nes. This equation is a probability
density function for an ensemble population like those
discussed in Chapter 3 for genetic drift. It describes
the chance that one of many replicate populations
will reach any allele frequency between zero and one
at equilibrium given values of the effective popula-
tion size and the selection coefficient.

This equation is most easily understood by exam-
ining its predictions in graphical form (Fig. 7.7).
When Nes is near zero, either genetic drift is very

Launch Populus. In the Model menu, choose Natural Selection and then Density-Dependent
Selection w/ Genetic Variation. In the options dialog you can set the genotype-specific carrying
capacity and growth rates. Click on the radio button for Nine-Frequency to display results for 
nine initial allele frequencies (the Single Frequency button shows the results in terms of the total
population size N). The N text box sets the initial population size. Press the View button to see the
simulation results.

Parameter values to simulate:

KAA = 8000, KAa = 8000, and Kaa = 10,000; rAA = 0.4, rAa = 0.4, and raa = 0.3; generations = 100
KAA = 8000, KAa = 10,000, and Kaa = 8000; rAA = 0.4, rAa = 0.3, and raa = 0.35; generations = 100
KAA = 8000, KAa = 6000, and Kaa = 9000; rAA = 0.5, rAa = 0.3, and raa = 0.4; generations = 100

Interact box 7.3 Density-dependent natural selection
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strong because the population is tiny or the selection
coefficient is extremely small and so the populations
are evolving in a neutral fashion under drift alone. 
In either of these cases genetic drift is the dominant
process and will eventually result in either fixation
or loss in all populations. At the lowest values of 
Nes in Fig. 7.7, populations are most likely to have
allele frequencies near zero or near one as expected
under genetic drift alone. Alternatively, Nes can take
on large values in two general situations. One is
when genetic drift is very weak because the effective
population size is very large and there is some natural
selection favoring heterozygotes (s can occupy a wide
range as long as it is not extremely small). The other is
when the selection coefficient is large and the effective
population size is at least 10 or so individuals and
therefore genetic drift is not extreme. At the largest
values of Nes in Fig. 7.7, the probability is greatest
that the allele frequency in a population will be near
0.5. Equation 6.35 shows that 0.5 is the expected
equilibrium allele frequency under balancing selec-
tion when wAA = waa and a population is infinite.
Therefore, when Nes is large, selection is stronger than
drift and the equilibrium allele frequency is deter-

mined mostly by natural selection. At intermediate
values of Nes, the equilibrium allele frequency for
many populations is between the equilibrium allele
frequencies expected under genetic drift acting alone
or natural selection acting alone.

To summarize the balance of natural selection and
genetic drift, Motoo Kimura suggested a simple rule
of thumb for a diploid locus (Kimura 1983a, 1983b).
If four times the product of the effective population
size and the selection coefficient is much less than one
(4Nes << 1) then selection is weak relative to sam-
pling, and genetic drift will dictate allele frequencies.
Alternatively, if four times the product of the effective
population size and the selection coefficient is much
greater than one (4Nes >> 1) then selection is strong
relative to sampling, and natural selection will dictate
allele frequencies. When four times the product of the
effective population size and the selection coefficient
is approximately one (4Nes ≈ 1) then allele frequencies
are unpredictable.

Figure 7.8 shows an example of the balance
between genetic drift and natural selection in replic-
ated laboratory populations of the fruit fly Drosophila
melanogaster (Wright & Kerr 1954). The plot shows
allele frequencies at the Bar locus for 108 replicate
populations that were each founded from four males
and four females every generation (since Bar is 
hemizygous in males the effective population size is
equivalent to six rather than eight diploid indi-
viduals). Although the vast majority of populations
fix for the wild-type allele due to strong natural selec-
tion favoring the recessive phenotype of wild-type
homozygotes, three populations fix for the Bar allele
by the end of the experiment. The selection coeffici-
ent against the Bar homozygote was estimated at
0.63, giving an upper bound estimate of 4Nes ≈ 15
in the experiment (Ne may have been less than six in
actuality). Even with this value of 4Nes, natural selec-
tion is not sufficiently strong to dictate equilibrium
allele frequency in all populations.

It is also possible to gain biological insight into Nes
by recognizing that it is analogous to the quantity
Nem that dictates the balance between genetic drift
and gene flow discussed in Chapter 4. Both Nes and
Nem represent the net balance of the pressure on
allele frequencies toward eventual fixation or loss
due to genetic drift and the countervailing force 
driving allele frequencies toward a specific allele 
frequency caused by either natural selection or by
gene flow. In the case of natural selection the specific
allele frequency is dictated by the relative fitness 
values of genotypes while in the case of gene flow 
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Figure 7.7 The expected distribution of allele frequencies 
for a very large number of replicate finite populations under
natural selection where there is overdominance for fitness
(wAA = waa = 1 − s and wAa = 1). In an infinite population 
the expected allele frequency at equilibrium is 0.5. However,
in finite populations the equilibrium allele frequency will
depend on the balance of natural selection and genetic drift.
This balance is determined by the product of the effective
population size and the selection coefficient (Nes). Low values
of Nes mean that selection is very weak compared to drift 
and each population reaches fixation or loss. High values of
Nes mean that selection is strong compared to drift and most
populations reach an equilibrium allele frequency near 0.5.
Here forward and backward mutation rates are equal 
(μ = ν = 0.00001).
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Figure 7.8 Frequency of the Bar allele in 108 replicate D. melanogaster populations over 10 generations (Wright & Kerr 1954).
Each population was founded from four males and four females. The Bar locus is found on the X chromosome and so is hemizygous
in males, making the effective population size equivalent to about six individuals. The eyes of D. melanogaster individuals
homozygous for the wild-type allele are oval, but heterozygotes and homozygotes for the partially dominant Bar allele have 
bar-shaped eyes with a reduced number of facets. Females homozygous for the Bar allele produced 37% of the progeny 
compared to females homozygous or heterozygous for the wild-type allele. Despite this strong natural selection against Bar, 
three populations fixed for Bar by the end of the experiment. Compare with the similar example in Figure 3.11 where the locus is
selectively neutral.

You can use PopGene.S2 to simulate the simultaneous action of genetic drift and natural selection
in many identical finite populations. From the Drift menu select the Drift ++ Selection ++ Mutation.
In the module dialog, run the model a few times using the default parameters to understand the
output. The graph on the left shows the allele frequency trajectories of each replicate population
over time while the histogram on the right shows the distribution of allele frequencies for all
populations (analogous to a two-dimensional slice through Fig. 7.7 for a single value of Nes). Note
that mutation will have almost no effect on the outcome of allele frequencies as long as backward
and forward mutation rates are equal and very small (you can test this by setting one very high
mutation rate such as 0.1 to see the impact).

Try two sets of simulations, one keeping the selection coefficient constant and varying Ne ,
and another for comparison keeping Ne constant but varying the selection coefficient. Before 
each of these runs you should compute the value of 4Nes and make a prediction about the
distribution of allele frequencies among the populations. First set wAA = waa = 0.9 and wAa = 1.0 
(or s = 0.1) and then run separate simulations for Ne = 2, 20, and 200. Then set Ne = 10 and use
selection coefficients of 0.05, 0.5, and 0.95.

Interact box 7.4
The balance of natural selection and genetic drift at a diallelic locus
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the specific allele frequency is the average allele fre-
quency for all demes.

The balance between natural selection 
and mutation

Natural selection takes place at the same time that
mutation is working to alter allele frequencies and
reintroduce alleles that selection may be driving to
loss. Therefore, the process of natural selection may
be counteracted to some degree by mutation. If a
completely recessive allele is both deleterious when
homozygous and also produced by spontaneous
mutation, there are contrasting forces acting on its
frequency. Mutation pressure will continually rein-
troduce the allele into a population while natural
selection will continually work to drive the allele to
loss. What equilibrium allele frequency is expected
when the opposing processes of mutation and natural
selection balance out?

Let’s assume that there are two alleles at one locus
and that the a allele is completely recessive and has 
a frequency of q. Also assume the case of selection
against a recessive as given in Table 6.4. An expres-
sion for the change in allele frequency per generation
for the specific case of natural selection against a
recessive homozygote can be obtained by substitut-
ing the fitness values of wAA = wAa = 1 and waa = 1 − s
into equation 6.24:

(7.34)

which then rearranges to

(7.35)

Let’s further assume that mutation is irreversible
and that the probability that an A allele mutates to
an a allele is μ. The change in the frequency of the
allele due to mutation each generation is then

Δqmutation = μp (7.36)

At equilibrium, the action of natural selection 
pushing the allele toward fixation and the pressure 
of mutation increasing the allele frequency exactly 
balance so that allele frequency does not change.
This means that, at equilibrium,

Δqmutation + Δqselection = 0 (7.37)
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Substituting in the expressions for Δqmutation and
Δqselection into this equation yields

(7.38)

If we assume that the frequency q of the a allele is
low, then q2 is very small and the quantity 1 − sq2 is
approximately one. This approximation leads to

μp = spq2 (7.39)

which can be solved in terms of genotype frequency:

(7.40)

or in terms of allele frequency:

(7.41)

Thus, the expected frequency of a deleterious recessive
allele at an equilibrium between natural selection
and mutation depends on the ratio of the mutation
rate and the selection coefficient. Equation 7.41
shows that even if a recessive homozygous genotype
is lethal (s = 1), the expected frequency of the allele is
μ0.5 and the expected frequency of the lethal geno-
type is μ due to recurrent mutation.

The balance between selection and mutation is
illustrated in Fig. 7.9. The Δq due to mutation is
always positive while the Δq due to selection in this
case is negative. Figure 7.9 uses the absolute value of
each Δq to show where the change in allele frequency
for the two processes intersects. This intersection is
the equilibrium point. The expected equilibrium allele

frequency is , in 

agreement with the figure.
Consanguineous mating results in an excess of

homozygosity and a deficit of heterozygosity compared
to random mating. If f is the degree of departure from
Hardy–Weinberg expectations (see equation 2.20)
then the equilibrium allele frequency from equa-
tion 7.40 can be restated as

(7.42)
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Under the assumption that q is small compared to f,
the approximate equilibrium allele frequency when
mutation and selection reach a balance with con-
sanguineous mating is

(7.43)
 
q

fsequilibrium =
μ

(see Haldane 1940; Morton 1971). Since recessive
deleterious mutations are only perceived by natural
selection when homozygous, consanguineous mating
increases the effectiveness of selection by increas-
ing the proportion of homozygous genotypes in the 
population. This means that selection is more effect-
ive at eliminating the recessive homozygote (there are
fewer heterozygotes that shelter the allele) and the
equilibrium allele frequency for mutation–selection
balance occurs at a lower allele frequency. It is 
counterintuitive that populations which cease con-
sanguineous mating and engage in random mating
may temporarily experience an increase in deleterious
allele frequencies and a decrease in average fitness
due to less effective natural selection.

7.4 Natural selection in genealogical
branching models

• The problem with selection in genealogical
branching models.

• Directional selection and the ancestral selection
graph.

• Genealogies and balancing selection.

The final topic in this chapter is the process of natural
selection in the context of genealogical branching
models. Representing natural selection in genea-
logical branching models will require a change in
perspective about how selection works and also an
expansion of the ways that events are represented 
on genealogies. The major goal of this section is to
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Figure 7.9 The absolute value of 
the change in allele frequency due 
to mutation (Δqmutation) and due to
natural selection (Δqselection) when 
there is selection against a recessive
homozygote. Mutation continually
makes new copies of the recessive 
allele while selection continually 
works toward loss of the recessive 
allele. The equilibrium allele frequency
occurs when the processes of mutation
and selection exactly counteract each
other. Here s = 0.1 and μ = 1 × 10−6

so the expected equilibrium is 
qequilibrium = 0.0032 as shown by the
vertical arrow.

You can use PopGene.S2 to simulate the
simultaneous action of natural selection 
and mutation. From the Drift menu 
select the Drift ++ Selection ++ Mutation. 
In the module dialog set Ne = 20, 
wAA = wAa = 1.0, and waa = 0.9 (or s = 0.1
with complete dominance for the A allele)
and μ = 1 × 10−3. Compute the expected
equilibrium for these parameter values
using equation 7.41 and then run the
simulation.

Genetic drift will have a minimal effect 
on the outcome of allele frequencies as 
long as the effective population size is large.
You can test this prediction by trying
simulations with Ne = 10, 100, 500, and
1000 and comparing the equilibrium allele
frequencies for each case.

Interact box 7.5
Natural selection and mutation
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introduce ways of modeling selection on genealogies
to understand how the operation of natural selection
might change the height and total branch length 
of genealogical trees compared with the case of 
coalescence patterns due to genetic drift alone.

Adding natural selection to the genealogical
branching model introduces a serious complication
to the Wright–Fisher model of sampling that the basic
genealogical branching model is built on. Recall from
Chapter 3 that the basic coalescent model assumes
that when going one generation back in time, the 

chance that any two lineages coalesce is . This 

probability results from the assumption that all line-
ages in any given generation have an equal chance
of being chosen as a common ancestor working 
back in time from the present. In the basic coales-
cent model where alleles are selectively neutral, each 
lineage within a generation has an equal and constant
probability of becoming an ancestral lineage when
working back in time to find the most recent common
ancestor (MRCA). From the time-forward perspective,
with neutral evolution each lineage has an equal
probability of being sampled and represented in the
next generation. In general, with selective neutral-
ity the haplotype of a lineage does not influence its 
sampling properties.

Natural selection violates the basic assumption that
all lineages have equal and constant probabilities 
of coalescence. When natural selection operates,
some lineages tend to increase in frequency over time
whereas other lineages tend to decrease in frequency
over time due to fitness differences among the line-
ages caused by differences in haplotype relative
fitnesses. These changes in the frequencies of lineage

1
2N

copies translate into probabilities of coalescence that
change over time as well. A lineage bearing a haplo-
type favored by selection will increase over time and
therefore have a decreasing probability of coalescence
working back in time from the present. Similarly, 
a lineage bearing a lower-fitness haplotype will
decrease in frequency over time and therefore have
an increasing probability of coalescence moving back
in time. Thus, natural selection presents a fundamental
contradiction to the sampling process built into the
genealogical branching model.

Directional selection and the ancestral 
selection graph

Fortunately, there is a clever and relatively simple
way to modify the genealogical branching model 
to accommodate directional natural selection
(Neuhauser & Krone 1997; Neuhauser 1999). This
modification relies on treating coalescence and 
natural selection as distinct processes that can both
possibly occur working back in time from the pres-
ent toward the MRCA in the past exactly as was 
done to combine coalescence with migration or
mutation. The first step in including natural selec-
tion in the genealogical branching model is to alter
slightly our view of the sampling process. Figure 7.10 
shows five lineages of 2N total across the span of 
one generation. If there is selective neutrality, then
moving forward in time each lineage is sampled 
once to found the next generation. This is equiva-
lent to the absence of a coalescence event moving
backward in time. Alternatively, if there is natural
selection operating then lineages with one haplotype
are favored and will increase in frequency over time.

··

1 2 3 4 5 2N

t

t – 1

. . . .

. . . .

Continuing branch Incoming branch

Figure 7.10 Haploid reproduction with the possibility of coalescence and natural selection events. Each haploid lineage
replicates itself and is included in the next generation if there are no coalescence events (solid lines). A lineage makes an extra copy
of itself (dashed line) and has the potential to displace one copy of another lineage. If the lineage making the extra copy of itself
(open circle) has a higher-fitness haplotype than a randomly chosen lineage (blue circle), then it will displace the lineage of the
lower fitness haplotype. Therefore, the outcome of a lineage-duplication event that may result in natural selection depends on the
haplotype states of the specific lineages involved. The solid lines are continuing branches and the dashed line is an incoming
branch. Compare with Figures 3.23 and 5.12.
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In Fig. 7.10, the possible action of natural selection is
shown by the dotted line. If the lineage represented
by the open circles has a higher-fitness haplotype,
then it will displace the lineage of the lower-fitness
haplotype (closed circles). This displacement event 
is analogous to growth in the population size of the
fitter haplotype given that the total population size 
is constant.

We can treat the dual continuing/incoming branch-
ing process as two independent parts of the overall
coalescence process. When two independent pro-
cesses are operating, the coalescence model is based
on waiting for any event to occur and then deciding
which type of event happened. When events are
independent but mutually exclusive, the probability
of each event is added over all possible events to
obtain the total chance that an event occurs. As was
done for both migration and mutation, we assume
that coalescent and natural selection events are rare
or that Ne is large and the selection coefficient is small.
This assumption makes sure that natural selection
and coalescence events are mutually exclusive and
that when an event does occur going back in time it
is either coalescence or natural selection.

Natural selection depends on the chance that the
fitter haplotype makes an incoming branch that dis-
places a lineage bearing a less-fit haplotype. Twice
the rate of natural selection events is

σ = 4Nes (7.44)

(σ is pronounced “sigma”) where 2Nes is the expected
number of natural selection events that will occur
for a single lineage during one unit of continuous
time (see section 5.5 for a fuller explanation of such a
rate in the context of mutation rates) and the fitter
haplotype has a relative fitness of 1 + s compared to a
relative fitness of 1 for the less-fit haplotype. When s

is of the order of then the rate of natural selection 

events would be comparable to the rate of coalescent
events due to neutral sampling. The exponential
approximation for the chance that a natural selec-
tion event occurs at generation t is then

(7.45)

for a single lineage and

(7.46)
  
P T t e
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for k lineages on a continuous time scale. The chance
that an incoming branch due to natural selection
displaces one of k lineages at or before a certain 
time can then be approximated with the cumulative
exponential distribution,

(7.47)

in exactly the same fashion that times to coalescent
events are approximated.

Combining natural selection with coalescence and
mutation into a three-process waiting-time distri-
bution is now simple. Since the three types of events
are mutually exclusive, we add the chance that a
natural selection event occurs to the chance that 
a coalescence or mutation event occurs to get the
expected waiting time until an event:

(7.48)

When an event does occur according to the waiting
time in equation 7.48, it is then necessary to deter-
mine the type of event. Since the total chance that an 

event occurs is , the chance that  

an event is a coalescence is

(7.49)

while the chance that an event is due to natural
selection is

(7.50)

and the chance that the event is a mutation is

(7.51)

Using equation 7.48 and then determining whether
each event is selection, mutation, or coalescence, it is
possible to construct what is known as an ancestral
selection graph (Fig. 7.11). The term ancestral
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selection graph is used to describe the outcome of 
the three processes since it explicitly shows possible
natural selection events. Natural selection events
result in an addition of branches and thereby serve 
to visualize selection events that are not apparent on
a genealogy alone. When branching occurs due to 
a natural selection event (going back in time), the
resulting branch is called the incoming branch to
represent a possible lineage displacement. The line-
age that the incoming branch splits off from is called
the continuing branch. The incoming branch 
coalesces with a randomly chosen lineage at a later

time determined by the waiting time distribution and
assumes the state of the branch where it coalesces.
Refer again to Fig. 7.10 to see the distinction between
incoming and continuing branches. Even though
natural selection events make more branches, the
coalescence process is faster and will eventually result
in coalescence to the MRCA (the coalescence rate is
proportional to k2 whereas the selection rate is pro-
portional to k).

Figure 7.11 shows one outcome of the coalescence–
natural-selection–mutation process. Figure 7.11a
shows the events that occurred working back in time

··

Present

Past

Time
scale

MRCA

Type of
event

Coalescence of
incoming branch

Mutation

Coalescence of
incoming branch

Branching by selection

Branching by selection

Branching by selection

Coalescence of
incoming branch

(a)

Mutation

#3

#1

#2

1 2 3 4 5 6

(b)

#1: Continuing = A, incoming=a, selection result=A
#2: Continuing = a, incoming=A, selection result=A
#3: Continuing = a, incoming=A, selection result=A

#3

#1

#2 A a

A a

MRCA
A

1 2 3 4 5 6

(c) MRCA

A A A A Aa

1 2 3 4 5 6

Figure 7.11 The ancestral selection graph used to include natural selection in the
genealogical branching model. In (a), the waiting times between events and the types 
of events are determined until the MRCA is reached by working backward in time from
six lineages in the present. Branching and coalescence events due to natural selection
(dashed lines) and mutation events (blue circles) are identified. Natural selection causes
the addition of one “incoming” branch to the number of lineages that can coalesce 
and this incoming branch can then coalesce with any lineage. In (b), a haplotype state 
is assigned to the ultimate ancestor and allelic states are traced forward in time to
determine the outcome of mutation and natural selection events. At each of the selection
events the state of the continuing branch and the incoming branch are compared. In 
this example A is the fitter haplotype and it displaces the a haplotype when continuing
and incoming branches coalesce. When the haplotypes of continuing and incoming
branches are identical there is no change in haplotype state. In (c), the haplotype states
of the lineages in the present are assigned once all of the selection events have been
resolved. In this example selection causes a slight increase in the total branch length
because the selection event at #3 displaces a shorter branch.
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from six lineages in the present. The first potential
natural selection event (labeled #3 because it is the
last event when working forward in time) occurred
on lineage 2, causing a branching event. The incom-
ing branch eventually coalesced with the lineage
that is ancestral to lineages 3 and 4. The second
potential natural selection event caused a branching
event on the lineage that is ancestral to lineages 5
and 6. That incoming branch coalesced again with
the same lineage after a short time. The final poten-
tial natural selection event caused a branch from
one of the two internal lineages near the MRCA 
that coalesced with the other lineage present near
the MRCA.

The actual outcome of these three selection 
events can only be determined once the state of the
MRCA and the fitness of the two haplotypes have
been assigned. In Fig. 7.11b, the ancestor is assigned
a state of A which is also assumed to be the higher
fitness haplotype. Then moving forward in time on
the ancestral selection graph, the outcome of each
instance of natural selection can be determined. 
For selection event #1, the incoming branch has a
haplotype of a due to the mutation while the con-
tinuing branch has the ancestral A haplotype. Since
A is more fit, the state of the continuing branch is
kept and the state of the incoming branch discarded.
(This is exactly like the open circles being less fit and
the closed circles more fit in Fig. 7.10.) At the second
selection event (#2), the incoming branch has a
state of A and the continuing branch has a state of 
a due to a mutation. Here the incoming branch 
displaces the continuing branch and the lineage has
a state of A thereafter. The incoming branch has a
state of A and the continuing branch a state of a at
the final selection event (#3). This results in dis-
placement of the continuing branch.

The genealogy that results from after resolving 
the potential natural selection events is shown in
Fig. 7.11c. Given the ancestral state and high-fitness
haplotype, selection events #1 and #2 had no impact
on the branching pattern of the tree. In contrast,
selection event #3 caused a change in the branching
pattern that moved the coalescence point of lineage
2 from the continuing branch to the coalescence
point of the incoming branch. This reflects the fact
that after natural selection acted, lineage 2 was 
identical by descent to a different lineage. This change
in the branching pattern causes the total branch
length of the tree to be slightly longer than it was
without natural selection. In this case, the height of
the tree is not changed by natural selection.

The conclusions to be drawn from the ancestral
selection graph with two alleles are straightforward.
Weak to moderate directional natural selection tends
to have only a minor impact on average times to 
coalescence. Stated another way, the action of 
directional natural selection does not greatly alter
the average times to coalescence compared with a
strictly neutral genealogy with the same number 
of lineages. When the selection coefficient and the
mutation rate are approximately equal, the mean
time to the MRCA is shortened slightly (Neuhauser &
Krone 1997; see also Przeworski et al. 1999). How-
ever, the difference in the average coalescence times
with directional selection and with strict neutral-
ity is slight given the wide variation in coalescence
times due to finite sampling. Strong natural selec-
tion for advantageous alleles or selection against
deleterious mutations is expected to reduce the 
total height of genealogical trees because of lineages 
bearing states that are strongly disadvantageous
(see Charlesworth et al. 1993, 1995).

Genealogies and balancing selection

Natural selection where heterozygotes have the
highest fitness, also called balancing selection,
can also be incorporated in genealogical branch-
ing models (Hudson & Kaplan 1988; Kaplan et al.
1988; Nordborg 1997; see Hudson 1990). Earlier in
Chapter 6, we saw that balancing selection is expected
to maintain both alleles at a diallelic locus segregating

Use Fig. 7.11b and trace the lineage states
forward in time, assuming that the state of
the MRCA is an a haplotype and that A is
the fitter haplotype. Are the resulting
lineage states in the present the same as
originally given in the figure? Has the
height of the genealogy changed?

As another exercise to test your
knowledge of the ancestral selection graph,
resolve the genealogy in Fig. 7.11b using
the a allele as the state of the MRCA,
alternatively assuming that the A and then
the a allele is the fitter haplotype.

Problem box 7.2
Resolving possible selection

events on an ancestral 
selection graph
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in the population at equilibrium. The two allele fre-
quencies at equilibrium will depend on the selection
coefficients against the two homozygous genotypes.
Since the haploid genealogical model does not have
diploid genotypes nor sexual reproduction, we will
need to take an alternative approach rather than
specifying multiple genotype fitness values.

Balancing selection is a special case of natural
selection because it works counter to the fixation and
loss due to genetic drift. In a genealogical branch-
ing model genetic drift is represented by the process
of coalescence. So to approximate the overall effect 
of balancing selection we need a process that will
delay coalescence to the same degree that selection
favors heterozygotes in the diploid selection model.
This same overall result can be obtained by model-
ing balancing selection along the lines of population
structure with two demes. Although it sounds like an
odd approach, population structure and balancing
selection have similar effects for different reasons. 
In structured populations, two lineages cannot coa-
lesce unless they are in different demes (refer back to
Fig. 4.16). Gene-flow events that move lineages into
different demes therefore tend to delay coalescence
events. Using this same logic, we can model balanc-
ing selection in a single panmictic population as a
process where there are two lineage types. A switch-
ing process akin to gene flow (or mutation) changes
lineage types at random while the coalescence pro-
cess operates at the same time. If two lineages must
be of the same type to coalesce, then the switching

process will prevent coalescence among the lineages
that are of different types.

Let the two lineage types be A and B and their
respective frequencies in the population be p and q so
that p + q = 1 (see Fig. 7.12). Every generation, lineages
of one type may switch to the other type with rate μ.
Twice the expected number of the 2N total lineages
in the population that switch types each generation
is then ν = 4Nμ. The expected number of lineages
switching each generation serves as a surrogate for
the strength of balancing selection since frequency
switching will let lineages escape coalescence. Using
this switching rate, the expected waiting time until
an A lineage switches to a B lineage is

(7.52)

and the expected waiting time until a B lineage
switches to an A lineage is

(7.53)

The ratio of the frequencies (q/p and p/q) serves to
adjust the exponent for the relative frequencies of 
the two lineage types.

Next we need to express the waiting time until a
coalescence event, keeping in mind that lineages can
only coalesce if they are of the same type. Given that
there are 2Np lineages of type A and 2Nq lineages of
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The coalescent process can be simulated for directional selection via an ancestral selection graph.
The simulation displays a genealogy based on parameter values for the number of lineages (n:), 
the strength of natural selection (S:), and the mutation rate (U:). The strength of selection
parameter corresponds to the rate at which incoming branches are formed on the genealogy.
Mutation events will change allelic states of branches in the genealogy. The blue dots in the
genealogy (labeled Phony? in the legend) are incoming branches. The button at the top right of
the genealogy animation labeled Show mutations can be used to show mutations by coloring 
the branches. Clicking this button again when it is labeled Show types displays the allelic states of
each node in the genealogy.

Click the Recalc button to begin a new simulation. The resulting genealogy can be viewed as an
animation going back in time (click Animation tab at top left and use playback controls at bottom)
or as a genealogy (click Trees tab at top left).

Set the selection parameter to 1.0 and view a few resulting genealogies. Then set the selection
parameter to 5.0 and view numerous genealogies. How do the genealogies compare under weak
or strong selection? Rerun the simulation a few times while trying out a range of values for the
selection strength. Be sure to view multiple replicate genealogies for each set of parameter values.

Interact box 7.6 Coalescent genealogies with directional selection
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type B and coalescence events are mutually exclusive,
the expected waiting time until a coalescence event is

(7.54)

If switching events and coalescence events are all
mutually exclusive, the individual exponents can be
added together to obtain the total waiting time to
any event:

(7.55)

Given that an event has occurred with a known
waiting time, the type of event can be determined by
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drawing a random number between zero and one
and comparing it with the cumulative total of the
chance of each event divided by the total probability
of all events.

Genealogical trees that result from balancing selec-
tion modeled as type switching tend to have longer
branches compared with genealogies that result
from genetic drift alone (Fig. 7.12). This is due to the
increase in average waiting times between coalescence
events caused by lineage type switching. The final
two lineages in particular are expected to take a long
time to coalesce since they must switch to the same
type. The results of two allele balancing selection 
are qualitatively similar to genealogies with long
waiting times for the last two lineages expected with
subdivided populations. If mutation is also operating
along with balancing selection, then genealogies
with longer branches would also accumulate more
mutations since the number of mutation events is
proportional to the total branch length of a genealogy.
Lineages of the two different types, in particular, are
expected to have more mutational changes between
them than would be expected in a genealogy under
the basic neutral coalescent model.

An additional model of balancing selection exists
for populations with more than two alleles and 
equivalent (overdominant) fitness values for the pos-
sible heterozygous genotypes (Vekemans & Slatkin
1994; Uyenoyama 1997). Such multi-allelic balanc-
ing selection is distinct from balancing selection 
with only two alleles, resulting in genealogies that
have long coalescence times for the lineages near 
the present (or shorter times to coalescence further
back in time nearer the MRCA) compared to neutral
genealogies. Classic examples of multi-allelic balanc-
ing selection are the many alleles found at single 
self-incompatibility loci in some plants (e.g. Schierup
et al. 1998).

Chapter 8 on molecular evolution further con-
siders the consequences of natural selection on the
height and shape of genealogies in the context of
comparisons designed to test whether or not a genea-
logy is different than expected by the processes of
drift and mutation alone.

Chapter 7 review

• Mean fitness in a population can be viewed as 
a graph of average fitness by genotype or allele
frequencies called a fitness surface. Natural selec-
tion acts as an uphill climber on a fitness surface,

Lineage type A Lineage type B

Switching rate ν = 4Nμ

Figure 7.12 A genealogy where balancing natural selection
is modeled by type switching. Every generation, lineages of
one type (here A and B) may switch to the other type with 
rate μ. Twice the expected number of the 2N total lineages 
in the population that switch types each generation is then 
ν = 4Nμ. Since lineages can only coalesce when they are of
the same type, type switching increases the average time to
coalescence. This is analogous to natural selection favoring
heterozygotes because overdominance also extends the
segregation times of alleles. Genealogical trees that result
from balancing selection modeled as type switching tend to
have longer branches compared to genealogies that result
from genetic drift or directional natural selection.
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moving genotype frequencies uphill based on the
slope at the current genotype frequencies.

• Fitness surfaces will have multiple peaks and 
valleys if there is dominance or epistasis.

• When fitness depends on three alleles at one locus,
the results of natural selection depend on initial
genotype frequencies in the population if there is
strong over- and underdominance.

• The net balance of recombination and natural
selection may result in equilibria that do not cor-
respond to mean fitness maxima. Recombination
works toward gametic equilibrium irrespective of
mean fitness and may act in opposition to natural
selection.

• Although the viability model of fitness is used as 
a standard, changes in genotype frequencies and
their equilibria are often distinct when fitness is
defined as differential fecundity or carrying capa-
city, or when fitness values vary in time and space.

• When both natural selection and genetic drift are
acting, selection is strong relative to genetic drift
when 4Nes is much greater than one, selection is
weak relative to genetic drift when 4Nes is much
less than one, and when 4Nes is approximately
one then selection and drift are about the same
strength.

• When both natural selection and mutation are
acting, deleterious alleles will be maintained in 
a population at a level that increases with the
mutation rate but decreases with consanguineous 
mating and the selection coefficient against the
allele when homozygous.

• In genealogical branching models, directional
selection can be modeled as an ancestral selection
graph. Weak directional selection does not greatly
alter the total branch length nor the total height
of genealogical trees on average.

• In genealogical branching models, balancing
selection can be modeled as a lineage type switch-
ing process similar to gene flow or mutation.
With two alleles, balancing selection lengthens

the average time to coalescence for the final two
lineages since they have to switch to the same type
to coalesce. With three or more alleles, balancing
selection will tend to increase coalescence times
and lengthen terminal branches in a genealogical
tree.

Further reading

A classic and approachable treatment of two-locus
selection that features fitness surfaces can be found in:

Lewontin RC and White MJD. 1960. Interaction between
inversion polymorphisms of two chromosome pairs
in the grasshopper, Moraba scurra. Evolution 14:
116–29.

For case studies, perspective, and basic theory relat-
ing to genotype interactions at two or more loci that
influence fitness see chapters in:

Wolf JB, Brodie ED III, and Wade MJ (eds). 2000.
Epistasis and the Evolutionary Process. Oxford Univer-
sity Press, Oxford.

Extensions of the basic viability natural selection
model that account for biological variations such as
spatial and temporal variation in fitness, fitness trade-
offs, competition, and predation can be found in:

Roff DA. 2001. Life History Evolution. Sinauer Associates,
Sunderland, MA

Roughgarden J. 1996. Theory of Population Genetics and
Evolutionary Ecology: an Introduction. Prentice Hall,
Upper Saddle River, NJ.

A genealogical model of directional natural selection
where haplotypes are neutral when rare and become
favored after reaching a threshold frequency can be
found in:

Przeworski M, Coop G, and Wall JD. 2005. The signature
of positive selection on standing genetic variation.
Evolution 59: 2312–23.

··
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Problem box 7.1 answer

wAA = 0.679 wAS = 0.763 wSS = 0.153
wAC = 0.679 wSC = 0.534 wCC = 1.0
Initial allele frequencies set 1: 
p = 0.75, q = 0.20, r = 0.05
T = 0.679(0.75)2 + 0.153(0.2)2

+ 1(0.05)2 + (0.763)2(0.75)(0.2)
+ (0.679)2(0.75)(0.05)
+ (0.534)2(0.2)(0.05)

T = 0.382 + 0.00612 + 0.0025 + 0.2289
+ 0.051 + 0.0107 = 0.6812

TC = 1(0.05) + (0.679)(0.75) + (0.534)(0.2)
= 0.6661

= −0.0011

pt+1 = 0.05 − 0.0011 = 0.0489

The C allele goes to loss because its marginal
fitness is lower than the mean fitness.

Initial allele frequencies set 2: 
p = 0.7, q = 0.20, r = 0.1
T = 0.679(0.7)2 + 0.153(0.2)2 + 1(0.1)2

+ (0.763)2(0.7)(0.2) + (0.679)2(0.7)(0.1)
+ (0.534)2(0.2)(0.1)

Δp =
−0 05 0 6661 0 6812

0 6812
. ( . . )

.

T = 0.333 + 0.0061 + 0.01 + 0.2136
+ 0.0951 + 0.0214 = 0.6792

TC = 1(0.1) + (0.679)(0.7) + (0.534)(0.2)
= 0.6821

= 0.05

pt+1 = 0.1 + 0.05 = 0.15

The C allele goes to fixation because its
marginal fitness is greater than the mean
fitness, a condition that will hold until the 
C allele is fixed in the population.

Problem box 7.2 answer

At selection events #1 and #2, the incoming
branch displaces the continuing branch. 
The incoming and continuing branches have
identical states at selection event #3. The
result is that all lineages have the state A in 
the present. In this case the height of the
genealogy is shorter because of the outcome
of selection event #1. See Figure 7.13.

  
Δp =

−0 1 0 6821 0 6792
0 6792

. ( . . )
.

Problem box answers

#1:  Continuing = a, incoming = A, selection result = A
#2:  Continuing = a, incoming = A, selection result = A
#3:  Continuing = A, incoming = A, selection result = A

#3

#1

#2 A a

a A

a

1 2 3 4 5 6 A A A A AA

1 2 3 4 5 6

Figure 7.13 An example
ancestral selection graph
showing how natural selection
operates in the genealogical
branching model. The
genealogy on the left shows
incoming and continuing
branches and their haplotype
states. The genealogy on the
right shows the final pattern of
branch states once all natural
selection events have been
resolved and states reassigned
as necessary. In this illustration,
the A haplotype is at a selective
advantage over the a haplotype.
Haplotype A increases in
frequency when the continuing
and incoming branches are
resolved. See Problem box 7.2.
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8.1 The neutral theory

• The neutral theory and its predictions for levels of
polymorphism and rates of divergence.

• The nearly neutral theory.

The field of molecular evolution involves the study 
of DNA, RNA, and protein sequences with the goal 
of elucidating the processes that cause both change
and constancy among sequences over time. One
approach to molecular evolution is to focus on a
specific gene, seeking to test hypotheses about what
parts of that specific sequence are most likely involved
in some function or in the regulation of transcrip-
tion. Another type of inquiry in molecular evolution
involves testing hypotheses about the population
genetic processes that have operated on sequences in
the past using DNA sequence data. This latter type of
research often seeks to distinguish whether a pattern
of variation in a sample of DNA sequences is con-
sistent with genetic drift or with certain forms of 
natural selection. The common feature of all hypo-
thesis tests in studies of molecular evolution is the
use of null and alternative hypotheses for the patterns
and rates of sequence change. This chapter will
introduce the conceptual foundations behind many
of the most commonly used null and alternative
hypotheses in molecular evolution. Although this
chapter focuses exclusively on DNA sequences, the
concepts presented are sometimes applicable to 
protein sequences as well.

The neutral theory now forms the basis of the
most widely employed null model in molecular 
evolution. The neutral theory adopts the perspective
that most mutations have little or no fitness advant-
age or disadvantage and are therefore selectively
neutral. Genetic drift is therefore the primary evolu-
tionary process that dictates the fate (fixation or loss)
of newly occurring mutations. When it was originally
proposed, the neutral theory was a major departure
from orthodox population genetic theory of the time.

In the 1950s and 1960s, it was widely thought that
most mutations would have substantial fitness dif-
ferences and therefore the fate of most mutations
was dictated by natural selection. Motoo Kimura
(shown in Fig. 8.1) argued instead that the interplay
of mutation and genetic drift could explain many of
the patterns of genetic variation and the evolution of
protein and DNA sequences seen in biological popu-
lations (Kimura 1968, reviewed in Kimura 1983a).
King and Jukes (1969) also proposed a similar idea at
around the same time. (The controversy generated
by the neutral theory as well as some of the logic
behind Kimura’s proposal of the neutral theory is

CHAPTER 8

Molecular evolution

Figure 8.1 Motoo Kimura (on left) and James Crow in 
1986 on the occasion of Kimura being awarded an honorary
doctoral degree at the University of Wisconsin, Madison, 
WI, USA. Kimura pioneered the use of diffusion equations 
to determine quantities such as the average time until 
fixation or until loss for neutral mutations. Based on these
foundations, he proposed the neutral theory of molecular
evolution in 1968. Kimura and Crow collaborated to develop
some of the basic expectations for neutral genetic variation.
Crow mentored and encouraged many people who became
influential contributors to population genetics, including
Kimura. Photograph kindly provided by J. Crow.
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covered in Chapter 11.) The neutral theory null
model makes two major predictions under the
assumption that genetic drift alone determines the
fate of new mutations. One prediction is the amount
of polymorphism for sequences sampled within a
population of one species. The other prediction is the
degree and rate of divergence among sequences
sampled from separate species.

Polymorphism

The balance of genetic drift and mutation that deter-
mines polymorphism in the neutral theory is dia-
grammed in Fig. 8.2. Each line indicates the change
in frequency of an allele over time. New mutations
enter the population (lines at the bottom edge) and

their frequency in the population then changes due
to genetic drift. The frequency of each allele is there-
fore a random walk between fixation and loss. To 
see how this random walk results in polymorphism,
hold a straight edge such as a ruler to form a vert-
ical line at any single time point. If the vertical line 
intersects any allele frequency lines, then the popula-
tion has genetic polymorphism at that time point
since there are multiple alleles segregating in the
population. More alleles segregating in the popula-
tion indicate more polymorphism. Segregating alleles,
and therefore polymorphism, result from the random
walk in frequency that each mutation takes under
genetic drift. Most mutations segregate for short
periods of time and then are lost from the population.
However, since their frequency is dictated by random
sampling, some alleles may reach high frequencies
before eventually being lost. A small proportion of
mutations will eventually be fixed in the popula-
tion after a random walk in allele frequency. Under
neutral theory, polymorphism results from the tran-
sient dynamics of allele frequencies before they reach
fixation or loss end points. The process that underlies
Fig. 8.2 can be approximately simulated in Interact
box 5.1.

The neutral theory’s prediction for levels of poly-
morphism in a population follows directly from the
predicted dynamics of allele frequency under genetic
drift (see Chapters 3 and 5). Chapter 3 showed that
the initial frequency of an allele is also its chance 
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Figure 8.2 The fate of selectively neutral mutations in a population. New mutations enter the population at rate μ and an initial 

frequency of . Allele frequency is a random walk determined by genetic drift. The time that a new mutation segregates in the 

population, or the dwell time of a mutation, depends on the effective population size. However, the chance that a new mutation
goes to fixation (equal to its initial frequency) is also directly related to the effective population size. These two effects of the effective
population size cancel each other out for neutral alleles. The neutral theory then predicts that the rate of fixation is μ and therefore
the expected time between fixations is 1/μ generations. For that subset of mutations that eventually fix, the expected time from
introduction to fixation is 4Ne generations. After Figure 3.1 in Kimura (1983a).

  

1
2N

Divergence Fixed genetic differences that
accumulate between two completely isolated
lineages that were originally identical when
they diverged from a common ancestor.
Polymorphism The existence in a population
of two or more alleles at one locus.
Populations with genetic polymorphisms 
have heterozygosity, gene diversity, or
nucleotide diversity measures that are 
greater than zero.
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of eventual fixation. For new mutations that start
out as one copy in the entire population of 2N allele 

copies, the chance of eventual fixation is while 

the chance of eventual loss is . The diffusion 

approximation of genetic drift in Chapter 3 also
showed that the average time to fixation of a new
mutation approaches 4N generations while the 

average time to loss approaches just 

generations as N gets large. (To see these results set 

in equation 3.40 and evaluate the expres-

sions as N increases toward infinity.) The average
time to fixation also has a large variance, so the 
standard deviation of the number of generations to
fixation is expected to be about half of the mean or
2.15Ne generations (Kimura & Ohta 1969b; Narain
1970; Kimura 1970, 1983a).

For example, in a population of N = 1000, the
average time to loss is about 15 generations (assuming

= 1) but the average time to fixation for those 

alleles that eventually fix is 4000 generations. 
In addition, the time to fixation is highly variable 
since genetic drift is a stochastic process or a 
random walk. The standard deviation of the time 
to fixation is large, at approximately 2150 genera-
tions, consistent with a broad range in times to
fixation. Relatively few mutations are expected to 
fix, but those mutations that do go to fixation segre-
gate for a much longer time on average than the
large proportion of mutations that go to loss. While
mutations are segregating before their eventual end 
point of fixation or loss, there is polymorphism in 
the population.

An additional way to understand the expected
polymorphism of neutral alleles in a population is 
to examine the equilibrium balance between genetic
drift causing alleles to go to fixation and the input of
new alleles in a population by mutation. Chapter 5
showed that for the infinite alleles model of mutation,
the combined processes of mutation and genetic drift
produce equilibrium heterozygosity:

(8.1)

that depends on the effective population size Ne and
the mutation rate μ (see equation 5.39). In this view
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of neutral mutations, polymorphism results from
either a high rate of input of mutations even if drift is
strong, a long dwell time for each mutation due to a
large effective population size even if mutations are
infrequent, or intermediate levels of mutation and
genetic drift.

The neutral theory prediction for polymorphism
can be readily compared with polymorphism expected
under positive (higher than average genotype fitness)
and negative (lower than average genotype fitness)
natural selection (Fig. 8.3). New mutations that are
deleterious will go to loss faster than neutral muta-
tions since natural selection will deterministically
reduce their frequencies and there will be little or no
random walk in allele frequency. In contrast, new
mutations that are advantageous will increase in 
frequency to fixation, again deterministically under
natural selection without a random walk in frequency.
So a locus with new mutations that are influenced by
directional natural selection should show less poly-
morphism than a locus with neutral mutations. The
other possibility is that some advantageous muta-
tions are influenced by balancing selection due to
overdominance for fitness. In that case two or more
alleles will have very long times of segregation since
natural selection will maintain several alleles at
intermediate frequencies between fixation and loss
with the result of increased levels of polymorphism
in the population.

As a whimsical metaphor, compare the average
times to fixation under directional selection, neutral
evolution, and balancing selection with the time it
takes a population genetics professor to go from his
or her office (initial mutation) to the coffee shop and
back (fixation) at different career stages (different pro-
cesses). A new, over-worked professor goes directly
to get a cup of coffee and returns immediately with-
out stopping to talk to anyone, so the trip is short and
direct like directional selection. In mid-career, a pro-
fessor has a bit more free time and will pause more
often to greet friends, like a random walk. Late in
their career, a professor takes a roundabout path to
the shop and stops to talk frequently such that the
coffee break takes a very long time, like balancing
selection.

Divergence

The neutral theory also predicts the rate of divergence
between sequences. Genetic divergence occurs by
substitutions that accumulate in two DNA sequences
over time. Think of two DNA sequences that are

··
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copies of the same ancestral sequence (Fig. 8.4). The
two sequences were originally identical before any
substitutions occurred. Over time, mutations occurred
in each population and some were fixed by chance
due to genetic drift (see Fig. 8.2). Each fixed muta-
tion causes a change in the base pairs at random

nucleotide positions in the sequence, causing each
sequence to diverge slightly from its ancestor as well
as from its sibling sequence. A biological example 
is two species that recently diverged from an ances-
tral species with no genetic variation. Both of the
new species would be founded with identical DNA
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Figure 8.3 The dwell time for new mutations is different if fixation and loss is due to genetic drift or natural selection. With
neutral mutations (b), most mutations go to loss fairly rapidly and a few mutations eventually go to fixation. For eventual fixation
or loss of neutral mutations the path to that outcome is a random walk, implying that the time to fixation or loss has a high
variance. For mutations that fix because they are advantageous (a), directional selection fixes them rapidly in the population.
Therefore under directional selection alleles segregate for a shorter time and there is less polymorphism than with neutrality. 
For mutations that show overdominance for fitness, natural selection favoring heterozygote genotypes maintains several alleles 
in the population indefinitely. Therefore balancing selection greatly increases the segregation time of alleles and increases
polymorphism compared to neutrality. Both cases of natural selection (a and c) are drawn to show negative selection acting
against most new mutations. If new mutations are deleterious then the time to loss is very short and there is very little random
walk in allele frequency since selection is nearly deterministic.
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sequences and thereafter be reproductively isolated
from each other. DNA sequences compared between
the two species would each experience DNA sequence
divergence due to mutations occurring over time.

The neutral theory predicts the rate at which allelic
substitutions occur and thereby the rate at which
divergence occurs. Predicting the substitution rate
for neutral alleles requires knowing the probability
that an allele becomes fixed in a population and the
number of new mutations that occur each generation.
A new mutation in a population of diploid indi-
viduals is initially present as just a single copy out of
a total of 2N copies of the locus. Therefore, the initial 

frequency of a new mutation is . Under genetic 

drift, the chance of fixation of any neutral allele 
is simply its initial frequency (see Chapter 3). Each
generation, the chance that an allele copy mutates 
is μ and there are a total of 2N allele copies. There-
fore, the expected number of new mutations in a 
population each generation is 2Nμ. Multiplying the
probability of fixation by the expected number of
mutations per generation,

(8.2)

gives the rate at which alleles that originally entered
the population as mutations go to fixation per gen-
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eration, symbolized by the substitution rate k. Notice
that this equation simplifies to

k = μ (8.3)

The necessary assumption is that the substitution
process is viewed on a time scale that is long relative
to the average time to fixation for an individual 
mutation. If more than 4Ne generations have elapsed,
then it is likely that all the alleles in a population will
have descended from one allele due to genetic drift.
The probability that the lucky allele that is fixed in
the population was a new mutation is μ.

This result is remarkable because it says that the
probability that a neutral mutation goes to fixation
each generation, or the rate of substitution, is simply
equal to the mutation rate. Notice that the predicted
substitution rate does not depend on the effective
population size. This is because a mutation in a
smaller population has a greater chance of fixation
but there are fewer new mutations each generation,
while a mutation in a larger population has a smaller
chance of reaching fixation but there are more muta-
tions introduced each generation. The rate of input
of new mutations in a population and the chance of
fixation due to genetic drift exactly balance out when
N changes. Note that this same result holds in the
case of haploid loci since there are a total of N alleles 

and the probability of fixation of a new mutation is .

Based on the rate of substitution, the neutral 
theory also predicts that the substitutions that ultim-
ately cause divergence should occur at a regular
average rate. For waiting time processes, the time
between events is the reciprocal of the rate of events.
Using a clock that chimes on the hour as an example,
the rate of chiming is 24 per day (or 24/day). There-
fore, the expected time between chiming events is

1
N

··

Time

...GTACATTGCTGC...

...GTACATTGCTGC...

...GTACATTGCTGC...

...GTACATaGCTGC...

...GTtCATTGCTGC...

...cTACATaGCgGC...

...GTtCATTcCTGC...

Figure 8.4 The process of divergence for two DNA sequences that descended as identical copies of an ancestral sequence. Each
sequence experiences neutral mutations, some of which are eventually fixed by genetic drift. These fixed mutations replace all
other alleles and are therefore substitutions (indicated by blue lower-case letters). As substitutions accumulate, the two sequences
diverge from the ancestral sequence as well as from each other. In this example, the two sequences are eventually divergent at 
five of 12 nucleotide sites due to substitutions. The dashed line indicates complete isolation of the two populations containing 
the derived sequences.

Substitution The complete replacement of
one allele previously most frequent in the
population with another allele that originally
arose by mutation.
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1/24 of a day or 1 hour. Since the rate of neutral 
substitution is μ, the expected time between neutral
substitutions is 1/μ generations (see Fig. 8.2). For
example, if the mutation rate of a locus is 1 × 10−6

(one nucleotide change per 106 gametes per genera-
tion) then the expected time between neutral substi-
tutions is 106 generations on average. This offers one
explanation of why different loci diverge at different
rates: the different loci simply have distinct mutation
rates that lead to variable neutral substitution rates.

Nearly neutral theory

The nearly neutral theory considers the fate of
new mutations if some portion of new mutations are
acted on by natural selection of different strengths
(Ohta & Kimura 1971, Ohta 1972, reviewed in Ohta
1992 and Gillespie 1995). The nearly neutral theory
recognizes three categories of new mutations: neutral
mutations, mutations acted on strongly by either
positive or negative natural selection, and mutations
acted on weakly by natural selection relative to the
strength of genetic drift. This last category contains
mutations that are nearly neutral since neither 
natural selection nor genetic drift will determine
their fate exclusively.

For a new mutation in a finite population that
experiences natural selection, the forces of directional
selection and genetic drift oppose each other. Recall
from Chapter 3 that genetic drift causes heterozygosity

to decrease at a rate of per generation (see 

equation 3.51). Thus, quantifies the “push” on 

a new mutation toward fixation caused by genetic
drift. The selection coefficient (s) on a genotype
describes the “push” on alleles toward fixation or loss
due to natural selection. The force of selection on a
new mutation can be quantified using the result
from section 5.2 that the chance of fixation is
approximately 2s. Setting these forces equal to 
each other,

(8.4)

gives the conditions where genetic drift and natural
selection have approximately equal influence on the
fate of allele frequencies. When 2s is within an order
of magnitude of the reciprocal of effective population
size, an allele can be described as net neutral or
nearly neutral since natural selection and genetic

  
2

1
2

s
Ne

=

  

1
2Ne

  

1
2Ne

drift are approximately equal forces dictating the
probability of fixation of an allele. Next, notice that
multiplying both sides of equation 8.4 by 2Ne gives
4Nes = 1 as the condition where the processes of
genetic drift and natural selection are equal. When
4Nes is much greater than one natural selection is
the stronger process whereas when 4Nes is much less
than one genetic drift is the stronger process.

Using more sophisticated mathematical tech-
niques, Kimura (1962) showed that the probability
of fixation for a new mutation in a finite population is

Pfixation = (8.5)

where p is the allele frequency (p = for a single 

mutation but in general p is assumed to be much less 
than one), Ne is the effective population size, and s is
the selection coefficient assuming codominance.
This equation is plotted in Fig. 8.5 along with the
constant probability of fixation for a new mutation
expected under neutral theory.
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Figure 8.5 The probability of eventual fixation for a new
mutation under the neutral and nearly neutral theories.
Under the nearly neutral theory the probability of fixation
depends on the balance between natural selection and
genetic drift, expressed in the product of the effective
population size and the selection coefficient (Nes). When
negative selection operates against a deleterious allele, the
selection coefficient and Nes are negative. Values of Nes
near 0 yield a fixation probability close to that predicted by
neutral theory. Only when the absolute value of Nes is large
does natural selection exclusively determine the probability of
fixation. Neutral theory assumes that neutral mutations are
not influenced by selection and have a constant probability 
of fixation dictated by the effective population size. In this
example the initial allele frequency is 0.001, or the frequency
of a new mutation at a diploid locus in a population of 500.
After Ohta (1992).
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The nearly neutral theory predicts that the 
rate of substitution will depend on the effective 
population size for the proportion of mutations in 
a population that are nearly neutral (4Nes ≈ 1). 
The nearly neutral theory therefore predicts that the
amount of polymorphism in populations depends 
for some mutations on the effective population size.
A consequence is that subdivided populations and
different species can exhibit different levels of poly-
morphism based on their effective population size.
Similarly, rates of divergence can also vary between
species, due to differences in Ne. This is in contrast 
to the neutral theory, which predicts that the rate of
substitution is independent of the effective popula-
tion size.

8.2 Measures of divergence and
polymorphism

• Measuring divergence of DNA sequences.
• Nucleotide substitution models correct divergence

estimates for saturation.
• DNA polymorphism measured by number of 

segregating sites and nucleotide diversity.

Most natural and laboratory populations contain 
at least some, and often a large amount, of genetic
variation represented by different alleles found at the
many loci in the genome. The smallest possible unit
of the genome is a homologous nucleotide site, or
single base-pair position in the exact same genome

··

Examine the fitness values given below. Based on your knowledge of natural selection, predict for
each case the equilibrium frequency of the A allele under only the process of natural selection. The
answer is given below.

1 2 3 4
wAA 0.975 0.8 0.9 0.4
wAa 0.9875 0.9 1.0 1.0
waa 1.0 1.0 0.9 0.4

Now, launch Populus and use the Model menu to select Mendelian Genetics and then Drift and
Selection. In the options dialog box set population size to 20, initial allele frequency to 0.5, and
generations to 200. Enter each set of genotype fitness values and then track the fate of the a allele
over time. Run the simulation 10 times for each set of fitness values, tabulating your results as you
go (numbers in each row should total to 10).

Fitness set No. fixed for A No. lost for A No. segregating for A and a
1
2
3
4

Explain your simulation results by calculating 4Nes for each set of fitness values.
The interplay of genetic drift and natural selection can also be simulated in PopGene.S2 by

selecting the Drift menu and then the Drift ++ Selection ++ Mutation model. First try parameters 
of 20 populations, population size of 20, initial allele frequency of 0.5, 100 generations, relative
fitness values of 1, 0.95, and 0.90, and mutation rates of 0.005. Modify these parameter values 
to get outcomes you would expect when genetic drift is the stronger process as well as when
natural selection is the stronger process.

Interact box 8.1 The relative strengths of genetic drift and natural selection

Answer:In sets 1 and 2 natural selection will fix the a allele and drive the A allele to loss, as 
expected for directional selection with additive gene action. In sets 3 and 4 the heterozygotes 
have the highest fitness, so balancing selection should maintain both alleles indefinitely.
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location, that could be compared among individuals.
Genetic variation at such nucleotide sites is charac-
terized by the existence of DNA sequences that 
have different nucleotides (e.g. some individuals
have an A and other individuals have a T at the 
37th base pair from the start codon in the same gene)
and is called nucleotide polymorphism. Nucleotide
polymorphisms are sometimes referred to as single
nucleotide polymorphisms or SNPs (pronounced
“snips”). This section of the chapter covers commonly
used measures of divergence and polymorphism 
estimated from DNA sequence data.

DNA divergence between species

The most fundamental method to quantify molecular
evolution is by comparing two DNA sequences. This
comparison is a two-step procedure. First, the two
DNA sequences must be aligned such that homolo-
gous nucleotide sites for each sequence are all lined
up in the same columns. For example, if two coding
genes were sequenced then one way to align them
would be to match up the first three nucleotides 
that make up the start codon. (Methods of sequence
alignment are beyond the scope of this text, but 
readers can refer to text such as Page & Holmes (1998)

for more details.) The second step is to determine 
the number of sites that have different nucleotides.
The number of nucleotide sites that differ between
two DNA sequences divided by the total number 
of nucleotide sites compared gives the proportion of
nucleotide sites that differ, often called a p distance
as a shorthand for proportion-distance. This is a
basic measure of the evolutionary events that have
occurred since two DNA sequences descended from a
common ancestor, when they were each identical
copies of the same sequence.

An example of divergence between a pair of sequences
is shown in Fig. 8.4. Consider the two sequences at
the far right in the present time after some diver-
gence that has introduced substitutions. There are
five nucleotide sites that have different nucleotides
out of a total of 16 nucleotide sites. Therefore, the p

Figure 8.6 shows a DNA sequence
electropherogram from a capillary
electrophoresis DNA sequencer. In the 
chain-termination method (also called 
the Sanger method after its inventor 
Frederick Sanger), a DNA polymerase and
oligonucleotide primer are used to copy a
DNA template sequence in the presence of a
low concentration of dideoxynucleotides. The
dideoxynucleotides lack a 3′ hydroxyl (-OH)
group necessary for continued 5′-to-3′ DNA
synthesis and therefore the replicating copy
ends whenever a dideoxynucleotide is added
by the polymerase. The dideoxynucleotides
also carry a radioactive or molecular dye
marker. When the population of DNA copies 

is separated by size using electrophoresis, 
the molecular label is used to identify the 
type of dideoxynucleotide base (an A, T, C, 
or G) that terminated the replicating copy.
Modern DNA sequencers use laser light 
to detect one of four molecular dyes 
attached to each dideoxynucleotide during
electrophoresis.

In Fig. 8.6 the y axis represents the intensity
of molecular dye signal measured as DNA
fragments pass by a laser reader. Each line
style represents the intensity of a different
color light detected by the laser. Each of 
the four light colors represents a different
dideoxynucleotide. See the text web page 
for a full-color version of this figure.

Box 8.1 DNA sequencing

C C A C CT A AT T T G GC A T T

Li
g

h
t 
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te

n
si

ty

0

+

Figure 8.6 A DNA sequence electropherogram. See the
text web page for a full-color version of this figure.

p Distance The number of nucleotide sites
that differ between two DNA sequences
divided by the total number of nucleotide
sites, a shorthand for proportion-distance.
Sometimes symbolized as d for distance.
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distance is 5/12 = 0.3125, or 31.25% of the nucleotide
sites have diverged.

The p distance between two DNA sequences 
sampled from completely independent populations
should increase over time as substitutions within each
population replace the nucleotide that was origin-
ally shared at each site due to identity by descent. 
If the two DNA sequences represent two distinct
species or completely isolated populations, then the 
p distance is a measure of divergence between the
two species.

DNA sequence divergence and saturation

Saturation is the phenomenon where DNA sequence
divergence appears to slow and eventually reaches a
plateau even as time since divergence continues to
increase. Saturation in nucleotide changes over time
is caused by substitution occurring multiple times 
at the same nucleotide site, a phenomenon called
multiple hit substitution (see the related topic of 
multiple hit mutation in Chapter 5). Substitutions that

occur repeatedly at the same site have the effect of
covering up information about past substitutions, since
only the most recent substitution can be observed and
measured as divergence between two DNA sequences.
Computing the p distance between two sequences
leads to under-estimates of number of substitutions
that have occurred and therefore an under-estimate
of the degree of divergence. The top panel of Fig. 8.7
shows divergence that increases linearly with time
since divergence (dashed line) and that exhibits 
saturation (solid line). Actual DNA sequence data
routinely exhibit some degree of saturation, as shown
in the bottom panel of Fig. 8.7 for the mitochondrial
cytochrome c oxidase subunit II gene sequenced for
several bovine species (ungulates including domestic
cattle, bison, water buffalo, and yak) that diverged
between 2 and 20 million years ago.

Saturation can be understood by imagining the
process of assembling a DNA sequence at random
and comparing it with another existing DNA sequence.
Think of drawing individual nucleotides out of a bucket
containing equal numbers of A, C, G, and T base
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Figure 8.7 Substitutions that occur repeatedly at the same nucleotide site lead to saturation of nucleotide changes as time since
divergence from a common ancestor increases. The rate of substitutions does not change and the total number of substitutions
continues to increase over time, as shown by the dashed line in the top panel representing the true number of substitutions. In
contrast, multiple substitutions at the same sites leads to a slowing and leveling off in the estimate of divergence (solid line, top panel).
Therefore, the amount of divergence leads to the perception that the rate of divergence decreases over time. The bottom panel shows
divergence and saturation at the mitochondrial cytochrome c oxidase subunit II gene among bovine species (ungulates including
domestic cattle, bison, water buffalo, and yak) that diverged between 2 and 20 million years ago. In the top panel α = 1 × 10−6

(α is explained overleaf). The bottom panel data are from Janecek et al. (1996) and the line is a quadratic regression fit.
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pairs. If a nucleotide site in the existing sequence is
an A, there is a 25% chance that a randomly drawn
nucleotide will be an A and the sites will match. On
the other hand, there is a 75% chance it will not be
an A (it will be a T, C, or G) and the two sites will be
diverged. Thus, a DNA sequence assembled from
random draws of nucleotides at equal frequency
should be 75% divergent or 25% identical to another
sequence on average. The consequence is that two
sequences which originated from a common ancestor
do not continue to get increasingly divergent over
time. Eventually, the maximum divergence will plateau
at 75% as continued mutation essentially randomizes
the shared sites between the two sequences.

There are a wide variety methods to correct the
perceived divergence between two DNA sequences
to obtain a better estimate of the true divergence
after accounting for multiple hits. These correction
methods are called nucleotide substitution 
models and use parameters for DNA base frequencies
and substitution rates to obtain a modified estimate
of the divergence between two DNA sequences. The
simplest of these is the Jukes and Cantor (1969)
nucleotide-substitution model, named for its authors.
Working through the derivation of the Jukes–Cantor
model is worthwhile to gain some insight into how
nucleotide-substitution models operate.

The Jukes–Cantor model starts out by assuming
that any nucleotide in a DNA sequence is equally
likely to be substituted with any of the other three
nucleotides. For example, if a site currently has a C
then substitution of an A, T, or G all have the same
chance of occurring. Figure 8.8 shows three possible
events for a nucleotide site. The site may (1) experi-
ence one and only one substitution, (2) not experience
any substitutions over time, and (3) experience a sub-
stitution that changes the nucleotide at the site and
then another independent substitution that restores
the original nucleotide at the site. In the first situation
perceived divergence and actual divergence are the
same and no correction is required. The perceived
divergence in the second and third cases is the same
but very different events have occurred. In the third
case, substitutions have occurred for some portion of
nucleotide sites that appear to have no divergence.
Nucleotide substitution models such as Jukes–Cantor
serve to estimate the frequency of nucleotide sites
that appear to have not diverged but actually have
diverged.

In the Jukes–Cantor model, the probability of a
nucleotide substitution is customarily represented
by α (pronounced “alpha”). Since there are three
nucleotides that can each be substituted for a 

nucleotide currently at a site and all three are
equally likely to be substituted, the probability of any
substitution is 3α. So if the nucleotide is initially a G
at generation zero, the probability that it is also a G
one generation later is

PG(t=1) = 1 − 3α (8.6)

Since the chance of substitution is independent in
each generation, the probability of no substitutions
over two generations is

PG(t=2) = (1 − 3α)2 (8.7)

This gives the probability that a nucleotide does not
change over two generations as shown in case 2 of
Fig. 8.8.

We also need to determine the probability that 
a nucleotide changes twice, as shown in case 3 of 
Fig. 8.8. From generation zero to generation one, the
probability of a substitution is 3α. This probability
can also be written as one minus the probability of 
no substitution, or 1 − PG(t=1). From generation one
to generation two, there is only one base that can be
substituted to make the site match its initial state.
The chance that this occurs is the probability of a
substitution or α. Bringing these two independent
probabilities together gives the probability that a
multiple hit nucleotide substitution occurs which
restores the nucleotide initially present:

PG(t=2) = α(1 − PG(t=1)) (8.8)

GCase 1

Case 2

Case 3

Generation

0 1 2

not G not G
Substitution No substitution

G G G

GG not G

No substitution No substitution

Substitution Substitution

Figure 8.8 The three types of event that a single nucleotide
site may experience over two generations. A nucleotide 
site may initially have a G, for example. In case 1 a single
substitution event in generation one changes the G to 
an A, C, or T nucleotide, the nucleotide also present at
generation two. A p distance measure of divergence will
accurately count the number of substitutions in case 1. 
In cases 2 and 3 the nucleotide site still retains the same
nucleotide it had initially, giving the impression that there
have been no substitutions. In case 2 this impression is
accurate. However, in case 3 there have been two
substitution events that are not accounted for in a simple p
distance measure of divergence.
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This is the probability that two substitutions occur,
neither of which would be detectable by comparing
two DNA sequences at time two.

Combining these two results gives the probability
that a nucleotide site has the same base pair after two
generations:

PG(t=2) = (1 − 3α)PG(t=1) + α(1 − PG(t=1)) (8.9)

regardless of the number of substitutions that have
occurred over two generations. Since the probabilities
of substitution and no substitution are independent
each generation, this equation can be written in a
more general form as:

PG(t+1) = (1 − 3α)PG(t) + α(1 − PG(t)) (8.10)

or as a recurrence equation that applies to any two
time periods one generation apart. This recurrence
equation can also be expressed as the change in the
probability that an initial nucleotide site remains
unchanged over time. Since the change in a quantity
is the difference between what it is now and what it
was one time step t in the past, ΔPG(t) = PG(t+1) − PG(t).
The change in the probability that a given nucleotide
is found at a site over one generation is then

ΔPG(t) = (1 − 3α)PG(t) + α(1 − PG(t)) − PG(t) (8.11)

Expanding the terms on the right side of this equa-
tion gives

ΔPG(t) = PG(t) − 3αPG(t) + α − αPG(t) − PG(t) (8.12)

which then simplifies to

ΔPG(t) = α − 4αPG(t) (8.13)

The model we have considered to this point treats
time as discrete steps, as shown in Fig. 8.8. If we 
consider the rate of change at any time t, then the
change in the probability that a nucleotide site
appears the same with changes in time is a differential

equation, . The solution to this 

equation is:

(8.14)

which is analogous to an exponential growth equa-
tion for a population with a carrying capacity. As
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t gets large, the e−4αt term approaches zero so that
PG(t) approaches 1/4.

Using the continuous time equation, the probabil-
ity that a nucleotide site is a G over time depending
on its initial state and the rate of substitution is
shown in Fig. 8.9. If the nucleotide at a site is initially
a G, then PG(t) = 1 and the probability the site remains
a G over time is

(8.15)

This is a probability that declines exponentially toward
1/4 as t increases. In contrast, if the nucleotide at a
site is not initially a G then PG(t) = 0. The probability
the site remains a G over time is

(8.16)

which increases from zero to 1/4 as time increases.
Recall that 1/4 is the probability that a site in a
sequence assembled from randomly drawn nucleo-
tides (that are equally frequent) matches the same
site in an existing sequence. Also notice that the
approach to 1/4 will be faster as the substitution rate
α increases due to the −4αt term in the exponent.

Let’s not forget that the original goal was to 
correct observed divergence between sequences or 
p distances for multiple hit mutations. The model of
sequence change we have so far is the foundation 
of a correction, but we need to do some more work 
to obtain an actual correction method. If we think of
two DNA sequences originally identical by descent 
at every nucleotide site at time 0, at some later time 
t the probability that any site will possess the same
nucleotide is

(8.17)

where PI(t) indicates the probability that the nucleo-
tides at a given site are identical. The exponential term
is now e−8αt because there are two DNA sequences
that can change independently so that the chance of
the nucleotide remaining the same decreases twice
as fast with time. The probability that two sites are
different or divergent – call it d – over time is one minus
the probability that the sites are identical, so that

(8.18)
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The exponent can be removed from this equation by
taking the natural logarithm of the right side and the
equation rearranged to give

(8.19)

This equation states that eight times the substitu-
tion rate multiplied by time is related to the amount 
of divergence we expect to see between two DNA
sequences. For two DNA sequences that were origin-
ally identical by descent, we expect that each site 
has a 3αt chance of substitution. Since there are two
sequences, there is a 6αt chance of a site being diver-
gent between the two sequences. If we set expected
divergence K = 6αt, then we notice K is close to the
8αt above. In fact, K is 3/4 of the expression for 8αt,
so that

(8.20)

where d is the observed proportion of sites that dif-
fer between two DNA sequences, or the p distance. 
K is then the estimate of the actual number of sites
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that have experienced divergence events corrected
for multiple hits with the Jukes–Cantor nucleotide-
substitution model.

A few examples will help show how the Jukes–
Cantor model correction works in practice. Imagine
two DNA sequences that differ at 1 site in 10 so the 
p distance is 10% or d = 0.10. This level of observed
divergence is an under-estimate because it does not
account for multiple hits. To adjust for multiple hits
we compute corrected divergence as

(8.21)

which shows that at the low apparent divergence 
of 10% there are expected to be 0.7% of sites that 
had experienced multiple hits. The true divergence is
then estimated as 10.73% or slightly greater than
the apparent divergence. If apparent divergence was
greater, say d = 0.40, then we should expect a larger
correction. In that case

(8.22)
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Figure 8.9 The probability that a nucleotide site retains its original base pair under the Jukes–Cantor model of nucleotide
substitution. If a nucleotide site originally has a G base, for example, the probability of the same base being present declines 
steadily over time. If a nucleotide site was initially not a G (it was an A, C, or T), the probability that a G is present at the site
increases over time. The probability that a given base is present always converges to 25% because that is the probability of
sampling a given base at random if the probability of substitution to each nucleotide is equal. In the top panel α = 1 × 10−6

whereas in the bottom panel α = 1 × 10−5.

9781405132770_4_008.qxd  1/19/09  1:46 PM  Page 246



Molecular evolution 247

so the correction for multiple hits is much larger at 
a bit over 18% for a total corrected divergence of
58.13% of nucleotide sites. A frequently used con-
vention is that a capital K refers to a saturation-
corrected estimate of divergence while lower case k
or d is an uncorrected estimate of divergence.

The Jukes–Cantor is the simplest possible nucleo-
tide substitution model because it assumes that all
nucleotides are equally frequent in DNA sequences
and that all sites experience the same substitution
rate. Many DNA sequences, however, exhibit varia-
tion in these parameters, which is not accounted 
for in the Jukes–Cantor model. There are numerous
models of nucleotide substitution of increasing com-
plexity that take these factors into account by using
an increasing number of parameters to represent 
the different types of substitution rates (Posada &

Crandall 2001). Figure 8.10 illustrates a hierarchy
of some of the nucleotide-substitution models avail-
able. These different models can be distinguished by
examining DNA sequence data to test each model
assumption. For example, the Jukes–Cantor model
assumes that all nucleotides have equal frequencies.
If a sample of DNA sequences shows base frequencies
that deviate significantly from equal frequencies of
25%, then the F81 model is a better choice because 
it assumes arbitrary base frequencies. Both the JC
and F81 nucleotide-substitution models assume that
transition and transversion rates are equal and 
that substitution rates are constant among sites. It 
is now common practice to estimate the substitu-
tion model that best approximates the patterns of
nucleotide change in a DNA sequence data set
(Posada & Crandall 1998).

··

Nucleotide frequencies
are all equal

Transition rate equals
transversion rate

Equal transition rates and
equal transversion rates

Nucleotide substitution
rates equal for all sites

JC    versus    F81

Substitution model assumptions Substitution models compared

JC    versus    K80 F81    versus    HKY

Nucleotide substitution
model to use

K80    versus    SYM HKY    versus    GTR

JC JC + Γ

JC vs JC + Γ K80 vs K80 + Γ SYM vs SYM + Γ F81 vs F81 + Γ HKY vs HKY + Γ GTR vs GTR + Γ

K80 + Γ F81 + Γ HKY + Γ GTR + ΓSYM + ΓK80 SYM F81 HKY GTR

Null model
not rejected

Null model
rejected

Figure 8.10 The hierarchy of nucleotide-substitution models that can be used to correct apparent divergence between DNA
sequences to better estimate the actual number of substitutions that have occurred. The Jukes–Cantor (JC) model is the simplest
and assumes that there is just one rate of substitution that applies to all nucleotide changes and is constant among nucleotide 
sites. Other nucleotide substitution models include an increasing number of parameters to represent more features of DNA
sequence evolution, in particular variable rates of substitution among various categories of nucleotides. If nucleotide-substitution
rates are variable among different sites, this variation can be modeled by a gamma distribution indicated by the Greek letter Γ.
Nucleotide-substitution models: JC, Jukes–Cantor (Jukes & Cantor 1969); F81, Felsenstein 81 (Felsenstein 1981); K80, Kimura 80
(Kimura 1980); HKY, Hasegawa–Kishino–Yano (Hasegawa et al. 1985); SYM, symmetrical model (Zharkikh 1994); GTR, general
time reversible (Rodriguez et al. 1990). Figure after Posada and Crandall (1998).
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DNA polymorphism

Variable DNA sequences at one locus within a species
represent different alleles that are present in the popu-
lation. Since DNA sequences are composed of many
nucleotide sites, defining alleles is somewhat more
complex than if alleles are discrete (i.e. A or a). Imagine
obtaining a sample of n individuals from a population
and determining the DNA sequence of L nucleotides
for one gene or genomic region for each individual
(see Tajima 1993b). For simplicity consider each indi-
vidual as haploid or homozygous. The first step would
be to construct a multiple sequence alignment so
that the homologous nucleotide sites for each sequence
are all lined up in the same columns (Fig. 8.11). With
such a multiple sequence alignment there are two
commonly used measures that characterize the 
pattern of DNA polymorphism in a sample of DNA
sequences from a single species.

One measure of DNA polymorphism is the num-
ber of segregating sites, S. A segregating site is
any of the L nucleotide sites that maintains two or
more nucleotides within the population, such as
sites 2, 6, and 8 in Fig. 8.11. The total number of 
segregating sites is S and can be expressed as the
number of segregating sites per nucleotide site, pS, 

by dividing the number of segregating sites by the
total number of sites:

(8.23)

The frequency of DNA sequences with a given
nucleotide at a site does not influence S (compare
sites 2 and 6 or 8 in Fig. 8.11), but S will increase as
the number of individuals sampled increases since
DNA sequences with additional polymorphisms will
be added to the sample.

The number of segregating sites (S) under neutral-
ity is a function of the scaled mutation rate 4Neμ.
Watterson (1975) first developed a way to estimate 
θ from the number of segregating sites observed in 
a sample of DNA sequences. The expected number of
segregating sites at drift–mutation equlibrium can
more easily be determined using the logic of the coales-
cent model (Watterson used a different approach).
Under the infinite sites model of mutation, each muta-
tion that occurs increases the number of segregating
sites by one. The expected number of segregating sites
is therefore just the expected number of mutations
for a given genealogy. If each lineage has the prob-
ability μ of mutating each generation and there are k

 
p

S
LS =

A A T G T C A A C G
A A T G T C A A C G
A T T G T C A A C G
A T T G T G A T C G
*    *  *

Sequence 1
Sequence 2
Sequence 3
Sequence 4

Nucleotide diversity (π):

1  A A T G T C A A C G
2  A A T G T C A A C G

1  A A T G T C A A C G
3  A T T G T C A A C G

1  A A T G T C A A C G
4  A T T G T G A T C G

2  A A T G T C A A C G
3  A T T G T C A A C G

2  A A T G T C A A C G
4  A T T G T G A T C G

3  A T T G T C A A C G
4  A T T G T G A T C G

1 2 3 4 5 6 7 8 9
1
0Site number

d12 = 0

d13 = 1

d14 = 3

d23 = 1

d24 = 3 d34 = 2

Σdij = 0 + 1 + 3 + 1 + 3 + 2 = 10

Number of pairs of sequences compared = [n(n − 1)]/2 = [4(3)]/2 = 6
π̂ = 10 differences/6 pairs = 1.67 average pairwise differences
π̂ = 1.67 avg. differences/10 sites = 0.167 pairwise differences per site 

Segregating sites (S and pS):

Sites 2, 6, and 8 have variable base pairs among the four sequences (columns marked with *). 
These are segretating sites.  Therefore, for these sequences S = 3 segregating sites and pS = 3/10 = 0.3
segregating sites per nucleotide site examined. 

Figure 8.11 A hypothetical sample of four DNA sequences that are each 10 nucleotides long. There a total of three segregating
sites (S = 3) or three-tenths of a segregating site per nucleotide (pS = 0.3). The nucleotide diversity is calculated by summing the
nucleotide sites that differ between each unique pair of DNA sequences. In this example there are 1.67 average pairwise nucleotide
differences or 0.167 average pairwise nucleotide differences per nucleotide site.
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lineages, then the expected number of mutations in
one generation is kμ. If the expected time to coales-
cence for k lineages is Tk, then kμTk mutations are
expected for each value of k. The expected number of
mutations (E indicates an expectation or average) is
obtained by summing over all k between the present
and the most recent common ancestor (MRCA):

(8.24)

where n is the total number of lineages in the present.
To see an illustration of this equation, refer to Fig. 3.26
where n = 6 in the summation of equation 8.24 and
imagine summing up the probability of a mutation
in each time interval between coalescent events.

A fundamental result of the coalescent model 
is that the probability of k lineages coalescing is 

. Therefore, the expected time to coales-

cence is the inverse of the probability of coalescence 

or . This expected time to coalescence can 

then be substituted into equation 8.24 to give

(8.25)

This equation simplifies by canceling each k, taking
the constant 4Ne outside the summation, and adjust-
ing the range of the summation to remove the −1
after k in the denominator:

(8.26)

to give the expected number of segregating sites in 
a sample of n DNA sequences. Once the expected
number of segregating sites E[S] is known, it can be
solved for θ. Notice that θ = 4Neμ can be substituted
in equation 8.26 to give

(8.27)

and then rearranging,

(8.28)
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to solve for θ in terms of the number of segregat-
ing sites divided by the total branch length of the
genealogy. An estimate of the scaled mutation rate 
determined from the number of segregating sites in a
sample of DNA sequences is symbolized as 5W (W for
Watterson) or 5S (S for segregating sites). If we define 

a new variable, , then

(8.29a)

using the absolute number of segregating sites, or

(8.29b)

using the number of segregating sites per nucleotide
site sampled. The importance of these two final equa-
tions is that 4Neμ can be estimated from the number
of segregating sites and the number of sequences in a
sample.

A second measure of DNA polymorphism is the
nucleotide diversity in a sample of DNA sequences,
symbolized by π (pronounced “pie”), and also known
as the average pairwise differences in a sample 
of DNA sequences (Nei & Li, 1979; Nei & Kumar
2000). The nucleotide diversity is equivalent to the
heterozygosity measured using alleles represented
by DNA sequences (assuming random mating and
the infinite sites model of mutation). The nucleotide
diversity summarizes nucleotide polymorphism by
averaging the number of nucleotide site differences
found when each unique pair of DNA sequences in a
sample is compared. In contrast with the propor-
tion of segregating sites, the nucleotide diversity is
sensitive to the frequency of each DNA sequence allele
in a sample, since more frequent sequences appear 
in more of the pairwise comparisons. The nucleotide
diversity is the sum of the number of nucleotide differ-
ences seen for each pair of DNA sequences:

(8.30)

where i and j are indices that refer to individual 
DNA sequences, dij is the number of nucleotide sites
that differ between sequences i and j, and n is the
total number of DNA sequences in the sample. The
number of unique pairwise comparisons in a sample
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of n sequences is (n(n − 1))/2 and so dividing the sum
of dij by this number gives the average number of 
differences per pair of sequences. The average num-
ber of pairwise differences can also be divided by the
number of nucleotide sites examined (L) to express 
1 per nucleotide site. Figure 8.11 shows an example
computation of 1 for a hypothetical sample of four
DNA sequences.

In larger samples that may include multiple ident-
ical DNA sequences, the nucleotide diversity can be
estimated by

(8.31)

where pi and pj are the frequencies of alleles i and j,
respectively, in a sample of k different sequences that
each represent one allele. This version of the formula
just provides an average of dij that is weighted by 
the frequency of each type of DNA sequence found 
in a sample. The nucleotide diversity can be under-
estimated if there are rare sequence polymorphisms

1 =
− >=

∑∑k
k

p p di j ij
j i

k

i

k

1 1

in a population that are unlikely to be sampled (see
Renwick et al. 2003). Information on the sampl-
ing variance of π can be found in Nei and Kumar
(2000).

Some values of π from different organisms and 
loci are shown in Table 8.1. Estimates of nucleotide
diversity are useful because π is a measure of hetero-
zygosity for DNA sequences. As such, the value of π
is a function of 4Neμ under an equilibrium between
genetic drift and mutation. With an estimate of π and
the mutation rate at a locus (μ), it is then possible 
to estimate the effective population size. Because π
is an estimator of the scaled mutation rate θ, it is
sometimes referred to as 5π.

8.3 DNA sequence divergence and the
molecular clock

• The molecular clock hypothesis for DNA divergence.
• Dating divergence events with a molecular clock.

One key result of the neutral theory is the prediction
that the rate of substitution is equal to the mutation

Table 8.1 Nucleotide diversity (π) estimates reported from comparative studies of DNA sequence
polymorphism from a variety of organisms and loci. All estimates are the average pairwise nucleotide
differences per nucleotide site. For example, a value of π = 0.02 means that two in 100 sites vary between 
all pairs of DNA sequences in a sample.

Species Locus ππ Reference

Drosophila melanogaster anon1A3 0.0044 Andolfatto 2001
Boss 0.0170
transformer 0.0051

Drosophila simulans anon1A3 0.0062
Boss 0.0510
transformer 0.0252

Caenorhabditis elegansa tra-2 0.0 Graustein et al. 2002
glp-1 0.0009
COII 0.0102

Caenorhabditis remaneib tra-2 0.0112
glp-1 0.0188
COII 0.0228

Arabidopsis thalianaa CAUL 0.0042 Wright et al. 2003
ETR1 0.0192
RbcL 0.0012

Arabidopsis lyrata CAUL 0.0135
ssp. Petraeab ETR1 0.0276

RbcL 0.0013

aMates by self-fertilization.
bMates by outcrossing.
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rate. A corollary of this prediction is that the expected
number of generations between substitutions is the
reciprocal of the mutation rate. For example, if the
mutation rate is 1 × 10−5 base pairs replicated in error
per generation then we expect to wait an average of
105 generations to see one mutation in a single gene
copy. Thus, the neutral theory provides a null model
for the rate of divergence of homologous genes or
genome regions between isolated populations or
species called the molecular clock hypothesis. This
section will first present data that demonstrate the
molecular clock and then show how the molecular
clock hypothesis can be used to date evolutionary
events based on DNA divergence. The section will
conclude by showing why divergence may appear to
decrease over time as many substitutions accumulate
and how divergence estimates can be corrected using
models of the mutation process.

As the clock metaphor suggests, the molecular
clock hypothesis predicts that divergence accumu-
lates with uniform regularity over time, just like the
ticking of a clock. This means that the divergence
between two species should increase as the time since
they shared a common ancestor recedes further into
the past. Such a pattern was originally observed for
hemoglobin proteins by Zuckerkandl and Pauling
(1962, 1965), who first hypothesized a molecular
clock. A classic example of the molecular clock is 
the increase of divergence with increasing time 

seen in the NS gene of the human influenza A virus
(Fig. 8.12). Buonagurio et al. (1986) used influenza
virus isolated from samples originally taken between
1933 and 1986. They then estimated the number of
nucleotide substitutions, or the p-distance, between
each sequence and the inferred ancestral sequence.
The linear increase in divergence with time is the
pattern expected by the molecular clock hypothesis.

Another important early advance for the molec-
ular clock came when Richard Dickerson (1971)
compared rates of substitution in proteins from 
cytochrome c, hemoglobin, and fibrinopeptide genes 
and observed that the average rates of change were
very different for the three proteins (Fig. 8.13). Based
on knowledge of the function of the proteins at the
time, Dickerson argued that the rate of molecular
evolution was faster when fewer sites were subject to
functional constraints on amino acid changes. That

··

The number of segregating sites (S) and the nucleotide diversity (π) can be estimated in
PopGene.S2. First, you will need to download a file of DNA sequence data from the GenBank web
page onto a computer that also has a copy of PopGene.S2. The text web page gives step-by-step
instructions to obtain DNA sequences for the mitochondrial cytochrome b gene in a sample of 30
African sable antelope (Pitra et al. 2002).

Once you have downloaded the DNA sequence data file from Genbank, open PopGene.S2 and
select Molecular Population Genetics in the main menu. In the dialog window that appears, click
on the Open File button and then use the file dialog to find and open the downloaded data file.
The sequences will be displayed in the top window. Verify that PopGene.S2 found 30 sequences 
in the file and that the longest sequence was 343 base pairs. The first step is to create a multiple
sequence alignment for the 30 DNA sequences by pressing the Align Sequences button (pressing
the button will cause a window to open temporarily). Once the sequences are aligned, the number
of segregating sites, the number of gaps, and the nucleotide diversity will then be estimated. Click
on the Pairwise Nucleotide Diversity button to see the nucleotide diversity for all possible pairs of
DNA sequences. The Nucleotide site distribution button gives a list of the frequencies of each
base pair found at each of the sites in the multiple sequence alignment. Use the Save Aligned
Sequences button to save a file with the multiple sequence alignment. Then open this file in a text
editor such as Notepad to view the aligned sequences.

Interact box 8.2 Estimating ππ and S from DNA sequence data

Molecular clock hypothesis The neutral
theory prediction that divergence should
occur at a constant rate over time so that the
degree of molecular divergence between
species is proportional to their time of
separation. Synonymous with rate 
constancy or rate homogeneity.
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is, faster molecular evolution occurred when more
sites were neutral and free to evolve by genetic drift.
Slower molecular evolution occurred when a larger
proportion of amino acid changes were eliminated by
natural selection because they decreased or eliminated
protein function. Thus, those sites that have not
diverged in sequences compared among species may
be constant due to selective constraint for function.
Under this view, novel at the time, the portions of
protein or DNA sequences that are invariant over
time and shared among species indicate regions of

functional importance. The neutral theory served 
as a key concept to explain why different loci might
have molecular clocks that tick at different rates.

Dating events with the molecular clock

A useful application of the molecular clock is to 
date divergence events between species. For some
organisms, the fossil record and geological context
provides a means to date when species originated,
went extinct, or exhibited evolutionary transitions.
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Figure 8.12 Rates of nucleotide change in the NS gene that codes for “nonstructural” proteins based on 11 human influenza 
A virus samples isolated between 1933 and 1985. The number of years since isolation and DNA sequence divergence from an
inferred common ancestor are positively correlated. The pattern of increasing substitutions as time since divergence increases is
expected under the molecular clock hypothesis. The observed rate of substitution was approximately 1.9 × 10−3 substitutions 
per nucleotide site per year, a very high rate compared to most genes in eukaryotes. The line is a least-squares fit. Data from
Buonagurio et al. (1986).
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Figure 8.13 (left) Rates of protein evolution as amino acid
changes per 100 residues in fibrinopeptides, hemoglobin, 
and cytochrome c over very long periods of time. Rates of
divergence are linear over time for each protein, as expected
for a molecular clock. Different proteins have different clock
rates due to different mutation rates and degrees of functional
constraint imposed by natural selection. Amino acid changes
between pairs of taxa with unknown divergence times are
plotted on dashed lines with the same slope as lines through
points for taxa with estimated divergence times. The six
points with unknown divergence times for hemoglobin
represent divergence of ancestral globins into hemoglobins
and myoglobins in the earliest animals, events that the
molecular clock estimates to have happened between 
1.1 billion and 800 million years ago. Data from Dickerson
(1971).
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However, many types of organisms have no fossil
record and not all phenotypes fossilize, presenting a
problem for dating biological events. If the amount 
of DNA sequence divergence between two species is
known, then this information can be utilized to date
their divergence. The molecular clock hypothesis
asserts that for neutral alleles the rate of substitution
is simply the mutation rate, or k = μ. If an absolute
substitution rate expressed in fixations per time
interval is available, multiplying that rate by a time
gives an expected number of substitutions. The num-
ber of diverged nucleotide sites between two species
also increases at twice the rate of substitutions since
each lineage will experience substitutions independ-
ently. Bringing these two observations together gives
the expected amount of divergence

k = 2Tμ (8.32)

between two species that diverged T time units 
ago. If divergence between two species as well as the
rate of divergence is known, this relationship can be 
rearranged to solve for the unknown of time instead:

(8.33)
  
T

k
=

2μ

Figure 8.14 illustrates a situation with three taxa
and two divergence times. Dating events with the
molecular clock requires that nucleotide divergences
(adjusted for saturation) for each pair of species are
estimated (KAB, KAC, and KBC) and one divergence
time is known. Imagine that our goal is to determine
the time of divergence for species A and B (T2) given
that divergence time T1 is known. The absolute rate
of substitution that occurred over the known diver-
gence time can be estimated:

(8.34)

based on the average of the divergences observed
between species pair A and C (KAC) and species pair B

μ = +
⎛

⎝
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⎞
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1
2 2 21 1

K

T

K

T
AC BC

and C (KBC) and the time of divergence T1. This rate
can then be used to solve for the unknown diver-
gence time T2:

(8.35)

By substituting the definition for μ in equation 8.34,
equation 8.35 becomes

(8.36)

As an example, imagine that DNA sequence diver-
gences are estimated as KAB = 0.10, KAC = 0.31, and
KBC = 0.36 substitutions per site and the diver-
gence time T1 is estimated with fossil and geologic
data to be 10 million years. The interval T2 is then
estimated as

= 2.985 million years (8.37)

The answer makes intuitive sense. The DNA diver-
gence between species A and B is about one-third of
the average DNA sequence divergence between species
pairs A–B and A–C. Since A, B, and C diverged from 

  

T2

2 10 0 10
=

( )( .million years substitutions peer site)
substitutions per site)( .

( .
0 31
0+ 336 substitutions per site)

  
T

T K

K K2
12

=
+

AB

AC BC

  
T

K
2 2

= AB

μ

··

C

B

A

T2

T1

Figure 8.14 A schematic phylogenetic tree that can be
used to date divergence events under the assumption of a
constant rate of divergence over time or a molecular clock. 
T1 is the time in the past when species C and the ancestor of
species A and B diverged. T2 is the time in the past when
species A and B diverged. If either T1 or T2 are known, the rate
of molecular evolution per unit of time can be estimated from
observed sequence divergences. This rate of divergence can
then be used to estimate the unknown amount of time that
elapsed during other divergences.

Absolute substitution rate A rate of
molecular change estimated in substitutions
per year based on the combination of a
sequence divergence estimate from two taxa
and an estimate of the time that has elapsed
since those taxa diverged.
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a common ancestor 10 million years ago, then T2
when A and B diverged is about one-third of that
time. Assumptions in these time estimates are that
rates of substitution are constant over time, among
lineages, and over loci. These assumptions will be
explored critically later in the chapter.

The molecular clock has been widely used to 
date major evolutionary transitions, establish times
when the ancestors of many different organisms 
first evolved, and test hypotheses related to diver-
gence times. One example is testing the hypothesis
that early mammal evolution was facilitated by 
ecological niches that opened up when the dinosaurs
went extinct. The molecular clock suggests that 
the earliest mammal lineages had appeared well
before the extinction of the dinosaurs was complete
(Bromham et al. 1999; Bininda-Emonds et al. 2007).
Thus, the estimated divergence time rejects the hypo-
thesis that mammals first originated in habitats left
empty as dinosaurs disappeared.

A second illustration is the classic question of when
humans and their close ancestors diverged. Using
calibration times of 13 million years for the divergence
between orangutans and humans and 90 million
years between artiodactyls (hoofed mammals with
an even number of digits, such as cattle, deer, and

pigs) and primates, as well as numerous loci, Glazko
and Nei (2003) estimated the divergence of humans
and chimpanzees occurred 5–7 million years ago.

A third example is employment of the molecular
clock to date the origin of the human immuno-
deficiency virus or HIV. The date that HIV was 
transmitted from primates to humans is a critical
question. Identifying related viruses in primates and
the genetic features that facilitated transmission and
virulence in humans would facilitate the develop-
ment of treatments for HIV. One highly controversial
hypothesis for the origin of HIV was that it was first
spread to humans through contaminated human
polio vaccine made from cultured chimpanzee cells
that was administered in the former Belgian Congo
between 1957 and 1960. This hypothesis is sup-
ported by indirect evidence, such as the timing and
location of the earliest known cases of HIV/AIDS and
that fact that the chimpanzee simian virus 40 (SV40) 
has been transmitted to humans. A molecular clock
suggests that HIV was introduced to humans around
1920–30 and that HIV and the simian immuno-
deficiency virus (SIV) may have diverged as much as
300 years ago (Leitner & Albert 1999; Salemi et al.
2001). However, application of the molecular clock
to HIV faces substantial challenges and interpretation

In the present day, dicotyledonous plants represent the majority of land plants. The divergence of
ancestral seed plants into monocotyledonous and dicotyledonous plants was therefore a major
evolutionary transition. Based on DNA divergence data for synonymous sites at nine mitochondrial
genes in a range of plants (Laroche et al. 1995), a molecular clock can be used to date this event.

Table 8.2 gives DNA divergence data for comparisons of maize and wheat, both monocotyledons,
with an estimated divergence time of approximately 60 million years ago. First, use the maize–
wheat DNA divergence data to calibrate the absolute rate of substitution per million years for each
locus. Then use this rate of change to estimate the time when monocots and dicots split given 
their degree of DNA sequence divergence. In terms of Fig. 8.14, the maize–wheat split is T2 and 
the monocot–dicot split is T1.

Problem box 8.1 Estimating divergence times with the molecular clock

Table 8.2 DNA divergence data for comparisons of maize and wheat, both monocotyledons. See Problem
box 8.1.

Locus Nucleotide sites Synonymous sites Substitutions per site

Wheat–maize Monocot–dicot

coxI 1461 495 0.0504 0.2060
atp9 195 67 0.1374 0.4439
nad4 1272 456 0.0381 0.1101
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remains controversial due to issues such as rate 
variation and recombination (see Korber et al. 1998;
Schierup & Hein 2000).

The use of the molecular clock to estimate times 
of divergence is complicated by numerous issues 
in practice (see review by Arbogast et al. 2002), 
contributing to both statistical uncertainty as well 
as controversy over interpretation of date estimates.
First, calibration times usually have considerable
ranges, leading to uncertainty in any divergence time
estimated from the molecular clock. Then, correc-
tions to divergence estimates are required for multiple
substitutions occurring at the same nucleotide site.
In addition, the rate of substitution is assumed to 
be constant over time. However, variation in rates 
of substitution over time and among different loci is
now considered the rule rather than the exception,
complicating the methods needed to estimate diver-
gence times (see Culter 2000b; Glazko & Nei 2003).
Testing for and explaining variation in substitution
rates is explored in the next section.

8.4 Testing the molecular clock hypothesis
and explanations for rate variation in
molecular evolution

• Rate heterogeneity in the molecular clock.
• The Poisson process model of the molecular clock.
• Ancestral polymorphism and the molecular clock.
• Relative rate tests of the molecular clock.
• Possible causes of rate heterogeneity.

The molecular clock predicts that selectively neutral
homologous sequences (meaning sequences that
were once identical by descent) with equal muta-
tion rates should experience a similar number of 
substitutions per unit time as divergence increases.
Therefore, the molecular clock hypothesis provides 
a null model to examine the processes that operate
during molecular evolution. It is possible to directly
test the molecular clock hypothesis and thereby test
this null model. Rejecting the molecular clock hypo-
thesis suggests that the sequences compared evolve
at unequal rates, a situation referred to as rate 
heterogeneity. Rejecting the molecular clock hypo-
thesis is a way to identify processes that influence 
the chance of substitution such that rates of fixation
are either higher or lower than expected by genetic
drift alone. For example, a previous section showed
how natural selection changes the probability of
fixation and therefore the rate of substitution. So, 
for example, one sequence taken from a population

where most mutations are deleterious and selected
against and another sequence taken from a popula-
tion where most mutations are neutral would have
different rates of substitution and show different
numbers of substitutions over a fixed time interval
(see Fig. 8.3). Thus, testing for equal rates of sub-
stitution, or rate homogeneity, is a useful step in
identifying the processes that may be operating in
molecular evolution.

The molecular clock and rate variation

Since the neutral theory leads to the molecular clock
hypothesis, evidence for rate heterogeneity would
appear to be evidence that genetic drift is not the
main process leading to the ultimate substitution 
of most mutations. Rejecting the hypothesis of rate
homogeneity would suggest that natural selection 
is operating on mutations such that their rates 
of substitution are either sped up or slowed down 
relative to substitution rates under genetic drift. The
probability that a new mutation is fixed by natural
selection depends on the selection coefficient, s, and  

the effective population size rather than just as it 

does for genetic drift. Natural selection is therefore
very unlikely to produce a molecular clock because s,
Ne, and μ are not likely to be constant through time
or among different lineages. Before reaching the 
conclusion that natural selection explains all rate
heterogeneity, however, it is necessary to dig deeper
into the molecular clock hypothesis. The molecular
clock is potentially more complex than was revealed
at the beginning of the chapter. Understanding these
complications is a necessary prerequisite to under-
standing the range of alternative hypotheses that
may explain heterogeneity in rates of molecular 
evolution.

The molecular clock was originally proposed by
Zuckerkandl and Pauling (1962, 1965; Zuckerkandl
1987) to model amino acid substitutions. It was
based on a simple statistical method used to describe
events that happen at random times given some 
rate at which events occur (such models are called
point processes). The simplest point process for a

  

1
2Ne

··

Rate heterogeneity Variation in the rate of
substitution over time or among different
lineages for homologous genome regions.

9781405132770_4_008.qxd  1/19/09  1:46 PM  Page 255



256 CHAPTER 8

··

molecular clock is a Poisson process, a stochastic pro-
cess which is defined in terms of the count of events,
N(t), since time was equal to zero. In a Poisson pro-
cess the expected number of events between two times
follows a Poisson distribution. Assuming that all
substitutions are independent events, the probability
of a substitution is very small, and the number of
time intervals is very large, a Poisson clock gives the
probability of observing some number of substitutions
after a time period has elapsed as

= (8.38)

where N(t) is the total number of substitutions (an
integer), t is time in years, and λ is the rate of sub-
stitutions per year. Under this model, the expected
number of substitutions at time t is λt or the pro-
duct of the substitution rate and the number of time
steps that have elapsed. A critical thing to notice 
in this model is that the rate of substitutions, λ, is
constant and does not change with time nor with 
the total number of substitutions, N(t). The Poisson

  

e t
N t

t N t−λ λ( )
( )!

( )Probability
(N(t) substitutions at time t)

molecular clock is illustrated in Fig. 8.15. The top
panel shows the probability that N(t) is between 
zero and 14 for one time step when the rate of sub-
stitution is λ = 4. The bottom panel of Fig. 8.15
shows variation in the number of substitutions
among five replicate sequences that all evolved for
the same period of time at the same constant rate of
substitution (λ = 4).

The Poisson model for a molecular clock implies
that the time intervals between substitutions are
random in length (Fig. 8.16). Thus, substitutions that
follow a Poisson molecular clock will be separated 
by variable lengths of time. This stands in contrast 
to our everyday notion of a clock or watch, which 
has uniform lengths of time separating each event
(events are seconds, minutes, and hours). Therefore,
a molecular clock that is based on a random process
has inherent variation in the number of substitutions
that occur over a given time interval even though the
rate of substitution remains constant. This means
that independent lineages that each diverged from 
a common ancestor at the same time can display
variation in the number of substitutions that have
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Figure 8.15 Substitution patterns under a Poisson process. The top panel shows the probability distribution for the number of
substitutions that might occur during one time interval. N(t) between 0 and 9 all have probabilities of greater than 0.01. The
bottom panel shows the cumulative number of substitutions under a Poisson process for five independent trails. Each trail is akin to
an independent lineage experiencing substitutions. The average number of substitutions is approximately 40 (four multiplied by
the number of time intervals) but there is variation among the lineages. In both panels the rate of substitution is the same at λ = 4.

9781405132770_4_008.qxd  1/19/09  1:46 PM  Page 256



Molecular evolution 257

occurred. In other words, if substitution is a random
process then we expect some variation in the number
of substitutions among lineages and loci even if diver-
gence time and the substitution rate are constant.
This explanation for variation in the numbers of sub-
stitutions is often referred to by saying that rates of
molecular evolution follow a Poisson clock.

The Poisson process model of the molecular clock
leads to a specific prediction about the variation in
numbers of substitutions that should be observed 
if the rate of molecular evolution follows a Poisson
process. The Poisson distribution has the special
property that the mean is equal to the variance.
Therefore, the mean number of substitutions and 
the variance in the number of substitutions should
be equal for independent DNA sequences evolving 
at the same rate according to a Poisson process. A
ratio to compare the mean and variance in the num-
ber of substitutions is called the index of dispersion,
defined as

(8.39)

where E indicates an expected or mean value. The
index of dispersion defines the degree of spread among
divergence estimates that should be seen under a
Poisson process, just as a Markov chain defines the
spread in allele frequencies that is expected in an
ensemble of finite populations. If the numbers of 
substitutions in a sample of pairwise sequence diver-
gences follow a Poisson molecular clock then the
variance and mean number of substitutions should

  
R t

N t
E N t

( )
( )

( ( ))
=

variance

be equal and therefore R(t) should equal one. If the
variance is larger than the mean then R(t) is greater
than one, a situation referred to as an overdispersed
molecular clock since substitution rates have a
wider range of values than predicted by the Poisson
process model.

Ancestral polymorphism and Poisson process
molecular clock

The molecular clock modeled as a Poisson process
assumes it is possible to compare pairs of DNA
sequences that were derived from a single DNA
sequence in the past and then diverged instantly 
into two completely isolated species. Actual DNA
sequences usually have a more complex history that
involves processes that operated in the ancestral
species followed by the process of divergence in two
separate species (Fig. 8.17). In the ancestral species
the number and frequency of neutral alleles per
locus in the population were caused by popula-
tion processes such as genetic drift and mutation
(assuming the ancestral species was panmictic). This
zone of ancestral polymorphism is the period of
time when genetic variation in the ancestral species
was dictated by drift–mutation equilibrium. Within
this ancestral population, two lineages split at some
point and eventually became lineages within the 
two separate species (Fig. 8.17). DNA sequences from
these two lineages were sampled in the present to
estimate substitution rates. Recognizing this more
complex history of diverged DNA sequences shows
two things. First, it points out that lineages and species
may have diverged at different points in time, with
lineages often diverging earlier than species. Second,
it shows that two distinct processes can contribute 
to the nucleotide differences between sequences 
seen as substitutions when observed in the present.
Referring to Fig. 8.17, during the time period T, 
polymorphisms among sequences were caused by
the population processes dictating polymorphism in
the ancestral species. Later, during the time period t,

··

Literal clock (no variance in time between mutations)

Poisson process (variance in time between mutations)

Time

Figure 8.16 Two representations of rate at which
substitution events (circles) occur over time. Mutations 
might occur with metronome-like regularity, showing little
variation in the time that elapses between each mutation
event. If substitution is a stochastic process, an alternative
view is that the time that elapses between substitutions is a
random variable. The Poisson distribution is a commonly
used distribution to model the number of events that occur 
in a given time interval, so the bottom view is often called the
Poisson molecular clock. Note that in both cases the number
of substitutions and time elapsed is the same so that the
average substitution rate is identical.

Overdispersed molecular clock Absolute
divergence rates from many independent pairs
of species that overall exhibit more variance in
divergence rate than expected by the Poisson
process molecular clock model; a dispersion
index value that is greater than one.
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substitutions were the product of the divergence 
process between species.

The existence of both ancestral polymorphism 
and divergence processes complicates testing for
overdispersion of the molecular clock (Gillespie 1989,
1994). To make this point, Gillespie articulated 
the distinction between origination processes and
fixation processes. An origination process describes
the times at which the subset of new mutations that
will ultimately fix first enter the population. A fixa-
tion process, in contrast, describes the times at which
the subset of new mutations that will ultimately fix
reach a frequency of 1 in the population. At a con-
ceptual level, it is clear that the two processes are 
not identical. The distribution of origination times 
is a product of the causes of mutation. Times until
fixation depend on both the causes of mutation 
(the origination process) as well as on the causes of
fixation, such as genetic drift in a finite population 
of neutral alleles or natural selection. Measuring
times until fixation of new mutations would require
that we are able to follow the populations of diverg-
ing species over time and watch as new mutations

segregate and eventually go to fixation and loss,
recording the times for those that fix and then calling
these the substitution times. In Fig. 8.2 originations
are the events at the bottom of the y axis and fixa-
tions are events at the top of the y axis. In practice,
we have only the accumulated amino acid or DNA
differences between pairs of species observed at one
point in time. Such sequence differences are a pro-
duct of the origination process because they are a
sample of mutations that came into the population
some time ago and have fixed by the time we observe
them. This is not the same thing as having observed
the “tick” of fixations over a long period of time.

Gillespie and Langley (1979) showed that a molec-
ular clock combining polymorphism and divergence
does not necessarily comprise a Poisson process where
the index of dispersion is expected to equal one. To
see this it is necessary to develop expectations for 
the mean and variance in the number of nucleotide
differences between two sequences when both poly-
morphism and divergence processes are operating
over the history of two DNA sequences.

Assuming that the ancestral species is panmictic,
there is no recombination, and there is selective 
neutrality, Watterson (1975) showed that the
expected number of segregating sites (S) for a sample
of two DNA sequences is

E(S) = θ (8.40)

and that the variance in the number of segregating
sites is

Variance(S) ≈ θ + θ2 (8.41)

under the infinite sites model of mutation where 
θ = 4Neμ. (The relationship between θ and the 
number of segregating sites is derived in Section 8.2.
Notice that the factor of a1 is not shown in equation
8.40 because a1 = 1 for a sample of two sequences.)
This is a prediction for the amount of polymorphism
expected under neutrality in a finite population. 
This result tells us that the mean and variance of 
the number of nucleotide sites are expected to be 
different in a sample of two DNA sequences from the
ancestral polymorphism zone in Fig. 8.17.

Now shift focus to the divergence zone of Fig. 8.17.
For one DNA sequence from species 1 and another
from species 2, the divergence time is 2t because each
species has diverged independently for t generations.
Based on the Poisson process in equation 8.38, both
the expected number of diverged sites and the 

Species 1 Species 2

t

T
Ancestral

polymorphism
zone

Divergence
zone

Ancestral
species

Species
divergence

point

DNA sequence
divergence point

Present time

DNA sequence
lineage

Figure 8.17 An illustration of the history of two DNA
sequences that might be sampled from two species in the
present time to estimate the rate of substitutions. The history
is like a water pipe in an upside-down Y shape. The tube at 
the top contains the total population of lineages in the
ancestral species, eventually splitting into populations of
lineages that compose two species. The time when two
lineages diverged from a common ancestor is not necessarily
the same as the time of speciation. Therefore, a population
process governing polymorphism operates for T generations
in the ancestral species while a divergence process operates
for t generations in the diverged species. The polymorphism
process initially dictates the number of nucleotide changes
between two sequences. Later, the divergence process 
dictates the number of nucleotide changes between two
sequences. In two DNA sequences sampled in the present 
it is impossible to distinguish which process has caused the
nucleotide changes observed.
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variance in the number of diverged sites are 2μt. The
means and variances in the number of nucleotide
sites between two sequences are shown in Table 8.3
as they apply to polymorphism and divergence in
Fig. 8.17.

Given the means and variances of the number of
changes between two DNA sequences for both poly-
morphism and divergence processes, we can then
combine these expectations into a new expression
for the index of dispersion. The index of dispersion 

for the number of differences between a sequence
from species 1 and a sequence from species 2 is then

(8.42)

where θ = 4Neμ. (This requires the assumptions that
the time of lineage divergence T is a random variable
with a geometric distribution as in a genealogical
branching model, and that Ne is large and μ is small.)
As shown in Math box 8.1, this new version of the
dispersion index can be re-written as

(8.43)

If we assume that there is no ancestral polymorph-
ism or that T = 0 in Fig. 8.17, then θ is zero and R(t) 
is identical to what is expected under the Poisson
process molecular clock dictated by divergence only.

The major conclusion is that the two-process version
of R(t) is expected to be greater than one when there
is any ancestral polymorphism even when DNA
changes follow a constant molecular clock. Stated
another way, ancestral polymorphism increases the
variance in the number of substitutions seen for pairs
of sequences evolving under a constant rate compared
with a pure divergence process. Unfortunately, the
index of dispersion in equation 8.43 seems impossible
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2μ θ θ
μ θ

··

Table 8.3 Mean and variance in the number 
of substitutions at a neutral locus for the cases 
of divergence between two species and
polymorphism within a single panmictic
population. The rate of divergence is modeled 
as a Poisson process so the mean is identical 
to the variance. The mutation rate is μ and the 
θ = 4Neμ. Refer to Fig. 8.17 for an illustration 
of divergence and ancestral polymorphism.

Expected value Variance
or mean

Ancestral 
polymorphism θ θ + θ2

Divergence 2tμ 2tμ
Sum 2tμ + θ 2tμ + θ + θ2

Define a new variable to scale time by

2Ne generations. Then notice that

(8.44)

The numerator and denominator of

(8.45)

can then be re-written as functions of α,

(8.46)
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and rearranged to

(8.47)

The expected number of DNA changes at time
t is 2μt + θ (see Table 8.3), which is equivalent
to θ(1 + α). The index of dispersion can then
be written

(8.48)
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Math box 8.1
The dispersion index with ancestral polymorphism and divergence
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to estimate in practice because θ cannot be estimated
in the ancestral species as it does not exist any longer.
However, the main point of this model is not to pro-
vide a practical test of the molecular clock. Instead,
the model shows how R(t) > 1 is not necessarily
strong evidence to reject a constant rate of substitu-
tion. One cause of R(t) > 1 is that the Poisson process
accurately describes the substitution process but that
substitution rates are not constant. Alternatively,
the Poisson process of model of divergence itself may
not be accurate even though the rate of DNA change
is constant. The latter possibility suggests that the
index of dispersion may be a poor way to test the 
neutral molecular clock hypothesis.

Ancestral polymorphism also presents difficulties
for dating divergences using the molecular clock
(Maddison 1997; Arbogast et al. 2002). The problem
arises because sequence lineage history (genealogy)
and species divergence history (species phylogeny)
are not identical. Two sequences sampled in the 
present from two different species have been accumu-
lating substitutions since the most recent common
ancestor of the two sequences gave rise to the line-
ages (Fig. 8.17). The total sequence divergence between
two species that would be used to date a speciation
event has occurred during two distinct time inter-
vals. One time interval T is the period when the 
two lineages accumulated changes in the ancestral
species. The second time interval t is the period when
substitutions accumulated after the current species
split. Estimates of time since divergence estimate the
total elapsed time since the divergence of the two 
lineages rather than just the time since divergence 
of the two species. Thus, the use of the molecular
clock to date divergence time yields over-estimates 
of the species divergence time. As the divergence
time t increases relative to the polymorphism time 
T the degree of over-estimation shrinks. However, it
is usually impossible to determine t relative to T in
practice and so the degree of over-estimation of the
species divergence time is usually unknown.

Relative rate tests of the molecular clock

One method to circumvent some of the limitations
inherent in comparing absolute rates of divergence is
to compare relative rates instead. The relative rate
test compares the number of nucleotide or amino
acid changes since divergence from an ancestor 
represented by a DNA sequence from closely related
species (Sarich & Wilson 1967; Fitch 1976). Rates of
nucleotide substitution in two different species can

be estimated by comparing the number of DNA or
amino acid changes that have occurred independ-
ently in each of two species using a third outgroup
species to assign sequence changes to each lineage. 
If rates of substitution are equal in the two species,
then the number of sequence changes should be equal
in the two species within a statistical confidence
interval. Unequal numbers of sequence changes 
lead to rejection of the null hypothesis that the two
species have an equal rate of substitution. Relative
rate tests avoid the need for a date of divergence 
that is often imprecise and also do not rely on the 
dispersion index and its underlying assumption that
the molecular clock is a simple Poisson process.

Tajima’s (1993a) 1D test of the molecular clock is
a relative rate test that uses the number of nucleotide
substitutions that occurred along two lineages being
compared as well as an outgroup lineage. The basis
of the test is shown in Fig. 8.18. In the figure, the 
letters i, j, and k are used to represent the identity of
the nucleotide found at the same nucleotide site in
each of the three sequences. The outgroup is used 
to identify the point in time that nucleotide changes
took place since lineages 1 and 2 should share the
same base pair as the outgroup due to identity by
descent if no substitution has occurred. Only changes
that can be assigned unambiguously to a lineage 
are useful when comparing rates between lineages 
1 and 2. Nucleotide substitutions of the pattern iji

Pattern of nucleotide changes

i i i j i

i j i i k

j j i j j

Lineage 1

Lineage 2

Outgroup

Total over all sites niji nijj

Figure 8.18 Patterns of nucleotide changes that are
possible when comparing DNA (or amino acid) sequences
from two lineages and an outgroup. The letters i, j, and k are
used to represent the identity of the nucleotide found at the
same nucleotide site in each of the three sequences. For
example, iij indicates that the first two lineages have an
identical base pair and the third lineage has a different base
pair. Tajima’s 1D relative rate test utilizes substitutions that 
can be unambiguously assigned to one lineage (iji and ijj). 
If rates of substitution are identical for lineage 1 and 2, 
E(niji) = E(nijj). The lineages where the substitution took 
place are ambiguous for the patterns jji and ijk. The pattern 
iii indicates identical nucleotides in all three sequences 
and therefore no substitution events.
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indicate the change occurred on lineage 2 whereas
pattern ijj indicates the change occurred on lineage
1. These two instances allow unambiguous assign-
ment of a substitution to a lineage to estimate the
numbers of substitutions. The other three possible
nucleotide patterns cannot be used to estimate rates
of substitution for one lineage. Nucleotide sites with
the pattern iii are not useful because no substitution
occurred and there is no information available to
estimate the rate of change. For nucleotide sites 
with the pattern jji, the substitution to j could have
occurred in the ancestor to lineages 1 and 2 or 
both lineages 1 and 2 could have experienced a sub-
stitution but it is not clear which event occurred. 
The pattern ijk for a nucleotide site indicates that 
no two lineages share a nucleotide, so again it is
unclear at what point in the past these substitutions
occurred and they cannot be used to estimate the
rates of substitution for lineages 1 and 2.

Under the molecular clock hypothesis, the number
of substitutions that occurred on lineage 1 should be
identical to the number of substitutions that occurred
on lineage 2. Since the divergence time is identical
for lineages 1 and 2, identical substitution rates for
the two lineages would give the same number of sub-
stitutions observed on each lineage. Therefore, the
number of substitutions observed for sequence 1 that
occurred on lineage 1 (ijj) should be equal to the
number of substitutions observed for sequence 2 that
occurred on lineage 2 (iji):

E(nijj) = E(njij) (8.49)

where E means expected or average value, nijj is 
the total number of nucleotide substitutions that
occurred on lineage 1, and njij is the total number of
nucleotide substitutions that occurred on lineage 2.
This expectation can be tested with the Chi-squared
statistic

(8.50)

where there is one degree of freedom. A Chi-squared
value greater than 3.84 indicates that it is unlikely
that the difference in the number of substitutions
between the two lineages is due to chance. In other
words, a large Chi-squared value is evidence to reject
the molecular clock hypothesis that substitution
rates are equal for the two lineages and is evidence of
rate heterogeneity. The Chi-square approximation is
accurate as long as nijj and njij are both 6 or greater.
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Tajima’s 1D test for equal divergence rates in two
taxa is simple to employ because it does not require
an explicit nucleotide substitution model. Hamilton
et al. (2003) took advantage of this aspect of the 1D
test when they compared rates of divergence using
both nucleotide and insertion/deletion (indel) varia-
tion between species of Brazil nut trees. (Because a
range of molecular mechanisms leads to the forma-
tion of indels, there are no generally employed models
of sequence change by indels and many relative rate
tests cannot be used with indel variation.) Comparing
substitution rates among eight species with the 1D
test, they found that two tree species consistently failed
to support a molecular clock for both nucleotide and
indel changes. One species (Lecythis zabucajo) had 
an accelerated rate of substitution whereas the other
species (Eschweilera romeucardosoi) had a slowed rate
of substitution.

Relative rate tests provide no information about
rates of molecular evolution in the outgroup taxon
nor any information about absolute rates of DNA
sequence change. The outcome of relative rate tests
depends critically on the outgroup used (Bromham
et al. 2000). As the time since divergence of the 
common ancestor of both taxa and the outgroup
increases, so does the time over which the evolutionary
rates are averaged. If rate heterogeneity is a short-
term or recent phenomenon then averaging from a
distant outgroup may obscure it. Conversely, if rate
heterogeneity is only apparent over long time periods,
the rate of substitution may appear homogeneous if 
a recently diverged outgroup is employed. Finally,
since natural selection depends on population-specific
fitness values, it is considered unlikely that selection
acting simultaneously on both lineages subject to a
relative rate test would result in rate homogeneity.

Three-taxon relative rate tests that incorporate
nucleotide-substitution models and use a maximum
likelihood framework are described in Gu and Li
(1992) and Muse and Weir (1992). A variety of 
relative rate tests that utilize phylogenetic trees are
also available that test the molecular clock hypothesis
using sequences from many taxa simultaneously
(see Nei & Kumar 2000; Page & Holmes 1998).

Patterns and causes of rate heterogeneity

Ohta and Kimura (1971) were the first to carry out 
a test of the Poisson process molecular clock with 
rigorous statistical comparisons. They used pro-
tein sequences from three loci (β globin, α globin,
and cytochrome c) sampled from a range of species.

··
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Based on the observed divergences between pairs of
sequences and estimates of the time that has elapsed
since those species diverged, they estimated a series
of absolute rates of divergences. These absolute 
rates varied widely (the dispersion index for their
data falls between 1.37 and 2.05), leading them to
reject the hypothesis of a constant molecular clock
(see Gillespie 1991). A few years later, Langley and
Fitch (1974) published a larger analysis of absolute
substitution rates for the same three loci as well 
as fibrinopeptide A and used phylogenies to better 
estimate the number of substitutions for each species.
They too found that the dispersion index was greater
than one for all loci. These papers attracted a great
deal of attention because the variation in rates of
sequence change required explanation. Since these
early results, a great deal of data on both absolute and
relative rates of molecular evolution show clearly
that rates of molecular evolution are commonly more
variable than expected by a Poisson process model.
In fact, rate heterogeneity may now be considered
the norm and a constant rate of molecular evolution
the exception. This section focuses on hypotheses to
explain variation in rates of molecular evolution.

Under neutrality, variation in the rate of diver-
gence at different loci can be explained by differ-
ences in rates of mutation. Similarly, variable rates
of divergence at the same locus in different species
can be explained by different mutation rates among
species. Such variation in rates of molecular evolu-
tion for the same locus in different species is called 
a lineage effect on the molecular clock (Gillespie
1989). There may be rate heterogeneity evident at a
locus even after accounting for variation among line-
ages, called residual effects (reviewed in Gillespie
1991). Residual effects are the variation in the 
rate of divergence or unevenness in the tick rate of
the molecular clock within lineages over time (see 
Fig. 8.16). Residual effects are sometimes described
as a pattern where substitutions occur in bursts or
clusters with periods of no change in between. The
cause of residual effects must be a process that is
changing over time within a lineage. Under the 
neutral theory, the mutation rate within a lineage
must change over time to explain residual effects.
While temporally variable mutation rates are pos-
sible, it is considered more plausible that mutation
rates themselves are constant over time but that sub-
stitution rates are variable over time. For example,
the presence and absence of natural selection would
cause changes in the probability of substitution of
the mutations that appear constant over time.

Kimura (1983a) argued that mutation rates in 
different species are roughly constant per year. 
This could be true if the processes that caused 
mutations were constant over time units like years.
Examples are replication-independent causes of
mutation such as exposure to ultraviolet radiation, 
γ particles, or chemical mutagens. The free radical
ions constantly produced within cells are another
example of a replication-independent cause of muta-
tion. It seems likely that exposure to these extrinsic
causes of mutation is constant over calendar time
and so a portion of mutations due to replication-
independent causes have a rate that is also set in 
calendar time.

Returning to the basis of the neutral theory shows
why different species might not experience substitu-
tions at the same rates. As shown at the beginning 
of the chapter, neutral theory predicts that the sub-
stitution rate is equal to the mutation rate. But 
since the mutation rate is measured in nucleotide
changes per generation, then the substitution rate is
also expressed in per generation terms. This leads to
the difficulty that a constant molecular clock might
not exist if species differ in their generation times. 
As an example, imagine two species with identical
mutation rates of μ = 1 × 10−5 errors per base pair
per generation. Now imagine the species have gen-
eration times of 10 and 100 years. The species with
the shorter generation time has

= 1 × 10−6 mutations per year (8.51)
 
μ =

× − −1 10
10

5 mutations generation
years gen

1

eeration 1−

Lineage effect Variation in the rate of
divergence among multiple species that 
could be explained by the different lineages
having variable neutral mutation rates.
Replication-independent causes of
mutation Causes of mutation that can 
occur at any time and are therefore
independent of the rate of cell division.
Examples include environmental mutagens
such as ultraviolet radiation, γ particles, 
and chemicals.
Residual effect Variation or unevenness 
in the rate of divergence within a lineage that
cannot be explained by rate heterogeneity
among lineages or loci.
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whereas the species with the longer generation 
time has

= 1 × 10−7 mutations per year (8.52)

Thus, the constant molecular clock per generation
predicted by neutral theory can produce variable
rates of substitution per year when comparing species
with different generation times.

The observation that neutral mutation rates that
are constant per generation may simultaneously 
be variable per year leads to the generation-time
hypothesis, a neutral theory explanation for vari-
ation in rates of substitution as caused by differences
in generation times of species that have constant rates
of substitution per generation. Numerous studies
have shown evidence for a generation time effect 
in rates of substitution (Li et al. 1987, 1996; Ohta
1993, 1995). Substitution rates observed over many
nuclear genes in different groups of mammals are
shown in Table 8.4. Rodents have shorter generation
times than primates and artiodactyls. Substitution
rates are also negatively correlated with generation
times. In contrast, comparisons within these groups,
such as comparing rates of substitution between
mice and rats, shows nearly equal substitution 
rates. The rate’s speeding up in rodents compared 
to primates and artiodactyls is a classic example of
the generation time effect and is consistent with a
neutral explanation for heterogeneity in the rate of
molecular evolution.

 
μ =

× − −1 10
100

5 mutations generation
years ge

1

nneration 1−

A generation-time effect can be explained by 
replication-dependent causes of mutation. If muta-
tions occur mostly during the process of cell division
when chromosomes are replicated, then more cell
replications per generation leads to a higher rate 
of neutral divergence per generation. In animals,
variation in replication-dependent mutation rates
per generation may be explained by the fixed num-
ber of cell divisions leading to germ-line cells (cells
that produce gametes). This explains the observa-
tion that mutations occur more frequently in male
gametes than in female gametes since more germ-
line cell divisions occur in males than in females. 
The generation-time effect in animals could then be
explained if generation times are correlated with 
the number of germ-line cell divisions (e.g. animals
with longer generation times have more germ-line
cell divisions). Yet plants with shorter time intervals
to first flowering have been shown to have higher 
rates of substitution (Gaut 1998; Kay et al. 2006).
Variation in rates of molecular evolution in plants
suggests that germ-line cell divisions are not the only
explanation for rate heterogeneity because plants 
do not have separate germ and somatic cell lines.

The metabolic rate hypothesis proposed by
Martin and Palumbi (1993; reviewed by Rand 1994)
was based on the observation that sharks have rates
of synonymous substitution five to seven times lower
than those observed in primates and artiodactyls
despite the fact that all taxa examined have relatively
similar generation times. Mutation rates may be cor-
related with metabolic rate of organisms for several
reasons. Organisms with high metabolic rates have
rapidly operating cellular functions and one of these
cellular functions is DNA replication. Therefore,
high rates of metabolism cause high rates of DNA
replication and high rates of replication-dependent

··

Table 8.4 Number of substitutions per
nucleotide site observed over 49 nuclear genes
for different orders of mammals. Divergences are
divided into those observed at synonymous and
nonsynonymous sites. Primates and artiodactyls
(hoofed mammals such as cattle, deer, and pigs
with an even number of digits) have longer
generation times than do rodents. There were a
total of 16,747 synonymous sites and 40,212
nonsynonymous sites. Data from Ohta (1995).

Mammalian Synonymous Nonsynonymous
group sites sites

Primates 0.137 0.037
Artiodactyls 0.184 0.047
Rodents 0.355 0.062

Generation-time hypothesis The hypothesis
that variation in rates of substitution is due 
to differences in generation times among
species that have constant rates of substitution
per generation. This explanation for rate
heterogeneity is consistent with neutral
molecular evolution.
Replication-dependent causes of mutation
Causes of mutation that occur during
replication of DNA, such as replication errors,
so that the rate of mutation depends 
on the rate of cell division.
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mutation. Alternatively, aerobic respiration within
cells produces free oxygen radicals that cause oxid-
ative damage to DNA. Therefore, high metabolism
increases the rate of exposure to mutagenic agents and
increases replication-independent rates of mutation.
These two mechanisms that couple metabolic rate
and mutation rates are not mutually exclusive and
both can occur at the same time. Gillooly et al.
(2005) proposed a model of the substitution rate that
explicitly includes effects of body size and temper-
ature and suggested that the molecular clock may
indeed be constant after accounting for rate variation
from these causes.

Heterogeneity in the rate of divergence can also be
explained by the nearly neutral theory (reviewed by
Ohta 1992). To see this, let f0 stand for the propor-
tion of mutations that are selectively neutral because
the pressure of negative selection acting on them 
is weak relative to the effective population size. (All
mutations are assumed to be deleterious and advant-
ageous mutations so rare they can be ignored, an
assumption of the nearly neutral theory that is prob-
lematic (see Gillespie 1995).) The remaining (1 − f0)
mutations have a large enough deleterious effect
that they are acted on by negative selection and 
are not neutral. The rate of substitution of neutral
mutations under the nearly neutral theory is then

k = f0μ (8.53)

analogous to equation 8.3 for neutral theory. This
equation says that the rate of divergence will be
higher when more mutations are effectively neutral
( f0 is larger) and lower when fewer mutations are
effectively neutral ( f0 is smaller).

Because the proportion of mutations that are
effectively neutral depends on the effective popula-
tion size, the rate of divergence also varies with the
effective population size under the nearly neutral
theory. In nearly neutral theory all substitutions are
the result of genetic drift, as in the neutral theory.
But a larger effective population size leads to fewer
mutations that are effectively neutral and therefore a
smaller pool of neutral mutations that can ultimately
reach fixation. In contrast, a smaller effective popula-
tion size leads to more mutations being effectively
neutral and therefore a larger pool of neutral muta-
tions that can ultimately experience substitution.
Thus, nearly neutral theory predicts that the rate of
divergence is negatively correlated with the effect-
ive population size because changes in Ne result in
changes in f0. Under the nearly neutral theory, rate

heterogeneity can then be explained by different
effective population sizes among lineages or loci that
cause f0 to vary.

Generation time may also influence perceived
variation in substitution rates among species under
the nearly neutral theory. In the nearly neutral 
theory, both mutation and substitution rates are
expressed in per-generation terms as they are in the
neutral theory. This should lead to generation-time
effects on the substitution rate just as in the neutral
theory. However, generation time effects may be
cancelled out under the nearly neutral theory because
of a negative correlation between generation time
and effective population size. In the nearly neutral
theory, the proportion of mutations that are effect-
ively neutral depends on the effective population
size. Independently, longer generation times lead to
fewer substitutions per year whereas shorter genera-
tion times result in more substitutions per year if 
the mutation rate is constant per generation. The
effective population size and the generation time
should act independently on substitution rates. How-
ever, it turns out that generation time and effective
population size are not generally independent (Chao
& Carr 1993). For example, mice have short genera-
tion times and a large effective population size whereas
elephants have long generation times and a small
effective population size. Therefore, the impacts of
generation time and effective population size tend to
cancel each other out, resulting in a nearly neutral
theory prediction that substitution rates do not show
a generation time effect.

It is possible to test the nearly neutral theory 
prediction that the impacts of generation time 
and effective population size on rates of molecular 
evolution tend to cancel each other out. Ohta (1995)
carried out such a test by comparing rates of sub-
stitution at synonymous and nonsynonymous sites
for 49 genes in primates, artiodactyls, and rodents
(recall from earlier in this section that divergence
rates for these same animals support the generation
time hypothesis). Ohta divided the DNA sequence
data into divergence observed at synonymous or
nonsynonymous sites within exons. Mutations at non-
synonymous sites are exposed to natural selection
since they alter the amino acid sequence of a protein
and therefore have a phenotypic effect. In contrast,
synonymous site mutations are not perceived by
natural selection (or selection is much weaker) since
they do not alter the amino acid sequence. The nearly
neutral theory predicts that nonsynonymous sub-
stitution rates should be lower than synonymous
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substitution rates because of negative selection on the
pool of nonsynonymous mutations (nonsynonymous
f0 is smaller). In addition, divergence rates at non-
synonymous sites should not exhibit a generation
time effect because of the negative correlation between
generation time and effective population size for
mutations that are nearly neutral. Table 8.4 shows
Ohta’s divergence data for primates, artiodactyls,
and rodents at synonymous and nonsynonymous
sites. Synonymous substitution rates are an order 
of magnitude greater than nonsynonymous rates, 
as expected if nonsynonymous sites experience fre-
quent negative selection against mutations. The
synonymous rate is 2.59 times faster for rodents
than for primates. In contrast, the nonsynonymous
rate is 1.68 times faster for rodents than for primates.
Therefore, divergence at nonsynonymous sites shows
less of a generation-time effect, also consistent with
nearly neutral theory.

8.5 Testing the neutral theory null model 
of DNA sequence evolution

• The Hudson–Kreitman–Aguadé (HKA) test.
• The McDonald–Kreitman (MK) test.
• Tajima’s D statistic.
• Mismatch distributions.

This section provides the opportunity to apply the
conceptual results of the neutral theory developed
earlier in the chapter to test the neutral null model
for the causes of molecular evolution. Some tests take
advantage of the neutral theory predictions for levels
of polymorphism and divergence while others rely
on coalescent model results that were developed 
in earlier chapters. These tests have been widely
employed in empirical studies of DNA sequences
sampled from a wide array of loci, genomes, and
species (see review by Ford 2002). The tests described
in this section have contributed much to our know-
ledge of how natural selection has acted on DNA
sequences as well as our understanding of how 
multiple population genetic processes (mating, gene
flow, genetic drift, mutation, changes in Ne, and 
natural selection) interact in natural populations.

HKA test of neutral theory expectations for DNA
sequence evolution

The HKA test, so named after its authors Hudson,
Kreitman, and Aguade (Hudson et al. 1987), is a 
test that compares neutral theory predictions for

DNA sequence evolution with empirically estimated
polymorphism and divergence. The test utilizes the
expectation that under neutrality both polymorphism
within species and divergence between species are a
product of the mutation rate. In fact, under neutral
evolution levels of polymorphism and divergence at
a locus should be correlated because they are both
products of the very same mutations. If a locus has a
high mutation rate, for example, then the population
should be highly polymorphic (see equation 8.1). 
At the same time, divergence at that locus when
compared with another species should also be sub-
stantial since the rate of substitutions that contribute
to divergence is also equal to the mutation rate (see
equations 8.2 and 8.3). Alternatively, a combina-
tion of both low polymorphism and low levels of
divergence should be apparent if a neutral locus has
a low mutation rate. In this way, expected levels of
polymorphism and divergence are not independent
under neutrality. Evidence that divergence and poly-
morphism are not correlated would be at odds with
neutral expectations and therefore evidence to reject
the neutral null model for the locus under study.

The HKA test requires DNA sequence data from
two loci. One locus is chosen because it is selectively
neutral and serves as a reference or control locus.
Examples of a neutral reference locus include non-
coding regions of the genome or duplicate copies of
genes that are not functional (pseudo-genes), both of
which are expected to be relatively free of functional
constraints on nucleotide substitutions. The other
locus used is the focus of the test and the locus for
which the neutral null model of evolution is being
tested.

The HKA test also requires that DNA sequence
data for two loci be collected in a particular manner.
First, DNA sequences for two loci must be obtained
from two species to estimate divergence between the
species for both the neutral reference and the test
loci. In addition, DNA sequences from multiple indi-
viduals within one of the species need to be obtained
to estimate levels of polymorphism present at both
loci. Polymorphism is measured by nucleotide divers-
ity (π) for each locus. Divergence is estimated by
comparing the DNA sequences for both loci between
an individual of each species, employing a nucleotide
substitution model to correct for homoplasy.

Once the estimates of polymorphism and divergence
are made from DNA sequence data, they can be com-
pared in a format like that shown in Table 8.5. Panel
a in Table 8.5 shows the neutral theory expectations
for polymorphism and divergence at the two loci.

··
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Under neutrality and the infinite sites model, DNA
sequence polymorphism is expected to be θ = 4Neμ
and divergence is expected to be k = 2Tμ. The test
and reference locus may have different mutation
rates. But note that the effective population size is
constant when polymorphism is estimated for the
two loci since the loci are sampled from the same
species. The divergence times are also equal for the
two loci since they are estimated from the same species
pair. The ratio of the two divergence estimates at the
test and reference loci is expected to equal the ratio 
of the test locus mutation rate over the reference 

locus mutation rate since the factor of 4Ne

cancels out. The ratio of the two divergence estimates
at the test and reference loci is also expected to equal 

. Therefore, under neutrality the ratio of polymorph-

ism estimates at the two loci as well as the ratio of the
divergence estimates at the two loci should be equal
since they both represent ratios of the mutation rates
at the two loci. Similarly, the ratios of polymorphism
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over divergence for each locus are expected to be
equal under neutrality. The ratios can be tested for
equality using a Chi-square test.

Table 8.5b shows an idealized illustration of 
polymorphism and divergence estimates that would
be consistent with the neutral null model of DNA
sequence evolution. In this idealization, the two loci
do have different mutation rates that lead to different
amounts of polymorphism and divergence. However,
the ratios are equal as expected if the fate of muta-
tions is due only to genetic drift.

Table 8.5c shows a classic example of divergence
and polymorphism estimated in fruit flies to carry
out the HKA test (Hudson et al. 1987). The locus
tested for neutral evolution is the gene for alcohol
dehydrogenase (Adh) and the reference locus is
sequence upstream (5′) to the coding region that does
not possess an open reading frame. Polymorphism
was estimated for the two genes from a sample of
Drosophila melanogaster individuals and divergence
for the two loci was determined with sequences 
from Drosophila sechellia. If the 5′ flanking region is
truly neutral, then the Adh data show too much

Table 8.5 Estimates of polymorphism and divergence for two loci sampled from two species that form 
the basis of the HKA test. (a) The correlation of polymorphism and divergence under neutrality results in a
constant ratio of divergence and polymorphism between loci independent of their mutation rate as well as 
a constant ratio of polymorphism or divergence between loci. (b) An illustration of ideal polymorphism and
divergence estimates that would be consistent with the neutral null model. (c) Data for the Adh gene and
flanking region (Hudson et al. 1987) is not consistent with the neutral model of sequence evolution because
there is more Adh polymorphism within Drosophila melanogaster than expected relative to flanking region
divergence between D. melanogaster and D. sechellia.

(a) Neutral case expectations
Test locus Neutral reference locus Ratio (test/reference)

Focal species polymorphism (π) 4NeμT 4NeμR

Divergence between species (K) 2TμT 2TμR

Ratio (π/K)

(b) Neutral case illustration
Test locus Neutral reference locus Ratio (test/reference)

Focal species polymorphism (π) 0.10 0.25 0.40
Divergence between species (K) 0.05 0.125 0.40
Ratio (π/K) 2.0 2.0

(c) Empirical data from D. melanogaster and D. sechellia
Adh 5′′ Adh flanking region Ratio (Adh/flank)

D. melanogaster polymorphism (π) 0.101 0.022 4.59
Between species divergence (K) 0.056 0.052 1.08
Ratio (π/K) 1.80 0.42
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polymorphism within D. melanogaster. An excess of
Adh polymorphism is also indicated by the large 
ratio of polymorphism for the two loci within D.
melanogaster compared with the ratio of divergences
for the two loci. It is now widely accepted that the
Adh locus in D. melanogaster exhibits an excess of
polymorphism consistent with balancing selection.

Although the HKA test is ingenious, it does have
some limitations and assumptions. One difficulty in
practice is the ability to identify an unambiguously
neutral reference locus. For example, the 5′ flanking
region used by Hudson et al. (1987) as a neutral refer-
ence locus very likely contains promoter sequences
that are functionally constrained by natural selec-
tion. Innan (2006) described a modification to the
HKA test to use the average of multiple reference loci
that should help avoid misleading results caused by
reference loci that do not fit test assumptions.

Implicit in the HKA test is the assumption that 
each of the two species used are panmictic. Popula-
tion subdivision has the potential to alter levels and 
patterns of nucleotide polymorphism and divergence
(see review by Charlesworth et al. 2003) depend-
ing on how individuals are sampled. Consider levels
of polymorphism in a subdivided species where FST
is greater than zero. Population subdivision causes
lower polymorphism for individuals sampled within
subpopulations due both to reduced effective popula-
tion size that increases drift within demes and
increased autozygosity resulting from a higher prob-
ability of mating within demes. In contrast, there will
be larger genetic differences for individuals sampled
from two different demes due to differentiation among
demes that would result in high perceived levels of
polymorphism. If the HKA test is carried out for a
species with population structure, sampling needs 
to be conducted to avoid taking sequences from only
one or a few demes that could lead to an erroneous
conclusion of too little polymorphism compared to
the neutral expectation. Ingvarsson (2004) showed
how the HKA test can lead to incorrect rejection 
of the neutral null hypothesis when there is popula-
tion subdivision. He also gives an example of a 
population-structure-corrected HKA test applied to
organelle DNA sequence data from the plant species
Silene vulgaris and Silene latifolia which both exhibit
strong population structure.

MK test

The MK test is a test of the neutral model of DNA
sequence divergence between two species (McDonald

& Kreitman 1991). Like the HKA test it is named for
it authors, McDonald and Kreitman. The MK test is
also conceptually similar to the HKA test because it
too establishes expected ratios of two classes of DNA
changes at a single locus under neutrality. The MK
test requires DNA sequence data from a single coding
gene. The sample of DNA sequences is taken from
multiple individuals of a focal species to estimate
polymorphism. The test also requires a DNA sequence
at the same locus from another species to estimate
divergence.

The neutral expectations for the MK test are given
in Table 8.6. The two classes of DNA change used in
the MK test are synonymous and nonsynonymous
(or replacement) changes. Nonsynonymous muta-
tions within coding regions may alter the amino acid
specified by a codon. Due to the redundancy of the
genetic code, some mutations within coding regions
will not change the amino acid specified by the codon
and are therefore synonymous changes.

If genetic drift is the only process influencing the
fate of a new mutation, levels of polymorphism and
divergence within each category of DNA change
should be correlated because they are both deter-
mined in part by the mutation rate. Fixed differ-
ences between species are caused by mutations that
have gone to fixation, with expected divergence under
neutral theory of 2Tμ. Nucleotide sites that have 
two or more nucleotides within the focal species
exhibit polymorphism, with an expected level of
4Neμ under neutral theory. Since synonymous and
nonsynonymous mutations may occur at different 
rates, we can assign each category of DNA change 
a different rate (μN and μS). Both the ratio of non-
synonymous and synonymous fixed differences and
the ratio of nonsynonymous and synonymous poly-
morphic sites are expected to be equal to μN/μS under
neutral theory. The MK test therefore compares these
two ratios for equality as a test of neutral theory. 
The neutral case illustration in Table 8.6b gives an
example where μN < μS and where there is a higher
level of polymorphism than divergence. Nonetheless,
the ratios of the number of nonsynonymous over syn-
onymous changes are constant for fixed differences
and polymorphic sites as expected if both classes of
mutations are neutral.

An MK test based on numbers of synonymous and
nonsynonymous changes at the Adh locus that were
fixed between Drosophila species or polymorphic
within D. melanogaster (McDonald & Kreitman 1991)
is given in Table 8.6c. Using fixed sequence differences
as a reference point, fewer substitutions between

··
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species are nonsynonymous than synonymous. The
rate of nonsynonymous substitutions is 41.2% of 
the substitution rate for synonymous substitutions.
Under neutrality, we expect about 41% of polymorphic
sites within D. melanogaster to be at nonsynonymous
sites. In contrast, the observed data shows that only
about 4.5% of polymorphic sites are nonsynonymous.
Thus, polymorphic sites have too many synonymous
changes or too few nonsynonymous changes to 
be consistent with neutral levels of polymorphism.
(Note that if using polymorphic sites as the frame of
reference, then in this case there is an elevated rate 
of divergence at nonsynonymous sites compared to
neutral expectations.)

A common observation in studies of coding DNA
sequences is that numbers of nonsynonymous and
synonymous DNA changes are not equal. A neutral
explanation for this pattern is that these two types 
of DNA change have different underlying mutation
rates. It is expected that nonsynonymous changes

will be more frequent than synonymous changes 
if mutations occur at random nucleotide sites. In
fact, 96% of nucleotide changes in the first nucleo-
tide position of a codon, all changes in the second
position and 30% of changes at the third position 
are nonsynonymous. Overall, if mutation occurs 
at random within coding sequences 75.3% of all
mutations will be nonsynonymous and 24.7% will
be synonymous.

An alternative explanation is that rates of 
synonymous and nonsynonymous mutation are
roughly equal, but that nonsynonymous mutations
commonly alter proteins in ways that impair their
function. Nonsynonymous mutations that disrupt
function also reduce fitness and are therefore acted
against by natural selection. This form of natural
selection is sometimes called purifying selection
because selection acts to purify the pool of mutations
by removing low fitness sequence changes. It is also
possible that some nonsynonymous mutations result

Table 8.6 Estimates of polymorphism and divergence (fixed sites) for nonsynonymous and synonymous sites
at a coding locus form the basis of the MK test. (a) Under neutrality, the number of nonsynonymous sites
divided by the number of synonymous sites is equal to the ratio of the nonsynonymous and synonymous
mutation rates. This ratio should be constant both for nucleotide sites with fixed differences between species
and polymorphic sites within the species of interest. (b) An illustration of ideal nonsynonymous and
synonymous site changes that would be consistent with the neutral null model. (c) Data for the Adh locus 
in D. melanogaster (McDonald & Kreitman 1991) show an excess of Adh nonsynonymous polymorphism
compared with that expected based on divergence. (d) Data for the Hla-B locus for humans show an excess 
of polymorphism and more nonsynonymous than synonymous changes, consistent with balancing selection
(Garrigan & Hedrick 2003).

Fixed differences Polymorphic sites

(a) Neutral case expectations
Nonsynonymous sites (N) NF = 2TμN NP = 4NeμN
Synonymous sites (S) SF = 2TμS SP = 4NeμS

Ratio (N/S)

(b) Neutral case illustration
Nonsynonymous changes 4 15
Synonymous changes 12 45
Ratio 0.33 0.33

(c) Empirical data from Adh locus for D. melanogaster (McDonald & Kreitman 1991)
Nonsynonymous changes 2 7
Synonymous changes 42 17
Ratio 0.045 0.412

(d) Empirical data for the Hla-B locus for humans (Garrigan & Hedrick 2003)
Nonsynonymous changes 0 76
Synonymous changes 0 49
Ratio – 1.61
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in enhancement of function and are fixed rapidly 
by positive selection. A third, non-neutral alternative 
is that nonsynonymous mutations are maintained
at intermediate frequencies in the population by 
balancing selection. An example of strong balan-
cing selection is the human leukocyte antigen (Hla) 
B gene in humans as detected with an MK test 
by Garrigan and Hedrick (2003) using divergence
between humans and chimpanzees (Table 8.6d).
There are no fixed DNA differences between humans
and chimpanzees for this locus, suggesting low rates
of mutation since divergence of these two species. In
contrast, the human populations show high levels 
of polymorphism and 1.6 nonsynonymous changes
for every synonymous change, inconsistent with 
the neutral hypothesis that polymorphism and
divergence are correlated. Hla genes form the major
histocompatibility complex (MHC) region that encodes
cell-surface antigen-presenting proteins important
in immune system function. Heterozygotes for these
loci have higher fitness since they present more
diverse cell-surface antigens.

Tajima’s D

Tajima’s D is a test of the standard coalescent model
(neutral alleles in a population of constant size) 
that is commonly applied to DNA polymorphism
data sampled from a single species (Tajima 1989a,
1989b). The test uses the nucleotide diversity and
the number of segregating sites observed in a sample
of DNA sequences to make two estimates of the scaled
mutation rate θ = 4Neμ. This section will refer to an
estimate of θ based on the nucleotide diversity as 5π
and an estimate of θ based on the number of segregat-
ing sites as 5S. Tajima’s D test relies on the fact that 5π
and 5S are expected to be approximately equal under
the standard coalescence model where all mutations
are selectively neutral and the population remains a
constant size through time. The null hypothesis of the
test is that the sample of DNA sequences was taken
from a population with constant effective popula-
tion size and selective neutrality of all mutations.
Natural selection operating on DNA sequences as
well as changes in effective population size through
time lead to rejection of this null hypothesis.

Tajima’s D takes advantage of the fact that muta-
tions that occurred further back in time in a genealogy
are counted more times when computing the nucleo-
tide diversity (π) from all unique pairs of sequences.
In contrast, the position of a mutation on a genealogy
does not influence the number of segregating sites

(S) since any number of sequences bearing a given
nucleotide always represent just one segregating 
site (Fig. 8.19). The coalescent process with neutral
alleles and constant effective population size results
in approximately the same total length along interior
and exterior branches in a genealogy. In contrast,
processes that alter the probability of coalescence
also change the ratio of interior and exterior branch
length. Both sustained increases in the effective 
population size and balancing selection lead to
decreasing probabilities of coalescence toward the
present time and longer external branches (Fig. 8.20).
Longer external branches in a genealogy can also be
caused by population structure if the DNA sequences
compared are sampled from different demes. Shrink-
ing effective population size or population bottlenecks
as well as strong directional selection lead to increas-
ing probabilities of coalescence toward the present
time and shorter external branches (Fig. 8.20).
Substantial changes to the genealogical branching
pattern lead to differences in π and S that cause
Tajima’s D to differ from zero.

··

(a)

(b)

1 2 3 4

1 2 3 4

Figure 8.19 Estimates of the scaled mutation rate θ are
estimated differently using nucleotide diversity (5π) and the
number of segregating sites (5S) depending on the location 
of mutations in a genealogy. Each mutation makes a single
segregating site under the assumptions of the infinite alleles
model no matter where it occurs. However, mutations 
on internal branches will appear in multiple pairwise
comparisons and cause π to be larger (a). In contrast,
mutations that occur on external branches (b) that cause a
nucleotide change in only a single lineage contribute less to π.
Each mutation is counted four times (d13, d23, d14, and d24) in
(a) but three times (d12, d23, and d24) in (b) when computing π.
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An alternative way to think about how Tajima’s 
D works is to consider the frequency distribution 
of mutations under different types of natural selec-
tion or population histories. Mutations that happen
to occur on internal branches in a genealogy have an
intermediate frequency because they are inherited
by lineages that arise later in time. In contrast, muta-
tions that happen to occur on external branches
have a low frequency since they are unique to a 
single lineage. Since total internal and total external
branch length are expected to be about equal under
the standard coalescent model, intermediate and rare
alleles are also expected to be about equal in fre-
quency. Both population growth and multi-allelic
balancing natural selection can lead to an excess of
rare mutations since these processes increase the
external branch length. In contrast, strong purifying
selection, shrinking population size, or a population
bottleneck can lead to an excess of intermediate fre-
quency mutations because these processes increase
the amount of internal branch length.

Tajima’s D statistic is computed from the difference
between 5π and 5S divided by the standard deviation
of 5π − 5S:
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where pS is the number of segregating sites per
nucleotide site. Recall that the standard deviation 
is the square root of the variance, so that dividing by
the standard deviation puts D in units of standard
deviations away from the mean of zero expected 
for standard coalescent genealogies. Only when the
observed result is about two standard deviations away
from the mean do we reject the null hypothesis of 
D = 0 and thereby reject the null model of a neutral
genealogy with constant effective population size
(see confidence limits in Table 2 of Tajima 1989a).

The quantities used to compute the variance are
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Excess of intermediate
frequency mutations 

Balancing selection
or population growth

θπ < θS
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Figure 8.20 Differences in the shape of genealogies are the basis of Tajima’s D test. In the standard coalescent model of
genealogical branching the probability of coalescence is constant per lineage over time. The standard coalescent therefore gives
expected branch lengths when all alleles are selectively neutral and the effective population size is constant (center). Changes 
in the effective population size over time (population growth, population bottlenecks) change the probability of coalescence 
over time as well. Natural selection also alters the probability of coalescence based on the fitness of alleles each lineage bears.
Changes in the effective population size and natural selection alter the expected time to coalescence and therefore the expected
branch lengths in a genealogical tree. If the chance of coalescence is greater in the present than in the past (right), most coalescent
events occur near the present and internal branches are long in comparison with external branches. If the chance of coalescence 
is smaller in the present than in the past (left), most coalescent events occurred in the past and external branches are long in
comparison with internal branches. Since the chance of a mutation is constant over time, lineages with longer branches are
expected to experience more mutations.
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and

(8.59)

where n is the number of sequences sampled and
assuming that there is no recombination.

Although the variance of D is a complex expression,
it can still be understood intuitively. The formula quant-
ifies both sampling variance and evolutionary
variance. Sampling variance comes from taking a
sample of DNA sequences and using them to estimate
π and S. As with any finite sample of data from a larger
underlying population, repeating the sampling pro-
cedure would result in a slightly different estimate 
of the parameters of interest because the sample is
not perfectly representative of the full population.
Sampling variance decreases as sample sizes increase
since estimates are based on a larger and larger pro-
portion of the underlying population. In contrast,
evolutionary variance is caused by the variable out-
comes of the random evolutionary processes of genetic
drift. Evolutionary variance can only be estimated 
by sampling multiple independent realizations of the
same random process, for example taking samples 
of DNA sequences from multiple populations that
independently experienced genetic drift after being
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isolated from the same ancestral population. The
coalescence process itself has a great deal of evolu-
tionary variance. For example, under the standard
coalescent model there is a wide range of coalescence
times for k lineages around an average with variance
in coalescence time that is largest for two lineages
(see equation 3.76). Both sources of variance are
taken into account when determining the standard
error of D.

The value of Tajima’s D is influenced by changes
over time in the size of populations, population struc-
ture, and the action of natural selection. Therefore,
Tajima’s D is not a simple test for the action of natural
selection alone as sometimes assumed. The null model
is based on a constant mutation rate through time 
(a molecular clock), the infinite sites model of muta-
tion, the Wright–Fisher model with non-overlapping 
generations, and a panmictic population at drift–
mutation equilibrium (see Tajima 1996 on the first
two points). Although a large value of D serves to
reject the standard coalescent model for a given set 
of DNA polymorphism data, distinguishing among
changes in effective size through time, population
structure, and natural selection requires more than
just an estimate of D at a single locus. DNA polymor-
phism in humans, for example, often shows negative
values of Tajima’s D. These results are considered 

··

To study the population history of Drosophila simulans, Baudry et al. (2006) sampled flies from
multiple populations in Africa, Europe, and the Antilles. From these flies they sequenced four genes
located on the X chromosome. Using part of their DNA sequence data, test the hypothesis that 
D. simulans meets the assumptions of the standard neutral coalescent model via Tajima’s D.

DNA sequences from the runt locus for flies sampled in Europe and Mayotte (an overseas
collectivity of France composed of several islands in the Indian Ocean, between northern
Madagascar and northern Mozambique) exhibited the following patterns

Population n sequences Nucleotide sites S π
Europe 15 556 17 0.012436
Mayotte 15 538 34 0.013525

Use the number of segregating sites (S) to calculate the number of segregating sites per nucleotide
site (pS) and then estimate 5S per site according to equation 8.29. Then compute Tajima’s D
according to equation 8.54.

What do you conclude about the history of these two D. simulans populations? Note that 
your estimates of Tajima’s D will differ from those in Baudry et al. (2006) because they used only
synonymous site polymorphisms whereas you have used polymorphisms at all sites. Why did
Baudry et al. (2006) use only synonymous site polymorphisms? The DNA sequence data files are
available on the text website.

Problem box 8.2 Computing Tajima’s D from DNA sequence data
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by many to be caused by a low level of population
structure as well as a history of very rapid population
growth in the recent past that characterizes human
populations rather than widespread balancing selec-
tion operating on human loci (Ptak & Przeworski
2002; Tishkoff & Verrelli 2003).

Mismatch distributions

The previous section explored how a sample of 
DNA sequences from a population can be used to test
neutral expectations by comparing estimates of θ
based on polymorphism measured with nucleotide
diversity (π) and the number of segregating sites (S).
Both π and S summarize patterns of sequence vari-
ation into a single number. Specifically, the nucleo-
tide diversity π is really an average of the differences
between all pairs of sequences in a sample. Instead 
of using an average to measure polymorphism, we
can directly examine the distribution of all individual
pairwise sequence comparisons. This is commonly
called the mismatch distribution and it is the fre-
quency distribution of the number of nucleotide sites
that differ between all unique pairs of DNA sequences
in a sample. The mismatch distribution is a tool that
can be used to infer the history of the population 
that gave rise to a sample of DNA sequences. It can 
be used to infer past changes in the effective size of a
population using selectively neutral DNA sequences.
Alternatively, in populations that have maintained 
a constant size over time, these distributions can be
used to identify the action of natural selection.

Let’s assume complete neutrality of mutations to
focus on using mismatch distributions to develop
expectations for patterns of DNA sequence differ-
ences in stable, growing, and shrinking populations.
The properties of the mismatch distribution arise

directly from expected patterns that characterize
neutral genealogies. Chapter 3 shows that the last
pair of lineages (k = 2) takes the longest average 
time to coalesce in standard neutral genealogies for
populations with constant Ne. When there is muta-
tion, the two oldest lineages in the population also
differ by the largest number of mutations since the
expected number of mutations is proportional to 
the length of time a lineage exists. In populations
that maintain constant Ne, these oldest two lineages
experience numerous mutations and therefore have
a high degree of mismatch. This pattern of long line-
ages having multiple mutations can be seen in the
genealogy in Fig. 8.21.

Working from the past to the present, the two 
oldest lineages in any genealogy give rise to addi-
tional lineages. The younger progeny lineages inherit
all the mutations that have occurred on the progen-
itor lineages and may also experience additional new
mutations. Since the lineages closer to the present
tend to have shorter times to coalescence (the prob-
ability of coalescence increases with larger k), they
also tend to accumulate fewer mutations. Looking at
Fig. 8.21, the three lineages within group A would
each inherit the four mutations that occurred on 
the internal branch that was their ancestor. Because
lineages 1, 2, and 3 within group A share the muta-
tions of their ancestral lineage, they also tend to have
fewer nucleotide sites that mismatch. For example,
lineages 1 and 2 differ by only the two mutations that
occurred near the present (mutations at nucleotide
sites 17 and 22). Lineages 4, 5, and 6 within group B
also have low levels of mismatch by the same logic.

In contrast, the level of sequence mismatch is high
when lineages are compared between groups A and
B in Fig. 8.21. For example, lineages 1 and 4 differ by
nine mutations. This high level of mismatch occurs
because sequences from distantly related lineages
are separated by much more time since they shared a
common ancestral lineage, leading to many more
mutational changes that independently altered each
DNA sequence. Another way to think of the situation
is that closely related lineages differ only by a few
young mutations while distantly related lineages 
differ by more mutations, many of which are old and
have been resident in the population for a long time.

The mismatch distribution has distinct patterns
depending on the demographic history of the popula-
tion (Slatkin & Hudson 1991; Rogers & Harpending
1992). Mismatch distributions from populations that
have experienced a constant Ne over time tend to have
two clusters of values in the mismatch distribution.

Mismatch distribution The frequency
distribution of the number of nucleotide sites
that differ between all unique pairs of DNA
sequences in a sample from a single species. 
It is also known as the distribution of pairwise
differences.
Haplotype frequency distribution The
distribution of the frequency of each sequence
haplotype in a population assuming that
individuals are haploid or homozygous. It is
also known as the site frequency spectrum.
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Such a bimodal distribution is the characteristic 
signature of genealogies in populations with a rela-
tively constant Ne in the past. The bimodal pattern is
caused by roughly equal times to coalescence of all
internal and external branches. In contrast, popula-
tions that had rapidly growing or shrinking Ne in the
past tend to have distinct mismatch distributions. 
In populations that have rapidly growing Ne, most
coalescence events happen early in the genealogy
near the MRCA since the probability of coalescence
decreases toward the present (see the left-hand genea-
logy in Fig. 8.20). This leads to long external branches
that each experience many unique mutations. The
mismatch distribution then has a high frequency of
sequence pairs with a high degree of mismatch and
few sequence pairs with a low degree of mismatch.
Alternatively, populations that experienced con-
tinual declines in Ne have genealogies where most
coalescence events happen near the present because

the probability of coalescence increases toward the
present (see the right-hand genealogy in Fig. 8.20).
In a shrinking population, the mismatch distribution
tends to have a high frequency of sequence pairs
with low mismatch counts.

A related way to view polymorphism is by examin-
ing the distribution of haplotype frequencies in a
sample of sequences. Such haplotype frequency
distributions show the proportion of sequences 
in a population that represent each of the observed
sequence alleles (assuming that individuals are 
haploid or homozygous). Under neutrality and 
constant effective population size (see Fig. 8.20) a
range of haplotype frequencies are expected from
very frequent to rare. When populations are growing
rapidly or there is balancing selection, there is expected
to be an excess of rare haplotypes produced by the
excess length of external branches in the genealogy.
When populations are shrinking rapidly or there is
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Figure 8.21 The basis of the mismatch distribution. (a) A neutral genealogy that bears multiple mutation events. Each mutation
event is represented by a circle and the number of the random nucleotide site that mutated assuming the infinite sites mutation
model. The six lineages in the present can be separated into two groups (called A and B) based on their ancestral lineage when
there were only two lineages in the population. (b) The DNA sequences for each lineage are shown based on the 30 base-pair
sequence assigned to the most recent common ancestor (MRCA) with mutations shown in lower-case letters. (c) The number of
nucleotide sites that are different or mismatched between pairs of DNA sequences. (d) The mismatch distribution shown is a
histogram of the mismatches for the 15 pairs of DNA sequences compared. Neutral genealogies from populations with constant 
Ne through time tend to show bimodal mismatch distributions. The cluster of observations with few mismatches results from
sequence comparisons between recently related lineages (comparisons within group A or group B). In contrast, sequences from
distantly related lineages that do not share the same ancestor when k = 2 (comparisons between groups A and B) tend to have
more mismatches.
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strong directional selection, there is expected to be
an excess of high-frequency haplotypes and very few
rare haplotypes because most of the branch length
lies in the internal branches of the genealogy.

Mismatch and haplotype frequency distributions
can help identify instances of expansion or contrac-
tion in the effective population size if sequences 
are neutral. Alternatively, if sequences are known 
to come from a population with a constant effective
size, then these distributions can be used to identify
the action of natural selection. Several tests are avail-
able that use the haplotype frequency or mismatch
distributions to evaluate the null hypothesis of con-
stant effective population size through time using
DNA sequences (Fu & Li 1993; Fu 1996, 1997;
Schneider & Excoffier 1999; Mousset et al. 2004;
Innan et al. 2005). It is important to note several
limitations of these tests. First, recombination has
the potential to impact the mismatch distribution
along with population demography. Recombination
events assemble novel sequence haplotypes from

existing haplotypes and in doing so break up muta-
tions that are associated due to identity by descent.
Therefore, recombination obscures the history of
mutations and in the extreme would lead to a uni-
form mismatch distribution. Second, coalescence is a
stochastic process and there is an inherently large
variance in times to coalescence (see Chapter 3). This
leads to a large variance in the shape of mismatch
distributions even when Ne is constant. Therefore,
tests that utilize the mismatch distribution can 
only be expected to detect very large and sustained
shrinkage or expansion of Ne.

8.6 Molecular evolution of loci that are not
independent

• Gametic disequilibrium between neutral and
selected sites influences polymorphism.

• Genetic hitch-hiking, selective sweeps, and back-
ground selection.

• Gametic disequilibrium and rates of divergence.

TreeToy is a java applet that simulates genealogies for neutral alleles in populations that are growing
in size through time. The lineages experience mutations with a rate that depends on θ = 4Neμ
(called Theta0 in the simulation for θ at time zero since Ne changes over time). The simulation
displays the genealogy along with the mismatch distribution and the frequency histogram of each
of the haplotypes in the population. The simulation requires values for the number of lineages in
the genealogy (Sample Size), the growth rate of the population (Growth Factor) and a scaling
factor for the time to coalescence of two genes in units of 1/(2μ) generations (Tau).

Set the Sample Size to 30, Theta0 to 20, Growth Factor to 1, leave Tau at the default value 
of 8, and then click on Draw Tree. The resulting genealogy has waiting times similar to those
expected under the standard coalescent model with constant population size through time. It
should have a somewhat bimodal mismatch distribution (the graph at bottom left) and a wide
range of haplotype frequencies (graph at bottom right labeled Freq. Spectrum). Press the Draw
Tree button several times to see that there is substantial variation in these distributions even 
for the same model parameters. Note the general shape of the genealogies under the constant 
Ne model.

Now change Growth Factor to 100 and click Draw Tree. What does this value of Growth Factor
mean biologically? Why does the genealogy have external long branches with few coalescence
events near the present? How do the mismatch and haplotype frequency distributions change?

Note that the contrasting features of mismatch distributions and the haplotype frequency
spectrum in populations that are constant or changing in size through time are generally more
apparent when θ is larger (more mutations occur) and there is a larger sample of lineages in the
genealogy. The graph of theta by tau at the upper right shows the probability of mutation back
through time as the genealogy approaches the MRCA. Larger values of tau represent deeper 
times in the past while larger values of theta represent a high probability of mutation. Simulate a
genealogy with Growth Factor equal to 10 and then interpret the distribution of theta by tau.

Interact box 8.3 Mismatch distributions for neutral genealogies in stable,
growing, or shrinking populations
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Up to this point in the chapter, loci or nucleotide 
sites have been considered completely independ-
ent entities that are not influenced by evolutionary 
processes at neighboring loci or nucleotide sites. 
This is equivalent to assuming that all alleles at all
loci are in complete gametic equilibrium. Processes
such as physical linkage covered in Chapter 2 may
cause gametic disequilibrium among the alleles in
any population. The impacts of gametic disequilib-
rium on new mutations is of particular interest in
molecular evolution because the fate of new muta-
tions dictates levels of polymorphism and rates of
divergence. Because new mutations initially enter 
a population as a single copy, they must initially
experience very high levels of gametic disequilibrium.
A new mutation that is present in only one copy will
be uniquely associated with the other alleles that just
by chance occur on the same chromosome where
the mutation occurred. The gametic disequilibrium
experienced by new mutations has substantial con-
sequences for neighboring sites in the genome if 
the new mutation is acted on by natural selection.
First, let’s explore changes in polymorphism caused
by gametic disequilibrium between neutral nucleo-
tide sites and nucleotide sites where mutations are
acted on by natural selection. At the end of this 
section we will consider the implications for rates 
of divergence.

To see the consequences of gametic disequilibrium
for new mutations, consider what happens when a
favorable mutation arises in a population. Assume
for now that the population is composed of haploid
individuals that reproduce clonally so that there is
no recombination. Figure 8.22 illustrates the changes
to allele frequencies over time when a favorable
mutation enters a population. Initially, the popula-
tion contains five different haploid sequences. Each
of these chromosomes bears a number of neutral
mutations and each chromosome also has an inter-
mediate frequency in the population that is the 
product of genetic drift. An advantageous mutation,
indicated by a star on the figure, occurs by chance on
one of the chromosomes. Over time, the chromosome
bearing the favorable mutation will increase in fre-
quency since it has a higher fitness and the other
chromosomes will decrease in frequency. Eventually,
depending on the relative fitness of the mutation, 
the chromosome bearing the advantageous muta-
tion will approach fixation in the population. Because
there is no recombination in this example, the
advantageous mutation is only found on one type of
chromosome. Thus, the advantageous mutation is

in complete gametic disequilibrium with two neigh-
boring neutral mutations that happened to be on
that chromosome.

Maynard Smith and Haigh (1974) coined the term
genetic hitch-hiking to describe the consequences
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Figure 8.22 The impact of natural selection on an
advantageous mutation as well as on associated nucleotide
sites, often called a selective sweep. Imagine a single
population that contains five distinct DNA sequences 
without recombination because reproduction is clonal. 
Each DNA sequence is distinguished by a number of neutral
mutations (blue circles) and has a frequency given by the
histogram on the left. Initially, the population has
polymorphism since the population is composed of
intermediate frequencies of each DNA sequence. At time 0,
the third DNA sequence experiences a mutation that is
strongly advantageous, indicated by the star. Natural
selection acts to increase the frequency of the advantageous
mutation over time, until the population approaches fixation
for the third DNA sequence. Once selection has swept the
advantageous mutation to near fixation the population has
very little polymorphism. This is because only those original
neutral mutations that were linked to the advantageous 
allele on the same DNA sequence remain in the population.
Thus, positive selection on one site also sweeps away
polymorphism at linked nucleotide sites if gametic
disequilibrium is maintained. The figure assumes that
positive natural selection is strong and increases the
frequency of the third DNA sequence rapidly such that no
new mutations appear in the population.
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of gametic disequilibrium between a selected muta-
tion and the alleles present at neighboring neutral
nucletide sites. As natural selection drives a favor-
able mutation to high frequency in a population, 
the neutral alleles in gametic disequilibrium with the
selected mutation also reach high frequency because
they happened to be on the chromosome where 
the advantageous mutation initially occurred. This
also results in a loss of polymorphism in the popula-
tion for the neutral alleles, since only the one set of
neutral alleles in gametic disequilibrium with the
advantageous mutation remains in the population
once the advantageous mutation approaches fixation
by natural selection. Levels of polymorphism decrease
in Fig. 8.22 as the advantageous mutation becomes
more and more frequent in the population. The
reduction in polymorphism caused by genetic hitch-
hiking is sometimes called a selective sweep because
while an advantageous mutation and the neutral
polymorphisms that are linked to it are swept to 
high frequency by natural selection, other neutral
polymorphisms not in gametic disequilibrium with
the selected site are swept out of the population at 
the same time. It is important to emphasize that the
reduction in polymorphism seen in selective sweeps
is an indirect consequence of natural selection since
only the advantageous mutation itself has a selec-
tion coefficient that is not effectively zero.

The genetic hitch-hiking and selective sweep process
that leads to reduced polymorphism at nucleotide
sites in gametic disequilibrium with selected sites 
can be thought of as analogous to genetic drift at
neutral sites. Positive natural selection causes some

linked sets of alleles in the population to reach fixa-
tion faster than under genetic drift alone, in the same
fashion that a reduction in the effective population
size or genetic bottleneck would decrease the aver-
age time to fixation for those neutral alleles that do
reach fixation. Gillespie (2000, 2001) has termed
the selective sweep process genetic draft because
neutral mutations in gametic disequilibrium are like
an unpowered glider, floating their way to fixation
by riding along on the up-currents of increased prob-
ability of substitution caused by selection. Gillespie
has shown that genetic draft is a stochastic process
because the neutral mutations that do reach fixation
do so by random association with selected mutations.
Thus, natural selection on infrequent beneficial muta-
tions causes finite random sampling from the pool 
of available neutral mutations even if the effective
population size is infinite.

Because mitochondrial genomes do not experience
recombination, genetic hitch-hiking has the potential
to cause strong selective sweeps. Evidence for selective
sweeps in animal mitochondrial genomes comes from
a comparison of polymorphism measured by nuclear
allozyme loci, nuclear DNA sequences, and mito-
chondrial DNA sequences for a large sample of animal
species (912, 417, and 1683 species, respectively).
Using these data, Bazin et al. (2006) tested the neutral
hypothesis that polymorphism for all three types of
data should be correlated since each class of loci
shares a similar effective population size. (Because
mitochondrial genomes are haploid and uniparent-
ally inherited, their effective population size is four
times less than that of biparentally inherited nuclear
loci.) Based on census population sizes, insects,
echinoderms, and mollusks are expected to have
larger effective population sizes than mammals, fish,
reptiles, and birds. Neutral theory predicts that the
taxa with larger effective population sizes should
also have higher levels of polymorphism for the 
same loci. This neutral prediction is met for nuclear
allozyme and DNA sequence data. Levels of poly-
morphism are higher for insects, echinoderms, and
mollusks than for mammals, fish, reptiles, and birds.
Levels of polymorphism estimated from the two types
of nuclear loci are also highly correlated within each
species. In contrast, levels of mitochondrial poly-
morphism were both low and nearly uniform across
all the animal groups and did not show a correlation
with levels of nuclear allozyme and DNA sequence
polymorphism. This result can be explained by genetic
hitch-hiking that has caused selective sweeps in the
non-recombining mitochondrial genome.

Genetic hitch-hiking The process by which
selectively neutral alleles increase or decrease
in frequency due to their association with
alleles that are under the influence of natural
selection.
Selective sweep The reduction or elimination
of polymorphism in a region of DNA sequence
surrounding a site where a beneficial mutation
has increased in frequency due to positive
natural selection. The reduction of
polymorphism is a result of gametic
disequilibrium between a beneficial mutation
and neighboring neutral sites that has not
been broken down by recombination.
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In the extreme case of no recombination, an advant-
ageous mutation can never become associated via
recombination with other neutral alleles that exist 
in the population. But the absence of recombination 
is not necessary for selective sweeps to occur. When
recombination does occur, selective sweeps will still
happen as long as the increase in frequency of an
advantageous mutation is rapid relative to the time
that is required for recombination to break down the
gametic disequilibrium between a new mutation and
its neighboring sites. In genomes with recombina-
tion, we therefore expect that selective sweeps may
impact only relatively small areas centered around
the site where an advantageous mutation occurred.
This is because recombination will happen more 
and more frequently as the distance from the site of
an advantageous mutation grows larger. Only in 
the nucleotide sites relatively near the advantageous
mutation will recombination be unlikely to occur,
allowing gametic disequilibrium to persist for long
enough for selection to make appreciable changes 
in the frequency of the advantageous mutation. 
We can also expect that stronger natural selection
should lead to larger or more persistent areas of
reduced polymorphism because an advantageous
mutation will reach fixation faster, outpacing recom-
bination that would distribute the advantageous
mutation across chromosomes with different neutral
mutations.

A common result from studies of genetic variation
at numerous loci in natural Drosophila populations 
is that levels of polymorphism are positively cor-
related with rates of recombination (reviewed by
Hudson 1994). The relationship between polymor-
phism and rates of recombination can be explained
in several ways. A hypothesis consistent with selec-
tive neutrality is that the recombination rate at a
locus is somehow related to its mutation rate. For
example, the molecular processes that cause recom-
bination might also cause point mutations. Another
neutral hypothesis is that regions of low recombina-
tion might also have higher functional constraints
and therefore lower neutral mutation rates. Recall
that neutral theory predicts that levels of polymor-
phism and rates of divergence are correlated since
both are ultimately products of the mutation rate.
This leads to the prediction that both levels of poly-
morphism and divergence rates should correlate 
with the recombination rate if neutral processes
explain the relationship between recombination and
polymorphism at the Drosophila loci. Data to test 
this neutral hypothesis for the correlation between

polymorphism and recombination rate in Drosophila
are shown in Fig. 8.23. While polymorphism in D.
melanogaster clearly increases with the recombina-
tion rate, levels of divergence between D. melanogaster
and D. simulans for a subset of the same loci are 
independent of the recombination rate. These data
therefore reject the neutral hypothesis. An alternative
explanation for these data is the operation of natural
selection on beneficial mutations that has resulted  in
selective sweeps. The strength of genetic hitch-hiking
and the amount of polymorphism lost to selective
sweeps decreases with increasing recombination
because recombination reduces gametic disequilib-
rium between a selected mutation and neighboring
sites. However, selective sweeps have no impact on
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Figure 8.23 Plots of nucleotide diversity within 
D. melanogaster populations (a) and divergence between 
D. melanogaster and D. simulans (b) by the coefficient of
exchange, a measure of the recombination rate, for
numerous loci. The nucleotide diversity at a locus decreases
along with the recombination rate (a). The correlation of
polymorphism and the recombination rate at a locus could be
explained by neutral theory if loci with lower recombination
rates also happen to have lower mutation rates. Under this
neutral hypothesis, divergence rates would also be correlated
with recombination rates since both polymorphism and
divergence increase as the mutation rate increases. An
alternative explanation for the correlation of recombination
and polymorphism is the action of natural selection on
beneficial mutations that has caused hitch-hiking and a
reduction of polymorphism due to selective sweeps.
Divergence rates at a subset of the loci (b) suggest 
that divergence and recombination rates are independent,
rejecting the neutral hypothesis for these data. Data from
Begun and Aquadro (1992).
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the rate of divergence so that divergence will show
no relationship to the recombination rate. Therefore,
the selective sweep hypothesis explains why poly-
morphism increases with the recombination rate but
divergence is independent of recombination rate in
the Drosophila DNA sequence data.

Levels of polymorphism and rates of divergence in
human DNA sequences provide a counter-example
to the uncoupling of polymorphism and divergence
seen in Drosophila. Hellmann et al. (2003) used a
large amount of DNA sequence data to estimate 
both polymorphism within humans and diver-
gence between humans, chimps, and baboons. The
recombination rates near the loci used to estimate
polymorphism and divergence were also known for
humans. In the human sequences polymorphism
increases as the recombination rate increases. But 
in agreement with the neutral expectation that poly-
morphism and divergence are correlated, the degree
of divergence increased with the recombination rate
as well. Thus, in humans, correlated levels of poly-
morphism and divergence argue for the neutral 
evolution of mutations. It is possible that rates of
recombination and mutation are not independent in
humans because mutations increase the probability
of a recombination event nearby or the recombina-
tion process produces mutations.

Genetic hitch-hiking due to background or
balancing selection

While genetic hitch-hiking may sometimes involve
positive selection on beneficial mutations, it is also
possible that new mutations may be deleterious.
Negative or purifying natural selection removes
deleterious mutations from the population by driving
them to loss. Negative selection against deleterious
mutations is also expected to reduce polymorphism
through hitch-hiking in a process called background
selection (Charlesworth et al. 1995). When a new
deleterious mutation appears in a population, it is in
gametic disequilibrium with other neutral mutations.
Negative selection will cause the deleterious allele to
go to loss, bringing its associated neutral mutations
to loss as well. Therefore, background selection is
expected to cause a reduction in polymorphism in
populations. Background selection effectively lowers
the mutation rate at neutral sites because it removes
some portion of the new neutral mutations that
appear very briefly in the population but just happen
to be associated with a deleterious mutation and so
go to loss quickly.

A third possibility is that new mutations are acted 
on by balancing selection, which would eventually
bring new beneficial mutations at the same site to
intermediate frequencies and maintain them in the
population for very long periods of time. Balancing
selection is also expected to impact polymorphism 
at neutral sites that are in gametic disequilibrium
with the selected site. When a new beneficial muta-
tion appears at a site under balancing selection, the
initial increase in its frequency has a effect like a
selective sweep. However, long-term balancing selec-
tion leads to an increase in polymorphism because
balancing selection maintains multiple alleles that
persist in the population for long periods of time.
These selected alleles can then accumulate mutations
at neutral sites that are in gametic disequilibrium,
gathering polymorphism over time. Compared to
independent neutral sites, neutral sites in gametic
disequilibrium with sites under balancing selection
have greatly increased segregation times and so
have a greater opportunity to experience mutation
that leads to the accumulation of polymorphism
(reviewed by Charlesworth 2006).

Hitch-hiking can be thought of as a process that
alters the time to fixation or loss in the random walk
of neutral genetic drift (refer to Figs 8.2 and 8.3).
Hitch-hiking with beneficial mutations under posit-
ive selection greatly speeds up the time to fixation,
reducing polymorphism. Hitch-hiking with deleteri-
ous mutations under negative selection also reduces
polymorphism because the time to loss is accelerated.
Hitch-hiking with mutations under long-term balan-
cing selection increases polymorphism because
fixation or loss are avoided for long periods during
which neutral mutations can accumulate.

Gametic disequilibrium and rates of divergence

As we have seen earlier in the chapter, when the
probability of fixation of a new mutation is dictated
by natural selection then divergence rates change for
those sites under natural selection. Positive natural
selection speeds up divergence because advantageous

Background selection A reduction in
polymorphism caused by the combination 
of negative or purifying selection against
deleterious mutations that also leads to the
loss of neutral alleles in gametic disequilibrium
with the deleterious mutation.
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mutations fix faster on average than they would under
genetic drift alone. Alternatively, negative natural
selection slows divergence rates since deleterious
mutations go to loss rapidly and fewer neutral muta-
tions remain that might fix by genetic drift. The 
question that remains, then, is whether or not the
rate of divergence at neutral sites will be sped up or
slowed down if they are in gametic disequilibrium
with nucleotides that are acted on by natural selec-
tion. This question was first answered by Birky and
Walsh (1988).

Earlier in the chapter we established that the 
rate of divergence was a function of the rate of sub-
stitution (see equation 8.32). The expected rate of
substitution within a species is determined by the 

scaled mutation rate and the probability

of fixation for mutations (PF), which can be stated in
an equation as

(8.60)

As shown earlier in the chapter, for independent 

neutral mutations , as this is also the initial 

frequency of each new mutation. Here we use a new
symbol to express the fixation probability because
the probability of fixation for neutral mutations (PF)
may well be different when a mutation is in gametic
disequilibrium with a selected site than when a
mutation is independent.

Assume that we have a neutral locus with two
alleles A and a. The frequency of the A allele is x and
the frequency of the a allele is therefore 1 − x. Further
assume that this neutral locus is completely linked to
another locus where all alleles are under the influ-
ence of very strong positive natural selection. Let’s
imagine that a new mutation occurs at the selected
locus that is infinitely advantageous and so goes 
to fixation instantly. What is the probability that 
the A allele at the neutral locus is also fixed due to
hitch-hiking? The A allele at the neutral locus has a
frequency of x and therefore there is also the prob-
ability x that the new advantageous mutation at 
the selected locus is linked to the A allele. Thus, there
is the probability x that the A allele will sweep to
fixation with the new mutation at the selected locus.
However, the probability that the A allele is fixed by
genetic drift is also x since that is the initial frequency
of the A allele. Therefore, even complete linkage to the
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selected allele does not alter the fixation probability
for the A allele.

Birky and Walsh (1988) work through a more
general analytical case and present the results of
simulations, all showing that neither positive nor
negative natural selection will change substitu-
tion rates at neutral sites. This occurs because the
increased probability of substitution of the copies of 
a neutral allele linked to a selected site is counter-
balanced by a decrease of exactly the same amount
in the probability of fixation of all the neutral allele
copies that are not linked to a selected site.

Chapter 8 review

• The neutral theory is a widely used null hypo-
thesis in molecular evolution, predicting patterns
and rates of DNA sequence change under the
assumption that all mutations have no fitness
advantage or disadvantage. Even though genetic
drift leads to fixation or loss, neutral alleles experi-
ence a random walk to these end points that
results in transient genetic variation.

• Neutral theory predicts that polymorphism, or
genetic variation within populations, is a function
of the effective population size and the mutation
rate. Larger effective population sizes or higher
mutation rates result in higher levels of equilib-
rium polymorphism.

• Neutral theory predicts that the rate of divergence,
the accumulation of fixed nucleotide differences
between two species, is a function of only the
mutation rate.

• Nearly neutral theory uses the assumption that
many mutations are effectively neutral because
their selection coefficients are less than the pres-
sure of genetic drift. When 4Nes = 1, genetic drift
and natural selection are equally likely to dictate
the fate of a new mutation.

• Apparent divergence between two DNA sequences
may be underestimated because of multiple hit
mutations or homoplasy. Nucleotide substitu-
tion models serve to correct observed divergence
for multiple hits, giving a better estimate of actual
divergence.

• Nucleotide diversity (π) and the number of segregat-
ing sites (S ) are two measures of DNA sequence
polymorphism that can be used to estimate 
θ = 4Neμ.

• The molecular clock hypothesis uses the neutral
theory prediction that divergence occurs at a

··
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constant rate over time to estimate the time that
has elapsed since the two sequences shared a
common ancestor.

• Heterogeneity in the rate of divergence over time
is common and leads to difficulty equating diver-
gence with time since divergence.

• Under a Poisson process model, the variance in
substitution rates should equal the mean sub-
stitution rate to give an index of dispersion of one.
The index of dispersion is often not equal to one,
suggesting either that the substitution rate is not
dictated by purely neutral processes or that the
Poisson model is not an apt description of the
neutral substitution process.

• Rate heterogeneity can be consistent with neutral
evolution such as when mutation rates are con-
stant per generation but generations span different
lengths of time. Alternatively, rate heterogeneity
may be caused by natural selection that changes
the probability of substitution for mutations
depending on their fitness.

• The HKA and MK tests examine the neutral pre-
diction that polymorphism and divergence should
be proportional since both are functions of the
mutation rate. Tajima’s D compares θ estimated
from nucleotide polymorphism and the number
of segregating sites, which are expected to be
equal under neutrality. Mismatch distributions are
expected to be bimodal under the standard neutral
model. These are not tests only for the action of
natural selection, since population structure and
changes in the effective population size through
time also lead to rejection of the null hypothesis.

• Mutations acted on by natural selection can alter
levels of polymorphism at linked neutral nucleotide
sites. Genetic hitch-hiking reduces polymorphism
at neighboring sites because positive selection will
bring a mutation and linked neutral mutations 
to fixation but drive other mutations to loss in 
the process. Negative selection against some new
mutations also reduces polymorphism at linked
sites in a process called background selection.
Balancing selection can elevate polymorphism at
linked neutral sites because long-lived allele copies
accumulate numerous mutations over time.

• Divergence rates of neutral nucleotide sites are not
impacted by natural selection at linked nucleotide
sites.

Further reading

Motoo Kimura provided a readily accessible review
of neutral theory in:

Kimura M. 1989. The neutral theory of molecular 
evolution and the world view of neutralists. Genome
31: 24–31.

For a review of the nearly neutral theory see:

Ohta T. 1992. The nearly neutral theory of molecular
evolution. Annual Reviews of Ecology and Systematics
23: 263–86.

A non-technical overview of molecular clock con-
cepts, methods, and applications can be found in:

Bromham L. and Penny D. 2003. The modern molecu-
lar clock. Nature Reviews Genetics 4: 216–24.

A review of possible explanations for the overdispersed
molecular clock can be found in:

Culter DJ. 2000. Understanding the overdispersed
molecular clock. Genetics 154: 1403–17.

Edward Hooper’s popular 1999 book The River: a Journey
to the Source of HIV and AIDS (Little, Brown and Co.,
Boston, MA) examined in detail evidence connecting
the origin of HIV and polio vaccination campaigns.
While all of these ideas have been discredited, the
book makes interesting reading as science fiction.

John Gillespie’s 1991 classic book The Causes of Molecular
Evolution (Oxford University Press, New York) is 
a wide-ranging discussion and review of empirical
data as well as models of molecular evolution and the
molecular clock.

For a review of empirical studies where directional 
or balancing natural selection has been invoked to
explain observed polymorphism, see:

Hedrick PW. 2006. Genetic polymorphism in hetero-
geneous environments: the age of genomics. Annual
Review of Ecology Evolution and Systematics 37: 67–93.
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Problem box 8.1 answer

For the wheat–maize divergence 60 million years ago divergence rates are

coxI = 0.00042 substitutions per site per million years

atp9 = 0.001145 substitutions per site per million years

nad4 = 0.000318 substitutions per site per million years

Using these absolute divergence rates, the divergence time of the monocot–dicot split is estimated as

coxI = 245.2 million years

atp9 = 193.8 million years

nad4 = 173.1 million years

In both cases there is a factor of 2 in the denominator because there are two lineages accumulating
substitutions independently during divergence. The estimated divergence time clearly depends on
the locus used since the molecular clock ticks at slightly different rates per million years for each
locus. The average divergence time of 204 million years ago for these three loci matches the
average of about 200 million years based on all available data (Laroche & Bousquet 1995).

Problem box 8.2 answer

The Mayotte and Europe populations both contain a sample of 15 sequences for the runt locus so
that n = 15

= 3.2516

and
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and

= 0.04813

so that

In the European population there are 17 segregating sites out of a total of 556 sites so that

whereas in the Mayotte population there are 34 segregating sites out of a total of 538 sites so that

Tajima’s D for the European population is

= 0.0030/0.02393 = 0.1254

whereas Tajima’s D for the Mayotte population is

= −0.0059/0.0345 = −0.0171.

Neither population has patterns of DNA sequence polymorphism that deviate from those expected
under the standard neutral model.
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9.1 Quantitative traits

• Components of phenotypic variation.
• Components of genotypic variation (VG).
• Inheritance of additive (VA), dominance (VD), and

epistasis (VI ) components of genotypic variation.
• Genotype-by-environment interaction (VG×E ).
• Additional sources of phenotypic variation.

In the other chapters of this book, the concept of 
phenotype employed is somewhat simplistic. This 
is out of necessity because the emphasis in other
chapters is on expectations for genotype and allele
frequencies rather than on understanding the causes
of variation in phenotype. Phenotypes were assumed
to be completely determined by the genotype, and 
to have two or three discrete classes that correspond
exactly to the three genotypes of a single locus with
two alleles. (A minor exception is the two-locus model
of natural selection where the phenotype is fitness.)
While there certainly are examples of phenotypes in
natural populations that fit this description, the major-
ity of phenotypes are probably not well characterized
by these assumptions. This chapter will expand the
concept of phenotype and develop the concepts needed
to understand the relationship between various types
of genetic variation and phenotypic variation. The
chapter will introduce the various components of quan-
titative trait variation, show how these components
can be used to describe inheritance of phenotypes,
and also explore the action of natural selection and
genetic drift on complex phenotypes. The chapter will
wrap up with a section devoted to genetic mapping
methods used to identify and characterize individual
loci that cause quantitative trait variation.

Think of variable phenotypes such as human
height, the number of ears on a corn plant, daily milk
production in domestic cows, wood density in a tree
species, or the probability of onset of a disease such 
as diabetes or hypertension. Think next of complex
behavioral phenotypes such as sexual preference or

propensity to substance addiction in humans, success
in male–male contests for mates, or the quality of
mates chosen by females. Also think of phenotypes
related to Darwinian fitness such as individual size,
number of gametes, number of progeny, or number
of days an individual survives. While each of these
classes of phenotypes seems unrelated, they all share
features in common as quantitative traits (also
called metric traits). Quantitative traits are sometimes
called multifactorial traits because the variation in
phenotype among individuals has multiple causes.
Quantitative trait variation among individuals is a
product of differences in genotype produced by mul-
tiple genes as well as differences in environmental
conditions experienced by each individual.

The hallmark of quantitative traits is a broad range
of variation characterized by a continuous distribution
of individual phenotypes in a population (Fig. 9.1).
Continuous traits have a scale of measurement that
is naturally continuous, such as quantifying height
in centimeters or weight in kilograms. Meristic traits
exhibit a large number of discrete classes, such as 
the number of bristles on a fruit fly or the number of
leaves on a tree, that forms a distribution of pheno-
typic values. Threshold or liability traits are con-
tinuously distributed phenotypes with some trait value
that defines an upper or lower limit. Trait values above
or below the threshold define qualitatively distinct
categories such as “normal” and “symptomatic.” The
production of insulin is one example, where human
populations show a continuous distribution of insulin
production and individuals are clinically recognized
as diabetic when insulin production drops below a
threshold level.

In quantitative genetics the words phenotype,
trait, and character are all considered synonymous.
The term value is used to refer to the phenotype in the
same units that it is measured in. Phenotypic value
refers to the observed phenotype of an individual, 
for example observing that an individual fish has a
value of 400 mm for the phenotype of body length.

CHAPTER 9

Quantitative trait variation and evolution
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Biologists have been aware of continuously dis-
tributed phenotypes since Mendel’s time. After the
recognition of Mendel’s work in the early twentieth
century there was a major controversy involving
Mendelian genetics and quantitative genetics. The
biometric school was a branch of genetics devoted to
understanding the inheritance of continuously dis-
tributed phenotypes. Members of the biometric school
pioneered the application of statistical methods to
quantify and compare continuous phenotypic varia-
tion. Francis Galton (half-cousin of Charles Darwin)
founded the biometric school through his study of
human phenotypes and was an innovator in math

and statistics as well as the founder of the eugenics
movement (see Gillham 2001). Adherents of the 
biometric school argued that continuous traits were
due to a distinct set of biological causes and could 
not be explained by Mendel’s theory of particulate
inheritance. Galton tried unsuccessfully to develop a
model that explained the inheritance of quantitative
traits without reference to Mendelian genetics (see
Provine 1971; Bulmer 1998). In 1918, Ronald A.
Fisher (the same R.A. Fisher who contributed the
fundamental theorem of natural selection) published
a seminal paper showing definitively how single
Mendelian loci that individually produced discrete
classes of phenotypes could combine to result in 
continuously distributed phenotypes (Fisher 1918).

The continuous distribution of phenotypes under
Mendelian inheritance is due to polygenic variation.
The continuous variation in phenotype results from
the simultaneous segregation of several to many
independent Mendelian loci. Figure 9.2 shows the
phenotypic distribution for a trait determined by 
two independent Mendelian loci. In this two-locus
illustration, the expected frequency distribution of
phenotypes in the population is stepped and not
smooth. However, the distribution clearly resembles
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Figure 9.1 Examples
of continuous
quantitative trait
distributions. The top
panels show the
distributions of body
length and weight in a
sample of 3-year-old
striped bass (Morone
saxatilis). The bottom
panels are pupal mass
distributions for
mosquitoes raised in
laboratory or field
conditions. Each panel
gives the sample size
(n), mean, variance,
and coefficient of
variation (CV) that
quantify the phenotypic
distribution. Striped
bass data are from 
L. Pieper (unpublished
results). Mosquito
pupal mass data from
Armbruster and 
Conn (2006) and 
P. Armbruster
(unpublished results).

Quantitative trait or character A phenotype
where values for numerous individuals in 
a population are continuously distributed 
and that variation has both genetic and
environmental causes.
Value The phenotypic measurement of an
individual in the units of trait measurement;
the mean phenotypic measurement of a
population.
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a normal distribution with symmetry about a single
central mode. This hypothetical two locus pigment
trait has five classes between 10 and 90% pigment
that are evenly spaced as expected for a quantitative
trait. One assumption in Fig. 9.2 is that the popula-
tion of individuals is large. This ensures there is not a
lot of chance sampling variation that would cause an
observed distribution of phenotypes to differ greatly
from its expected frequencies (e.g. due to chance 
no individuals with 10% pigment phenotypes are
observed). This assumption is implicit in all of the
expectations in quantitative genetics.

As the number of loci determining a trait increases,
the phenotypic differences between adjacent genotype
classes also decreases, resulting in a phenotypic dis-
tribution that is smoother. For a phenotype where there
is codominance (also known as semi-dominance) and
allele frequencies are all 1/2, the expected frequencies
of each class of phenotypic values can be found by
taking the expected frequencies of the three geno-

types at a single locus and raising it to the power of
the number of loci:

(9.1)

where the n is the number of loci that contribute
equally to the quantitative trait. From this equation
it is also apparent that a smoother distribution of
phenotypic values would result from loci with more
than two alleles because each locus would produce
more than three genotypes under random mating.
For the two locus phenotype shown in Fig. 9.2, the
expected frequencies of the phenotypes are found by
multiplying the frequencies of the Hardy–Weinberg
genotype frequencies for each locus:

(9.2)

and then summing the frequencies of those geno-
types that have identical phenotypes.
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Another primary cause of variation among indi-
viduals in quantitative traits is the environment.
Even if there is only a single genotype, the pheno-
type expressed by each individual in a population
will vary somewhat depending on the environ-
mental conditions each individual experiences. For
example, the biomass and fruit production of plants
is impacted by the amount of sunlight and nitrogen
each individual receives. Another example of environ-
mental variation in quantitative traits is the role 
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Figure 9.2 The phenotypic distribution for a trait
determined by two Mendelian loci. This hypothetical
phenotype might be something like flower color, ranging
between nearly white and deep blue. The genotypes are 
those expected in a large number of progeny from a cross
between two doubly heterozygous (AaBb) parents.
Alternatively, the genotype frequencies are those expected 
in a large number of progeny from a parental population 
with Hardy–Weinberg genotype frequencies where mating 
is random and all allele frequencies are 1/2. Each a or b allele 
in a genotype causes 1/4 unit of pigment in the phenotype
whereas each A or B allele in a genotype causes 21/4 units 
of pigment in the phenotype. As the number of loci
contributing to the trait increases, the expected frequency 
of any individual genotype decreases and the phenotypic
distribution will become smoother. For this phenotypic
distribution the mean = 5, the variance = 4, and the
coefficient of variation (CV) = 40. Calculate the expected genotype

frequencies for three locus genotypes in a
population where mating is random, all loci
have two alleles, and allele frequencies at 
all loci are 1/2. Then construct a histogram 
of phenotypic values using the minimum 
and maximum phenotypic values used 
in Fig. 9.2 by assuming that alleles have
phenotypic values of 1/6 (lower-case letter
alleles) and 11/2 (capital-letter alleles).

Problem box 9.1
Phenotypic distribution 
produced by Mendelian

inheritance of three diallelic loci
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of diet and exercise in human disease, where better
conditions tend to lessen the frequency or severity of
disease phenotypes. Figure 9.3 shows how environ-
mental differences among individuals contribute to
the continuous distribution of phenotypic variation.
The left-hand panel of Fig. 9.3 shows the five pheno-
types produced by a trait due to two diallelic loci. 
If each phenotypic class expressed by a genotype is
modified by environmental variation, the distribution
of phenotypes becomes both wider and smoother 
as shown in the right-hand panel of Fig. 9.3. The
environmental variation experienced by individuals
is also likely to be a truly continuous variable, unlike
the discrete categories of genotypes produced by
multiple loci, that then causes continuous variation
in phenotypes.

Components of phenotypic variation

Now that we have seen how discrete Mendelian
genetic variation for multilocus genotypes combined
with continuous environmental variation produces
continuous phenotypic distributions, let’s represent
the genetic and environmental causes of phenotypic
variation in notation. In quantitative genetics it 
is customary to symbolize expected quantitative trait
variation with a V. The V variable always bears a
subscript to indicate a specific cause of phenotypic
variation. The total variation in phenotype is rep-
resented by VP and examples of total phenotypic
variance are shown in Figs 9.1 and 9.3. This total
phenotypic variation has both genetic and environ-
mental causes. The phenotypic variation caused by
variation in genotypes in the population is represented
by VG. Independently, the variation in phenotype

caused by the environment is represented by VE. The
equation

VP = VG + VE (9.3)

is used to represent that the total variation in 
phenotype in a population is the sum of phenotypic
variation caused by genotype differences among

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
o

p
o

rt
io

n
 o

f p
ro

g
en

y

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5

Phenotypic value (units of pigment)Phenotypic value (units of pigment) 

6 7 8 9 10

Environment

Environment

Environment Environment

Environment

Figure 9.3 The effect of environmental variation on phenotypic variation. The phenotypic distribution on the left is produced 
by two Mendelian loci with all allele frequencies equal to 1/2 as in Figure 9.2. If the environment causes some variation in the
phenotype expressed by each genotype, then the distribution of phenotypes produced by polygenic variation becomes both
smoother and wider. In this illustration, environmental variation causes 50% of the individuals of each genotype to randomly
increase or decrease one unit in phenotypic value. Although the average effect of environmental variation here is a zero change in
phenotypic value, the phenotypic variance increases.
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aa BB

Aa BB
aA BB
AA Bb
AA bB AA BB

Mean = 8.13
Variance = 1.79

CV = 16.45

Figure 9.4 Phenotypic distributions for a trait determined
by two loci in populations with low additive genetic variation
(VA). Genetic variation in phenotypes is additive since each 
a or b allele in a genotype contributes 1/4 unit of pigment 
while each A or B allele in a genotype contributes 21/4 units 
of pigment irrespective of genotype. However, total genetic
variation is relatively low since allele frequencies are near
fixation and loss (the frequency of a and b alleles is 0.1 
while the frequency of A and B alleles 0.9). Compare with 
Fig. 9.2 where allele frequencies are all equal to 1/2 and allelic
effects are additive.
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individuals and phenotypic variation caused by the
different environments individuals experience.

Quantifying and comparing the variance of 
quantitative traits utilizes a set of summary statistics.
Since quantitative trait distributions usually approxi-
mate hump-shaped normal distributions, statistics
that describe normal distributions are useful (see 
the Appendix for a primer on basic statistics used in
quantitative genetics). The middle or central tend-
ency of a quantitative trait distribution is described
by its average or mean. The spread of the observa-
tions around this central tendency is described by
the variance of the distribution. The coefficient of 

variation or CV (CV = where U is the 

trait mean and var is the trait variance) is used to
compare the variances of distributions after correct-
ing for differences due only to the value of the mean.
The CV expresses the magnitude of the standard
deviation as a percentage of the mean. As an illus-
tration, look at the quantitative trait distributions 
in Fig. 9.1. Body length and weight for fish have 
much greater mean values than pupal weights for
mosquitoes. But, using the CV, we can compare the
variation in these traits to see that the standard 
deviation is about 5% of the mean for body length in
striped bass and almost 21% of the mean for pupal
mass in wild-reared mosquitoes. The CV also allows
us to properly compare the distributions of pupal mass
for laboratory-reared mosquitoes and mosquitoes
grown in the wild to see that the spread of pupal mass
values around the mean is about two times wider in
the wild mosquitoes (CV = 20.68) than in laboratory-
reared mosquitoes (CV = 11.23).

  

var
( )

x
100

Biologically, equation 9.3 helps us to recognize
and quantify the determinants of phenotypic varia-
tion. Equation 9.3 divides the causes of quantitative
trait variation into those due to heredity and those
due to the environment, or into the phenotypic vari-
ation caused by nature and that caused by nurture.
Look again at the bottom panels of Fig. 9.1 that show
pupal mass distributions for mosquitoes. Imagine that
the laboratory and wild populations of mosquitoes
have roughly the same genotype frequencies or VG.
The greater pupal mass variance or VP in the wild
population could then be explained by greater environ-
mental variance or VE, a common observation since
laboratory conditions tend to be more uniform and
benign. As an alternative, imagine that the laboratory
population has less VG since it was founded from 
a small sample of individuals and it also has less VE
since the conditions individuals experience are more
uniform. Then the greater pupal mass variance (VP)
in the wild could be caused by both more genetic
variation (VG) and more environmental variation (VE)
than experienced by individuals in the laboratory. 
In this fashion it is possible to quantify and compare
the relative causes of phenotypic variation.

The V notation compactly expresses the multiple
causes of total phenotypic variation, VP, in quant-
itative traits. Genotypic variation (VG) and environ-
mental variation (VE) are not the only causes of total
phenotypic variation. Table 9.1 summarizes addi-
tional causes of total phenotypic variation. Notice
that VG is actually broken down into three distinct
components due to the effects of alleles, the effects 
of dominance, and the effects of gene interaction 
or epistasis (epistasis is symbolized VI since VE is 

··

Table 9.1 Symbols commonly used to refer to categories or causes of variation in quantitative traits. Variation
is indicated by V while the specific cause of that variation is indicated by a subscript capital letter (with one
exception). Total genetic variation (VG) in phenotype can be divided into three subcategories.

Symbol Definition

VP Total variance in a quantitative trait or phenotype
VG Variance in phenotype due to all genetic causes

VA Variance in phenotype caused by additive genetic variance or the effects of alleles
VD Variance in phenotype caused by dominance genetic variance or deviations from additive

values due to dominance
VI Variance in phenotype caused by interaction genetic variance (epistasis between and among loci)

VE Variance in phenotype caused by environmental variation
VG×E Variance in phenotype caused by genotype-by-environment interaction
VEc Variance in phenotype caused by environmental variation shared in common by parents and

offspring or by relatives
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already taken to represent environmental variance).
In Chapter 10, the Mendelian basis of quantitative
traits is used to derive quantitative expectations for
VG and its components. For now, let’s continue to
develop an intuitive understanding of the causes of
total phenotypic variation in addition to VG and VE.

Components of genotypic variation (VG)

Thus far, we have distinguished between the genetic
and environmental causes of phenotypic variation.
In quantitative genetics, a primary goal is to explain
the hereditary causes of phenotypic variation. To fully
understand the genetic contribution to total pheno-
typic variation it is necessary to recognize that VG is
itself made up of three separate causal components.
The components of the total genotypic variation are

VG = VA + VD + VI (9.4)

where VA is additive genetic variation, VD is domin-
ance genetic variation, and VI is interaction or 
epistasis genetic variation.

The additive genetic variance is the genotypic
variance caused by the cumulative phenotypic effects
of alleles when they are assembled into genotypes.
Additive simply means that the phenotypic effect of
each allele can be added together to determine the
phenotypic value of any genotype. When alleles have
additive effects, then the specific pairing of alleles in a
genotype, be it a homozygote or a heterozygote, has
no impact on the way alleles combine to produce a
phenotype. In other words, additivity describes the
situation when each allele has the same effect on the
phenotypic value regardless of the context where it 
is found. Figure 9.2 shows an illustration of additive
genetic variation in a quantitative trait. Each a or b
allele in a genotype contributes 1/4 unit of pigment 
in the phenotype whereas each A or B allele in a
genotype contributes 21/4 units of pigment in the
phenotype. The phenotype of any genotype can be
determined simply by adding together the phenotypic
effects of the two alleles.

When gene action is additive, the amount of 
additive genetic variance (VA) in a population depends 
on allele frequencies. There is more additive genetic
variance in phenotype when alleles are at inter-
mediate allele frequencies than when they are near
fixation and loss. This is because intermediate allele
frequencies result in all possible genotypes (assuming
random mating) being represented in the population,
which in turn produces a wide range of phenotypes.

Figure 9.2 shows the wide range of phenotypes found
in a population where genetic variation is additive
and all alleles are at a frequency of 1/2.

To see how genetic variation causes phenotypic
variation when allelic effects are strictly additive, com-
pare Figs 9.2 and 9.4. In both figures, phenotypes for
each genotype are determined by adding together
the phenotypic effects of the alleles in a genotype
(each a or b contributes 1/4 unit of pigment and each
A or B contributes 21/4 units of pigment). However,
the allele frequencies in Fig. 9.4 are closer to fixation
and loss so there is a much less even genotype fre-
quency distribution in the population. The change 
in allele frequencies leads to two very common 
genotypes and three genotypes that are very rare.
This reduction in genetic variation causes a reduc-
tion in phenotypic variation. With allele frequencies
nearer fixation and loss, the frequency distribution of 
phenotypes is now narrower and clumped around
values at the upper end of the range.

In addition to the additive effects of alleles, quantitative
trait variation is also caused by the effect of genotypes.
Dominance and epistasis are properties of genotypes
that can be thought of in two conceptually distinct
ways (see Wade 1992; Cheverud & Routman 1995;
Phillips 1998). In a physiological or functional sense,
dominance and epistasis describe the way phenotypes
map to genotypes. Both are forms of genetic interac-
tion. With dominance, the phenotype depends on the
combination of alleles within a locus that compose 
a genotype (allele interactions). With epistasis, the
phenotype depends on the combination of genotypes
at two or more loci (genotype interactions). Two
diallelic loci can produce eight distinct ways by which
genotypic values are determined by combinations of
two-locus genotypes. These eight genetic effects are
illustrated in Table 9.2. In general, there are a total
of 3n − 1 distinct genetic effects for n diallelic loci
(Cockerham 1954; see also Goodnight 2000).

At the same time, both dominance and epistasis
have a population-level meaning that is statistical.
Both dominance and epistasis can be thought of as the
“leftover” part of genotypic variance in the population

Additive genetic variance (VA) The
proportion of the total genotypic variance 
(VG) caused by the sum of phenotypic 
effects of alleles when they are assembled 
into genotypes.
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that is not explained by the additive genetic variance
due to differences in alleles among individuals. The
magnitudes of VD and VI in the statistical sense are 
a function of both the genotype frequencies in the
population as well as the relationship between geno-
type and phenotype. These non-additive parts of the
phenotypic variance are sometimes called dominance
and epistasis deviations since they are measured as
differences from the variance that would be expected
in a population if all genetic effects were additive.

The distinction between additive and domin-
ance genetic variance in quantitative traits can be
seen with a modification of the rules that specify the
relationship between genotypes and phenotypes.
Under additivity, each genotype’s phenotypic value
is determined by the sum of the phenotypic effects of
the alleles that compose it. An alternative relation-
ship between the genotype and phenotype is seen
with complete dominance, where heterozygotes
have the same phenotype as one of the homozygotes.

With dominance, the phenotypic value of the hetero-
zygote is no longer determined by adding together
the phenotypic effects of the two alleles that compose
it. When gene action shows dominance, the pheno-
typic contribution of an allele depends on pairing of
alleles in the genotype where it resides. Dominance
causes the phenotype to be defined by the genotype
context rather than being independent of the pairing
of alleles in a genotype as it is under additivity.

The additivity rule that applies in Fig. 9.2 is changed
to complete dominance in Fig. 9.5a. Dominance
markedly changes the phenotypic frequency dis-
tribution, even though allele frequencies remain
constant in the two panels. In Fig. 9.2 the pheno-
typic distribution is symmetric and exhibits every
possible value of the phenotype. In contrast, Fig. 9.5a
shows that about 56% of the individuals in the 
population have phenotypic values of 9. There are
no longer any individuals with phenotypic values of
3 or 7 units of pigment. In this example, dominance

··

Table 9.2 The eight uncorrelated (or orthogonal) types of genetic effects that can occur between two
diallelic loci. Four of the eight types of genetic effects are interactions that give rise to VI. The genotypic values
assume all allele frequencies are 1/2. Table after Goodnight (2000).

Genetic effect Genotypic value
Genotypes and
phenotypes . . . A1A1 A1A2 A2A2

Additive A locus B1B1 1 0 −1
B1B2 1 0 −1
B2B2 1 0 −1

Additive B locus B1B1 1 1 1
B1B2 0 0 0
B2B2 −1 −1 −1

A locus dominance B1B1 0 1 0
B1B2 0 1 0
B2B2 0 1 0

B locus dominance B1B1 0 0 0
B1B2 1 1 1
B2B2 0 0 0

Additive-by-additive interaction B1B1 1 0 −1
B1B2 0 0 0
B2B2 −1 0 1

Additive (A locus)-by-dominance (B locus) interaction B1B1 1 −1 1
B1B2 0 0 0
B2B2 −1 1 −1

Dominance (A locus)-by-additive (B locus) interaction B1B1 1 0 −1
B1B2 −1 0 1
B2B2 1 0 −1

Dominance-by-dominance interaction B1B1 −1 1 −1
B1B2 1 −1 1
B2B2 −1 1 −1
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increases VP somewhat compared to additivity (see
Fig. 9.2) because more genotypes (heterozygotes and
dominant homozygotes) exhibit genotypic values 
at the upper extreme of the distribution. In general,
dominance can either increase or decrease VP depend-
ing on allele frequencies in the population. The
Mendelian basis of dominance and the dominance
variance are explained in detail in Chapter 10.

Epistasis literally means “standing on” and denotes
interactions between two or more loci that dictate
the phenotypic value of a multilocus genotype. When
epistasis is absent, the phenotypic value of a multi-
locus genotype is the sum of the phenotypic value of
all single locus genotypes. With epistasis, the pheno-
typic contribution of the genotype at one locus depends
on the genotypes of other loci that it is paired with.
When there is epistasis then the combination of geno-
types at two or more loci dictates the phenotypic value
of a genotype. In the most extreme case, epistasis
produces a phenotypic value for each multilocus
genotype that is unique to that combination of geno-
types. For example, with epistasis the phenotypic value
of the AA genotype paired with the BB genotype
(AABB) cannot be predicted from the phenotypic
values of the AABb or AAbb genotypes. The inter-
action genetic variance (VI) is caused by deviations
of genotypic values from the values that would occur
if each locus had additive effects.

Since the interactions between two loci can take
many forms, a range of terminology has been used to
describe the impact of locus interactions on pheno-
typic values (see Phillips et al. 2000). For example, the
term synergistic epistasis describes the situation
where a genotype has a larger effect on the pheno-
typic value in the presence of certain other genotypes
than would be expected under additivity. In contrast,
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Figure 9.5 Phenotypic distributions for a trait determined
by two loci with either complete dominance or epistasis.
(a) Due to dominance, the majority of phenotypes are 9 units
of pigment and no individuals display phenotypes with 3 or 
7 units of pigment. In this example of two diallelic loci, the
frequency of heterozygotes is at a maximum because all allele
frequencies are 1/2. In general, total phenotypic variation in
the population can be increased or decreased by dominance.
(b) The bottom phenotypic distribution shows an example of
epistasis identical to the two-locus system that determines
coat color in Labrador retriever dogs. One dominant locus
controls pigment color (BB and Bb genotypes have black 
coats and bb genotypes have brown coats) while a second
completely dominant locus controls the presence or absence
of pigment in hairs (AA and Aa genotypes have pigmented
hair and aa genotypes have unpigmented hair). In this
example of dominance by dominance epistasis, phenotypic
expression of the genotype at the coat color locus depends 
on the genotype at the pigmentation locus. In both graphs,
the genotype frequencies are those expected under
Hardy–Weinberg assumptions where all allele frequencies
are 1/2. The mean and variance are based on a population of
1000 individuals.

Dominance genetic variance (VD) The
proportion of the total genotypic variance 
(VG) caused by the deviation of genotypic
values from their values under additive gene
action caused by the combination of alleles
assembled into a single-locus genotype.
Epistasis or interaction genetic variance 
(VI) The proportion of the total genotypic
variance (VG) due to the deviation of
genotypic values from their values under
additive gene action caused by interactions
between and among loci.
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antagonistic epistasis describes an interaction
where a genotype has a smaller effect on the pheno-
typic value in the presence of certain other genotypes
than would be expected under additivity.

A classic example of two-locus epistasis are the
coat-color phenotypes of Labrador retriever dogs (see
Fig. 9.5b). For the sake of illustration, assume one
completely dominant locus controls pigment color,
with BB and Bb genotypes having black coats and bb
genotypes having brown coats (see Kerns et al. 2007
for a more complete description of the genetic basis of
coat color in dogs). A second completely dominant
locus controls the presence or absence of pigment in
hairs. At the pigmentation locus, AA and Aa geno-
types have pigmented hair and therefore exhibit the
black or brown coat color determined by the B locus.
(The pigmentation locus is often symbolized as the 
E locus but A is used here for consistency across
examples.) However, if the pigmentation locus geno-
type is aa then the coat color locus has no effect and
the coat is yellow because hair pigment is not pro-
duced. In a population of Labrador retriever dogs,
interaction between the coat color and pigmenta-
tion loci will alter the mean and variance of coat
color phenotypes relative to two loci that combine
additively. The exact impact of the interaction on the
phenotypic mean and variance will depend on the
genotype frequencies at the two loci.

The distinction between phenotypic variation 
produced by additive gene action and dominance 
or epistasis helps clarify a subtle point of termino-
logy in quantitative genetics. The problem is what
exactly to call VG. It is sometimes called genetic 
variation because multiple alleles in a population lead 
to variation that under additive gene action pro-
duces multiple phenotypes. But with dominance and 
epistasis, genetic variation is a product of multiple
genotypes that then produce a range of phenotypes
in a population. Calling VG genotypic variation is prob-
ably best since it encompasses phenotypic variation
due to both alleles and genotypes.

Inheritance of additive (VA), dominance (VD), 
and epistasis (VI) genotypic variation

Another way to appreciate the differences among
the VA, VD, and VI components of the total genotypic
variation is to consider an example of inheritance
across a generation. Additive genetic variation (VA)
has a distinct pattern of inheritance compared to
dominance and epistasis genetic variation (VD and
VI). A critical distinction among the three components

of the total genotypic variance is that VA is caused 
by the average phenotypic effects of alleles while VD
and VI are caused by the average phenotypic effects
of genotypes.

Additive genetic variation is the component of the
genotypic variance that causes the phenotypic resemb-
lance between relatives. For example, parents and
their offspring or siblings (brothers and sisters) have
a higher degree of phenotypic resemblance than two
randomly sampled individuals in the same population.
This average phenotypic resemblance comes about
because relatives share alleles that are identical by
descent. When alleles combine additively, then shared
alleles translate into shared phenotypic values. Only
when alleles have additive effects does genetic variation
contribute to average resemblance between parents
and offspring or among related individuals.

Examples of additive gene action across one gen-
eration are shown in Table 9.3. In the top half of the
table alleles at one locus are assumed to act additively
to determine phenotypic values. When crossing 
BB × bb parents or Bb × Bb parents, the parental
mean phenotype and the progeny mean phenotype
are always identical. The equality of mean pheno-
types across one generation is remarkable giving
that the genotypes of the parents and progeny are
not identical. In fact, in the BB × bb cross, none of the
progeny share their genotype with the parents since
all progeny possess Bb genotypes. What is common
between the parents and progeny in each case are
allele frequencies. As long as alleles combine additively
to determine phenotypic values, identical allele fre-
quencies in two separate populations will produce
identical mean phenotypes. This can be seen well in
the second cross (B) for additive gene action, where a
population of all Bb heterozygotes has the same allele
frequencies and same mean phenotype as a popula-
tion of 1/4 BB, 1/2 Bb, and 1/4 bb individuals.

In contrast to the additive effects of alleles are the
genotype effects of dominance and epistasis. Domin-
ance can be thought of as an interaction between 
the two alleles that make up a single-locus diploid
genotype. With dominance, the genotypic value of
the heterozygote is not just the sum of the two allelic
effects but is some other value depending on how the
two alleles interact when packaged into one genotype.
While dominance is a continuous variable, complete
dominance, where the heterozygote and the domin-
ant homozygote have identical phenotypes, is a use-
ful point of reference. In complete dominance, alleles
behave differently in how they contribute to pheno-
type depending on whether a genotype is composed

··
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of two identical alleles (homozygous genotypes) or
two dissimilar alleles (heterozygous genotypes).

Two examples of the average phenotypic resemb-
lance between parents and offspring under complete
dominance are shown in the bottom half of Table 9.3.
When crossing BB × bb parents (a) to yield a popula-
tion of Bb progeny, the parental mean phenotype
and the progeny mean phenotype are not identical.
This lack of parent–offspring phenotypic resemblance
occurs because the parental population and the
progeny population do not share any genotypes in
common. The parents are both homozygotes while
all progeny are heterozygotes. The mean phenotype
for parents and progeny is closer for the Bb × Bb
parental cross (b). This occurs because 50% of the
progeny have an identical genotype to the parents.
Thus, with dominance, shared genotype frequencies
will lead to phenotypic resemblance. Because par-
ticulate inheritance breaks up genotypes, alleles are
inherited but diploid genotypes are not. Genotype
frequencies are a consequence of how gametes com-
bine to make progeny genotypes. Thus, the genotype
effects of dominance (VD) do not contribute to average
phenotypic resemblance between parents and off-
spring. Like dominance, epistasis (VI) is also a property
of the genotype that does not contribute to average

phenotypic resemblance between parents and offspring
because genotypes are not inherited. An exception is
that additive by additive epistasis does contribute to
resemblance between parents and offspring.

Whereas VD does not contribute to the resemblance
of parents and offspring, dominance variance can
cause phenotypic resemblance between other types
of relatives. In particular, dominance variance con-
tributes to the phenotypic resemblance among full
siblings (brothers and sisters). This occurs because
full siblings can inherit identical genotypes since
they share the same two parents in common. Thus, 
a shared heterozygote genotype would cause two 
full siblings to share a genotypic value caused by
dominance. Resemblance among relatives is explored
more fully in section 10.6.

Genotype-by-environment interaction (VG×E)

Phenotypic variation can be caused by the combina-
tion of genotypes and environments in a population.
Up to this point we have assumed that genotypes are
all equally sensitive to their environments, mean-
ing that a change of environment would impact 
the phenotype of all genotypes to the same extent. 
In fact, genotypes very often have different degrees 

Additive gene action
Genotypes BB Bb bb
Phenotypes 3 2 1

Cross Mean phenotype
(a)
Parents BB × bb

Progeny Bb 2

(b)
Parents Bb × Bb 2
Progeny 1/4 BB, 1/2 Bb, 1/4 bb 1/4(3) + 1/2(2) + 1/4(1) = 2

Complete dominance
Genotypes BB Bb bb
Phenotypes 3 3 1

Cross Mean phenotype
(a)
Parents BB × bb

Progeny Bb 3

(b)
Parents Bb × Bb 3
Progeny 1/4 BB, 1/2 Bb, 1/4 bb 1/4(3) + 1/2(3) + 1/4(1) = 2.5

 

3 1
2

2
+

=

 

3 1
2

2
+

=

Table 9.3 Examples of parental
and progeny mean phenotypes
that illustrate the impacts of
additive gene action (top) or
complete dominance gene action
(bottom). For both types of gene
action, the phenotypic value of
each genotype is given and the
genotypes of two possible parental
crosses are shown along with the
genotypes in the progeny from
each cross. Under additive gene
action the mean phenotypic 
values are identical in the parents
and progeny because phenotypic
values are a function of allele
frequencies and alleles are 
identical in parents and progeny.
In contrast, under complete
dominance parent and progeny
mean phenotypic values differ
because phenotypic values are 
a function of the genotype and
genotype frequencies differ
between parents and progeny.
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of sensitivity to environmental conditions. This
cause of phenotypic variance is called genotype-
by-environment interaction and is symbolized 
by VG×E. This adds another term to the expression for
the independent causes of total phenotypic variation
in a population:

VP = VG + VE + VG×E (9.5)

In one form of genotype-by-environment interaction,
genotypes are extremely sensitive to changes in the
environment such that the total phenotypic variance
changes markedly between two or more environ-
ments. In another form of genotype-by-environment
interaction, genotypes change phenotypic rank in
different environments. For example, genotype AA
has a larger phenotypic value than genotype Aa 
in environment one but in environment two the
order is reversed with genotype Aa having the larger 
phenotypic value.

Hypothetical genotypic (VG), environmental (VE), and
genotype-by-environment interaction (VG×E) contri-
butions to total phenotypic variation are illustrated
in Fig. 9.6. The figure illustrates the results of an
imaginary experiment where individuals of four dif-
ferent genotypes are subjected to two environments.
Lines connect the phenotype measured for the same
genotype in the two environments. Genotypic varia-
tion only (VG; Fig. 9.6a) means that the four genotypes
have different phenotypes but that no genotype
changes its phenotype between the environments
(notice that the spread of phenotypes does not change

··

4

6

8

10

12

A B
4

6

8

10

12

A B
4

6

8

10

12

A B

4

6

8

10

12

A B

VG×EVG×E

VG only VE only VG and VE

Ph
en

o
ty

p
ic

 v
al

u
e

(a) (b) (c)

(e)(d)

4

6

8

10

12

Ph
en

o
ty

p
ic

 v
al

u
e

A B

Environment

Figure 9.6 Examples of phenotypic variation due to genetic (VG), environmental (VE), and genotype-by-environment (VG×E)
causes shown in norm-of-reaction plots. In all graphs, the phenotypic values of four genotypes within each of two environments
(here called A and B) are plotted. Lines connect the phenotypic values of one genotype measured in the two environments. (a)
Genotypic variation, where the four genotypes have different phenotypic values but the phenotypic value of each genotype does
not change between environments. (b) Environmental variation: all genotypes have identical phenotypes (lines are staggered 
so that each can be seen) but the phenotype changes between environments. (c) Both genotypic and environmental variation:
genotypes differ in phenotype and genotypes have different phenotypes in the different environments. (d) and (e) Genotype-by-
environment interaction, with genotypes differing in the phenotypic value expressed in two or more environments. One type of
genotype-by-environment interaction is characterized by lines connecting the genotypes that are not parallel (d), leading to
changes in the phenotypic variance. In a second type of genotype-by-environment interaction, the rank order of phenotypic values
exhibited by genotypes changes across environments and leads to crossing lines in norm-of-reaction plots (e).

Genotype-by-environment interaction
(VG××E) The contribution to total phenotypic
variation caused by genotypes that vary in
their sensitivity to different environments. 
Also known as phenotypic plasticity.
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between the environments when there is only VG).
Environmental variation only (VE; Fig. 9.6b) means
that the four genotypes have identical phenotypes but
the phenotype changes between the two environ-
ments (the four genotype lines are not drawn exactly
on top of each other so each can be seen). A combina-
tion of both genotypic (VG) and environmental (VE)
variation in phenotype means that the genotypes
have different phenotypes and the phenotypes also
change between environments (Fig. 9.6c). Notice that
with VG and VE the lines are parallel, showing that
each genotype has an identical change in phenotype
caused by the change in environment.

Two types of genotype-by-environment interaction
are shown in Fig. 9.6. Both examples illustrate the
hallmark of genotype-by-environment interaction:
different genotypes vary in their response to changes
in their environment. One example shows that the
range of genotypic values of the four genotypes depends
on the environment (Fig. 9.6d). In environment A
there is less variation in genotypic values and in
environment B there is more variation in genotypic
values. When the lines connecting genotypes are 
not parallel in a norm-of-reaction plot, then geno-
typic variance changes with environment. Another
example shows different environmental sensitivity of
genotypes that causes a change of phenotypic ranks
between the two environments (Fig. 9.6e). Three 
of the genotypes respond to the change in environ-
ment and demonstrate increased genotypic values 
in environment B. The genotype with a value of 5 in
environment A experiences the largest change in
phenotype, showing a value of 11 in environment B.
In contrast, the genotype indicated by the solid line is
completely insensitive to the environmental change.
Crossing lines indicate genotype-by-environment
interactions as changes in rank order of genotypic
values in norm-of-reaction plots.

An early and still classic example of a genotype-by-
environment interaction comes from Clausen, Keck,
and Hiesey (1948; see Nunez-Farfan & Schlichting
2001). These researchers sampled a group of plants in
the genus Achillea at a single location in Aspen Valley,
California (elevation 1950 m). They then sprouted
vegetative cuttings of each Aspen Valley plant to create
multiple individuals of each genotype for the numer-
ous sampled genotypes. The newly sprouted cuttings
were planted at three sites with increasing elevations
between sea level (Stanford) and high in the moun-
tains above the treeline (Timberline). The sprouted
cuttings of each of the original Aspen Valley plants
were genetically identical, so plants with identical
genotypes could be transplanted at each elevation.

The transplanted cuttings were monitored and 
their phenotypes were measured over several years.
Figure 9.7 shows the values of two phenotypes (longest
stem and number of stems) measured for seven differ-
ent genotypes grown at each of the three elevations.

Genotypic, environmental, and genotype-by-
environment interaction all contributed to phenotypic
variation in Achillea. VG is evident because the pheno-
types for the different genotypes within an environment
were clearly not identical. VE was evident because the
average phenotype varied across the environments,
being highest at Mather, intermediate at Stanford, and
lowest at Timberline. VG×E was also evident because
the ranks of the phenotypic values for each genotype
clearly changed across the three environments. In
other words, genotypes that demonstrated phenotypic
values above the mean in one environment had a
below average phenotypic value in another environ-
ment and vice versa. Therefore, in Achillea the pheno-
typic variation seen across these three environments
had three causes. It was due to a combination of 
differences in phenotypic values among genotypes,
differences in phenotypic values among environ-
ments, and differences in the change in phenotypic
value of genotypes across the three environments.

Genotype-by-environment interaction has been
observed for diverse phenotypes and a wide range 
of organisms. An example related to human health
involves the risk of colorectal adenoma, a disease
characterized by pre-cancerous tumors of the colon,
genotypes at the UGT1A6 (UDP glycosyltransferase 1
family, polypeptide A6) locus, and use of aspirin.
Regular aspirin intake reduces the risk of colorectal
adenoma for individuals with all UGT1A6 genotypes
compared to no use of aspirin. However, individuals
homozygous or heterozygous for the “slow” UGT1A6
allele, a variant that leads to slower aspirin meta-
bolism, show significantly reduced risk of colorectal
adenoma when individuals are taking aspirin com-
pared with other UGT1A6 genotypes (Bigler et al.
2001; Chan et al. 2005; Hubner et al. 2006). 
Thus, individual risk of colorectal adenoma depends
on combinations of UGT1A6 genotype and aspirin
“environments.” Additional examples of genotype-
by-environment interactions in human disease are
reviewed by Hunter (2005). See many more examples
of genotype-by-environment interactions in Pigliucci
(2001) and DeWitt and Scheiner (2004).

The genotype-by-environment interaction can also
be thought of as a correlation between genotypic
value and environmental impact on the phenotype.
The decomposition of VP = VG + VE without any 
contribution of VG×E makes the assumption that the
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phenotypic value of a genotype and any environ-
mental impact on the phenotype of that genotype are
completely independent. The absence of a correlation
between genotypes and effects of the environment is
illustrated in Fig. 9.3, where phenotypic values are
as likely to increase as to decrease due to their environ-
ment. In contrast, a correlation between genotypic
value and environment is common in agricultural
contexts. For example, domestic animals are often
fed in proportion to their individual size or productiv-
ity, such as adjusting the amount of feed given to
individual cows according to their production of milk.
This feeding practice introduces a correlation between
genotypic value and environmental variation that
then has an impact on the total phenotypic variation.
In the case of cows being fed based on milk production,
total phenotypic variation should increase since indi-
viduals producing more milk (because of their geno-
typic value) are fed more (a non-random environment),
which in turn makes their milk production even
greater due to the impact of having more to eat.

Additional sources of phenotypic variance

In many organisms, progeny share an environment
with their mother, their father or both parents for some
period of time as embryos or during their development

and growth. This common environment, sometimes
symbolized VEc for common environmental variance,
can cause parents and offspring to resemble each
other to a greater degree than they would if they
each inhabited randomly sampled environments.
Maternal effects, the correlation between environ-
ment and genotype for mothers and their offspring,
are common in mammals since mothers supply the
pre-natal environment and often provide extensive
postnatal care for young. As an example, consider
mammals that nurse their progeny. A mother living
in an environment rich with food is likely to have a
greater body mass since she is well fed. Because the
mother receives ample nutrition, she will also be able
to produce ample milk for her offspring. If the offspring
grow faster and larger due to their mother’s ample
milk supply, then there will be positive covariance
between the mother’s body size and their own body
size. This positive covariance in body size is caused
by the rich environment shared by the mother and
her offspring. A shared common environment can
also lead to an increase in phenotypic resemblance
among full or half siblings since they too share the
same environment. Thinking again of a mother 
providing an ample supply of milk due to a rich 
environment, the progeny of such a mother could
exhibit positive covariance among their phenotypes
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Figure 9.7 The longest stem and number of stems phenotypes for seven Achillea genotypes originally sampled at Aspen Valley,
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environmental (VE), and genotype-by-environment (VG×E) interaction contribute to total phenotypic variation (VP). Data are from
Table 11 and the photograph from Figure 17 of Clausen et al. (1948). Used with permission of Carnegie Institution of Washington.
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(a similar large body size or fast growth rate) due to
their common milk supply environment compared
to siblings raised in different random environments.

The total phenotypic variation is modified for non-
independence of genotypic value and environmental
variation by

VP = VG + VE + 2(covGE) (9.6)

where covGE is the covariance between genotypic
value and environmental variation in phenotype.
Since a covariance can be either positive or negative,
the total phenotypic variance can be either increased
or decreased by a correlation between the genotypic
value and the impact of the environment. The covGE
is almost never quantified in practice and is assumed
to be zero. The contribution of covGE (if any) to VP is
therefore lumped in with non-additive causes of VG.
Despite this, it is important to remember that any
covariance between genotypes and environments is
a potential cause of increased or decreased variance
in phenotype.

Another possible source of genotypic variance (VG)
comes from gametic disequilibrium between loci 
as well as autozygosity within loci. As detailed in
Chapter 2, physical linkage, finite population size,
admixture of genetically diverged populations, muta-
tion, and natural selection can all produce gametic
disequilibrium. Additionally, consanguineous mating
also causes an increase in gametic disequilibrium.
When consanguineous mating occurs, one result is
increased homozygosity for individual loci. An increase
in homozygosity leads to gametic disequilibrium
because genotypes at two or more loci within an
individual will not be a random combination of all
possible genotypes but will tend to be combinations
of homozygous genotypes.

All forms of gametic disequilibrium contribute 
to the disequilibrium covariance of genotypic
values that increases or decreases the total pheno-
typic variance (Cockerham 1956; Weir et al. 1980).
The degree of gametic disequilibrium can be measured
as a covariance between individuals of the correlation
between genotypic values at two loci within an indi-
vidual. To visualize this covariance, first imagine the
possible correlations between the genotypic values
at two loci within a single individual. For example,
consider the two locus genotype AABB in a popula-
tion. If the A and B alleles both contribute to larger
phenotypic values, the AA genotypic value and the
BB genotypic value are positively correlated in an
individual with the AABB genotype. Under random
mating and free recombination, the AA genotypic
value and the BB genotypic value are found together
in the same individual only occasionally since the
two loci are independent. Free recombination and
random mating mean that AA and BB single locus
genotypes co-occur at random. In contrast, imagine
the AABB genotype is common in the population
due to consanguineous mating or strong gametic
disequilibrium that causes high frequencies of AB
gametes. In that case there will be a positive correla-
tion of genotypic values between the A and B loci
within individuals because the AA and BB single locus
genotypes tend to occur together more frequently
than expected under independent assortment.

Under random mating in a large population there
should be little gametic disequilibrium for a trait not
under selection and the fixation index (F ) should 
be approximately zero. This leads to a disequilibrium
covariance of zero. Since the genotypic disequilib-
rium covariance is not estimated in practice, these
conditions become implicit assumptions in the
decomposition of VP = VG + VE. As with correlations

In quantitative genetics, it is common to
sum variance components to obtain a total
variance. For example, the total phenotypic
variance is the sum of the genotypic variance
and the environmental variance according
to VP = VG + VE. When summing variances 
of two variables, it is possible that they are
not completely independent of each other.
Therefore, it is necessary to account for 
the possibility of covariance between the
variables and to adjust the total variance.
When summing the variance of two variables
X and Y to obtain the total variance,

var(X + Y ) = var(X) + var(Y ) + 2covar(X, Y )
(9.7)

A covariance can either be positive (e.g.
when the value of X is large the value of Y
tends to be large) or negative (when the
value of X is large the value of Y tends to be
small). Unless X and Y are independent (for
any value of X the value of Y is random), the
sum of two variances may be increased or
decreased by any covariance.

Math box 9.1
Summing two variances
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between genotypic value and environment, the 
contribution (if any) of genotypic covariance to VP
is lumped in with non-additive causes of VG.

9.2 Evolutionary change in quantitative traits

• Heritability.
• Changes in quantitative trait mean and variance

due to natural selection.
• Estimating heritability by parent–offspring

regression.
• Response to selection on correlated traits.
• Long-term response to selection.
• Neutral evolution of quantitative traits.

Evolutionary change in quantitative traits is caused
by the processes that reduce, shape, or increase 
variation in the genotypes that underlie the geno-
typic portion of the total phenotypic variance. Just
like the individual loci considered in earlier chapters,
the multiple loci that compose a quantitative trait
will experience genetic drift and mutation and will
also be subject to natural selection. Change in quant-
itative trait means and variances will occur to the
extent that these processes change the allele and
genotypes frequencies at those loci that contribute 
to a quantitative trait. Because it is usually not 
possible to track the individual loci that underlie a
quantitative trait, the genetic basis of quantitative
traits is tracked by summary measures that describe
a population. A critical distinction that we need to
bear in mind is the difference between additive genetic
variation (VA) that leads to resemblance between 
relatives, and dominance and interaction genetic
variation (VD and VI ) that is not inherited. Because
additive genetic variation does lead to parent–offspring
resemblance, it is the basis of the action of natural
selection on quantitative traits.

Heritability

The heritability is used to express the proportion 
of the total phenotypic variance (VP) that is caused
by either all types of genotypic variance (VG) or by
only the additive genetic variance (VA). Utilizing the
equation for the components of the total phenotypic
variance VP = VG + VE , both sides of the equation can
be multiplied by 1/VP to obtain

(9.8)
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This divides the total phenotypic variance, or 100%
of VP, into the proportion caused by genotypic vari-
ation and the proportion caused by environmental
variation. The proportion of the total phenotypic
variance caused by genotypic variance defines the
broad-sense heritability:

(9.9)

Since genotypic variance is composed of the separ-
ate components VA + VD + VI, the proportion of the
total phenotypic variance caused by only the ad-
ditive genetic variance defines the narrow-sense
heritability:

(9.10)

The narrow sense heritability expresses the proportion
of the total phenotypic variance made up of geno-
typic variance that contributes to parent–offspring
resemblance. The remaining proportion of VP is caused
by genotype components of the total genotypic 
variance (VD + VI ) and the environmental variance,
none of which contribute to phenotypic resemblance
between parents and offspring (with the exception of
additive by additive epistasis).

Idealized heritabilities are proportions and there-
fore range between 0.0 and 1.0 (although estimates
may fall outside this range due to estimation error).
The symbol for the heritability is always h2 and there
is no biological meaning in the square root of h2. This
is a convention that has held since Wright used 
the symbol in a 1921 paper (Wright 1921). Unless
explicitly noted otherwise, the word heritability and
h2 without a subscript will hereafter refer to the 
narrow-sense heritability, as is common practice.

As an illustration, broad-sense and narrow-sense
heritabilities for five human phenotypes related 
to blood pressure are shown in Fig. 9.8. In these 
examples, only the additive and dominance com-
ponents of genotypic variance were estimated but
the epistasis component was not. Each pie chart
divides the total phenotypic variation (VP) into the
dominance (VD) and additive (VA) components of the
total genotypic variance as well as environmental
variance (VE). The broad-sense heritability for fat-
free body mass shows that 76% of VP was caused by
genotypic variation. The remaining 24% of variation
in fat-free body mass was caused by environmental
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differences among individuals. The genotypic vari-
ation can be further divided by comparing the broad-
narrow and narrow-sense heritabilities. Additive
genetic variation explained 45% of VP while 31% (the
difference between h2

BS and h2
NS ) of VP was caused 

by dominance. Notice that the proportion of VP
explained by each of VA, VD, and VE varies consider-
ably among the five traits in this population. While
variation in low-density lipoprotein (LDL) levels
among individuals is caused by a combination of VA,
VD, and VE – as was the case for fat-free body mass –
the relative contributions of each changed greatly,
with dominance explaining 60% of VP and environ-
ment only 5% of VP. Variation in the high-density
lipoprotein (HDL) and triglyceride level phenotypes
were explained by VA and VE with no measurable
contribution of VD. Variation in systolic blood pres-
sure was explained by about equal contributions of
VD and VE with no measurable contribution of VA.
While variation in systolic blood pressure does have
a genetic basis, there was very little phenotypic
resemblance between relatives due to the additive
effects of alleles.

It has long been observed that there is a correlation
between the type of trait and the magnitude of its
narrow-sense heritability. Life-history traits such as
survival and number of progeny generally exhibit the
lowest narrow-sense heritabilities whereas physio-
logical (e.g. efficiency of food conversion, percentage
of milk fat, serum cholesterol concentration), beha-
vioral (e.g. parental care, mating, phototaxis), and
morphological (e.g. body size, height, bristle number)
phenotypes show progressively greater narrow-
sense heritabilities (Mousseau & Roff 1987; Roff 

& Mousseau 1987; Falconer & Mackay 1996). One
hypothesis is that traits more closely related to fitness
are likely to be under stronger and more consistent
natural selection pressures than arbitrary morpho-
logical phenotypes, so that long-term response to
selection has depleted additive genotypic variation
for life-history traits but not for morphological traits.
An alternative possible explanation for this pattern 
is that the relative magnitudes of VA, VD, and VE
are different for morphological, behavioral, and life-
history traits. In an analysis of 182 quantitative traits,
Houle (1992) used a measure of additive genotypic
variation standardized by the trait mean to show that
life-history phenotypes actually have higher additive
genotypic variance (VA) as well as residual variance
(all remaining variance not due to additive geno-
typic variance) than traits presumably experiencing
weaker natural selection. In the traits analyzed by
Houle (1992), lower heritability of fitness-related
traits was caused by higher levels of non-additive
genotypic variance (VD and VI) and environmental
variance rather than by a lack of additive genotypic
variation.

It is important to recognize that all heritability 
estimates are highly contextual. A heritability estimate
made in one population may not be representative of
heritability in another population of the same species
because both the genetic and environmental causes
of phenotypic and genotypic variation may differ
among populations. Clearly, allele frequencies may
differ among populations, causing VA to differ. Geno-
type frequencies may also differ among populations,
causing VG to differ. Even if allele frequencies are ident-
ical, differences in mating system can impact VD and
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Figure 9.8 Broad-sense and narrow-sense heritabilities for five blood-pressure-related quantitative traits in humans. Each pie
chart divides the total phenotypic variation (VP) into its causal components of dominance (VD) and additive (VA) genotypic variance,
as well as environmental variance (VE). These heritabilities were estimated in a small population of Hutterites, a self-reliant,
communal group of Anabaptists that traces its origins to followers of Jakob Hutter who fled Austria in the sixteenth century to escape
religious persecution. Today, Hutterites live in Canada and North America. The 806 individuals in this study are descendants of 
64 ancestors so that many individuals have a non-zero probability of sharing a genotype that is identical by descent because their
parents are distantly related. This improves the precision of estimates of dominance variance. Estimates from Abney et al. (2001).
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VI because homozygosity is increased or decreased by
mating patterns. The range of environments or their
quality may also differ among populations, so that
even if genotype and allele frequencies are constant,
VP can increase or decrease and thereby cause the
heritability to change as well.

Changes in quantitative trait mean and variance
due to natural selection

To begin, it is important to understand that natural
selection on quantitative traits operates on differ-
ences in phenotypic value. The phenotypic values 
of individuals dictate individual fitness, whereas 
the individual multilocus genotypes that underlie 
a quantitative trait are not directly perceived by 
natural selection and are unknown to an observer.
In contrast, in the models of natural selection in
Chapters 6 and 7 natural selection acted on different
fitness values possessed by known genotypes. This
distinction is biologically meaningful. In selection 
on phenotypic values, the manner in which pheno-
typic values are determined by alleles and genotypes 
(i.e. additivity, dominance, or epistasis) has a direct

impact on how effective selection is in changing the
allele frequencies that underlie the mean phenotype
in a population. As we will see in this section, selec-
tion is most effective when variation in phenotypic
values is due to additive variation and least effective
when phenotypic variation is due to dominance and
epistasis.

There are three general types of natural selection
experienced by quantitative traits, as illustrated in
Fig. 9.9. Under directional selection individuals
with phenotypic values at one edge of the pheno-
typic distribution have higher relative fitness, so 
that response to selection results in an increasing 
or decreasing mean phenotype. When stabilizing
selection operates, phenotypic values around the
population mean have the highest fitness. In contrast,
under disruptive selection phenotypic values at
the outer edges of the phenotypic distribution have
higher relative fitness.

The response to stabilizing or disruptive selec-
tion on quantitative traits is distinct from the response
to directional selection. When a trait responds to 
stabilizing selection, the mean phenotypic value in a
population does not change. Instead, the variance 
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Figure 9.9 General types of natural selection on quantitative traits. Directional selection occurs when phenotypic values at the
upper or lower end of the distribution have the highest fitness. Stabilizing selection occurs when intermediate trait values have the
highest fitness. Disruptive selection occurs when trait values at the edges of the phenotypic distribution have the highest fitness.
Response to directional selection increases or decreases the population mean phenotype. Response to stabilizing or disruptive
selection does not change the mean but decreases or increases the variance of the phenotypic distribution.
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in phenotypic value decreases over time since indi-
viduals with phenotypic values at the upper and
lower extremes have lower fitness values and do not
contribute to future generations. Similarly, the mean
phenotypic value in a population does not change with
response to disruptive selection. Disruptive selection
causes the variance in phenotypic values to increase
since individuals at the upper and lower extremes of
the distribution have higher fitness than individuals
with phenotypic values near the mean. Disruptive
selection results in the phenotypic distribution widen-
ing over time, and the distribution of phenotypic 
values can eventually become bimodal.

The heritability provides the basis for predicting the
outcome of natural selection on quantitative traits
according to

R = h2s (9.11)

where R is the response to selection, h2 is the narrow-
sense heritability, and s is the selection differential
that measures the strength of natural selection. R
and s are measured in the same units used to meas-
ure phenotypic value (e.g. kilograms, centimeters).
Equation 9.11 is commonly called the breeder’s
equation because it predicts the change in mean
phenotype in a population that will occur due to one
generation of artificial selection as often employed by
animal and plant breeders. The response to selec-
tion predicted by the breeder’s equation is intuitive.
Stronger natural selection or phenotypic variation
that has a greater basis in additive genetic variance
will result in a greater change in the mean pheno-
type in a population.

To better understand how natural selection changes
the mean phenotypic value, let’s work through an
example of directional selection based on pheno-
typic value. The change in mean phenotype in a 
population caused by natural or artificial selection
depends both on the force or amount of selection 
that is applied to the population and on genetic vari-
ation in the trait. The selection differential is one
way to measure the strength of directional natural
selection on quantitative traits. The selection differ-
ential is the difference between the phenotypic mean
of the entire population and the phenotypic mean of
that subset of individuals selected on the basis of their
phenotypic value to be parents of the next genera-
tion. The selection threshold (sometimes called
the truncation point) seen in Fig. 9.10 is the lower
bound of phenotypic values in the group of parents
selected to mate. The selection differential is com-

puted as the difference in the phenotypic mean of 
the selected parents (μs) and the phenotypic mean 
of the entire P1 population (μ):

s = μs − μ (9.12)

As shown in Fig. 9.10, the selection differential for
this case is

s = 12.5 − 10.0 = 2.5 (9.13)

which expresses that the selected parents have a 
2.5-unit greater average phenotypic value than the
full population that they were sampled from. Larger
selection differential values indicate stronger selec-
tion. Although not true in this example, selection 
differentials are often expressed in units of standard
deviations by standardizing phenotypic values in 
the parental population to have a mean of zero and 
a variance of one.

Imagine now that those individuals with pheno-
typic values above the selection threshold in the 
P1 population mate at random and then produce a 
large population of progeny that are reared in the
same environment as the parents. The phenotypic
distribution of the progeny is shown in the lower
panel of Fig. 9.10. The progeny have a mean pheno-
typic value of μ′ = 11.0. The difference between 
the F1 population phenotypic mean and the pheno-
typic mean of the entire P1 population expresses
how much the phenotypic mean was changed by
selection for larger trait values in the parents. The
response to selection is

R = μ′ − μ = 11.0 − 10.0 = 1.0 (9.14)

The phenotypic mean in this example was increased
one unit by directional selection in the P1 population.

The response to selection is a function of the amount
of phenotypic variation that is due to additive genetic
variation according to the breeder’s equation. Since
both the response to selection and the selection differ-
ential are known, it is then possible to estimate the
heritability by rearranging the breeder’s equation:

P2 = R/s (9.15)

When estimated in this way, P2 is called the 
realized heritability since it is estimated from 
the observed response to selection rather than pre-
dicted by resemblance of parents and progeny in the
absence of selection. Using the selection differential
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and response to selection calculated for Fig. 9.10, 
the realized heritability is then

P2 = 1.0/2.5 = 0.40 (9.16)

This tells us that 40% of the variance in trait 
values in the parental population was caused by
additive genetic variation based on the definition of
heritability.

Why was there a response to selection? Why did 
μ′ increase in value compared to μ? The phenotypic

value in the selected group of parents was greater
than the rest of the parental population partly due 
to the alleles that they possessed in their multi-
locus genotypes for this trait. When they bred, these
alleles were passed down to their offspring. Selection
changed the frequency of alleles that confer larger
trait values because allele frequencies in the P1 
individuals above the selection threshold were differ-
ent than in the P1 population as a whole. Alleles 
that contributed to larger trait values became more
frequent in the progeny population than they were 

··
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Figure 9.10 A hypothetical example of directional selection and response to selection. In the parental generation those
individuals with a phenotypic value of 12.0 or greater are allowed to mate. The selection differential is s = 12.5 − 10.0 = 2.5.
Random mating among this subset of the parental population produces a distribution of progeny phenotypic values with a mean
value of 11.0. The response to selection is R = 11.0 − 10.0 = 1.0. The realized heritability is therefore h2 = 1.0/2.5 = 0.40.
Response to selection is proportionate to the degree to which parental phenotypic values are caused by the phenotypic effects of
alleles. Parental phenotypic values being caused by genotypes or the environment do not lead to response to selection since these
causes of phenotypic value are not inherited by offspring.
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initially in the parental population. Therefore, the
mean phenotypic value in the progeny population
increased relative to the mean phenotypic value of
the parental population.

But why is the progeny mean phenotypic value (μ′)
not equal to the mean value of the selected parents
(μs)? Parents in the selected group had phenotypic
values above the truncation point partly due to causes
other than the effects of the alleles in their multilocus
genotypes for the trait. Part of the phenotypic vari-
ance in the parental generation (VP) was caused by
factors that do not contribute to the resemblance 
of parents and offspring. The genotypic values of the
selected parents were due to the combination of alleles
in their genotypes. Such genotype effects cause 
dominance variance (VD) and interaction variance
(VI) in quantitative trait values. However, these com-
ponents of the genotypic variance are not inherited
and do not contribute to resemblance between par-
ents and offspring on average. In addition, some of
the phenotypic variance in the parental population
could have been caused by environmental variance
(VE) that would also not contribute to resemblance
between the selected parents and the offspring. In
the example of Fig. 9.10, 60% (or 1 − P2) of the 
variation in the P1 phenotypic values was caused by
the combination of non-additive genetic variation
(VD + VI) and environmental variation (VE ). This
60% is the percentage of the selection differential
that did not produce a response to selection.

Estimating heritability by parent–offspring
regression

Another method used to estimate the heritability
based on the resemblance between parents and their
offspring is parent–offspring regression. Parent–
offspring regressions predict VA without actually 
carrying out a response-to-selection experiment. This
method to estimate heritability is therefore applic-
able to populations where selection experiments 
cannot be carried out. Estimation of heritability by
parent–offspring regression can even be carried out
in natural populations if a reliable method to identify
the parents of offspring, such as paternity analysis, 
is available. This method takes advantage of the 
fact that the phenotypes of offspring resemble the
phenotypes of their parents to the extent that pheno-
typic values are caused by shared alleles. Neither
dominance nor epistasis components of the geno-
typic variance are inherited by progeny so they do
not cause progeny to resemble their parents. This

phenomenon was explained in the first section of 
the chapter and illustrated in Table 9.3. Now we will
revisit the resemblance between parents and offspring
in greater depth.

By comparing the phenotypes of parents and their
offspring, it is possible to determine the degree of 
phenotypic resemblance. The necessary data come
from the measures of phenotypic values for pairs of
parents as well as the phenotypic values of all pro-
geny produced by each pair of parents. Figure 9.11
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Figure 9.11 Parent–offspring regressions used to estimate
heritability (h2) under the assumption of strict additivity (a) 
or complete dominance (b). The resemblance or covariance
between the mid-parent phenotypic value and the mean
progeny phenotypic value is greater on average with
additivity (slope = 1.0) than with dominance (slope = 0.667).
The slope of the regression line is equal to the heritability
since it measures resemblance of parents and offspring. The
mid-parent phenotypic value is the average phenotypic value
of two parents that mate and produce progeny. Phenotypic
values are given in parentheses next to each genotype. Each
dot represents the mean phenotypic value of many progeny
that result from a given parental mating. Both panels assume
Hardy–Weinberg expected genotype frequencies in the
parental populations, allele frequencies of p = q = 0.5, and
that VE = 0.
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illustrates plots of parent–offspring regressions us-
ing one-locus genotypes assuming random mating
among the parents. In both panels, the slope of the
regression line between the phenotypic values of 
offspring and the average phenotypic values of their
parents (called the mid-parent value) provides 
an estimate of phenotypic resemblance between par-
ents and offspring. Because resemblance between
parents and offspring must be due to inherited alleles
rather than the effects of genotypes, the degree of
resemblance is a function of the heritability. There-
fore, the slope of the regression line estimates the
heritability.

The parent–offspring regression for additive gene
action is shown in Fig. 9.11a. With strictly additive
effects of alleles, the phenotypic values of all progeny
are determined by counting up the number of a and
A alleles in their genotypes. Under additivity, the a
allele contributes 2.5 and the A allele contributes 7.5
to the genotypic value. The mean phenotype of all
progeny from one pair of parents corresponds exactly
to the average number of A and a alleles transmitted
to their progeny. For example, mating aa and Aa
parents results in 75% a and 25% A alleles trans-
mitted to progeny. The average progeny phenotype
is then 0.75(2.5) + 0.25(7.5) = 3.75 for each allele
in its genotype. Since there are two alleles, the aver-
age value among all progeny is 2(3.75) = 7.5. This
corresponds exactly to the aa × Aa mid-parent value.
In the additive case, this same logic can be applied 
to all parental matings. The result is always that 
the mid-parent phenotypic value equals the average
progeny phenotypic value.

The parent–offspring regression for complete
dominance is shown in Fig. 9.11b. We again see 
that when the combination of alleles in a genotype
defines the phenotypic value of a heterozygote, the
resemblance between parents and their offspring 
is not as large. In Fig. 9.11b, dominance causes the
AA and Aa genotypes to have identical phenotypes. 
This means, for example, that while two Aa geno-
types have an average phenotypic value of 15, 
their progeny have an average phenotypic value 
of 0.25(5) + 0.5(15) + 0.25(15) = 12.5. Dominance
masks the presence of a alleles in the heterozygotes.
These a alleles result in the production of a portion of
aa progeny in some parental matings with a pheno-
typic value of 5 that causes the progeny average to
be less than 15. With dominance, the progeny mean
phenotype no longer corresponds to a weighted
average of the number of a and A alleles in their
genotypes.

It is possible to prove that the slope of the regres-
sion line for offspring values and mid-parent values
estimates the heritability. The slope of a regression
line, b, between variables x and y is defined by

b = (9.17)

Based on the probability that half-sib progeny share
alleles identical by descent (see section 10.6), the
expected covariance between the mid-parent values
and offspring values is

cov(offspring, mid-parent) = 1/2VA (9.18)

It is also the case that the expected variance of 
the mid-parent values is equal to 1/2VP. This comes
about since the variance of the phenotypic values 
of a large sample of pairs of parents (say n pairs 
where n is large) is expected to be half the variance 
of a large sample of individual parents (or 2n indi-
vidual parents) because of the smaller value of n
used to compute the variance. In other words, if 
the phenotypic variance of a large number of indi-
viduals is x, then the expected phenotypic variance
of one-half of these individuals is 1/2x. Bringing these
two points together, we can restate the regression
coefficient as

b = (9.19)

to prove that the slope of the regression line estimates
the heritability.
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Populus can be used to simulate
parent–offspring regressions while 
varying the population allele frequencies,
the degree of dominance, and the 
sample size of families. Go to the text 
web page to see a step-by-step guide 
as well as questions to answer based 
on simulation results.

Interact box 9.1
Estimating heritability with
parent–offspring regression

9781405132770_4_009.qxd  1/19/09  1:49 PM  Page 303



304 CHAPTER 9

··

Response to selection on correlated traits

Our exploration of the heritability and the response
to selection thus far has focused on single traits in
isolation. While this approach helped to introduce
these concepts, it is an unrealistic perspective on how
quantitative traits evolve under natural selection 
in actual organisms. Phenotypes are not actually
isolated, completely compartmentalized units that are
unrelated. In contrast, many phenotypes are highly
inter-related in the sense that they are not independent.
Correlations among trait values can be manifest in
two forms. The values for two traits may simply be
correlated within individuals, a phenomenon called
phenotypic correlation. The degree to which trait
values are inherited in common is measured by the
genetic correlation. As a simple example of these
correlations, think of domestic cats and their traits 
of body weight and tail length. If in a population of
individuals, heavier cats tend to have longer tails,
weight and tail length show a phenotypic correlation.
Imagine that artificial selection was applied to the
cat population for greater body weight and that 
body weight responded to this selection because of
additive genetic variation. An associated increase 
in tail length at the same time, in the absence of any
selection on tail length, would demonstrate a genetic
correlation between tail length and body weight.

Phenotypic correlation between traits within the
same individual may be caused by the environment.
For example, environmental conditions may tend to
have the same effect on several traits, resulting in a
positive correlation, or have opposite effects resulting
in a negative correlation. A genetic component of 
a phenotypic correlation, or a genetic correlation, 
can have two causes that are not mutually exclusive.
One cause is pleiotropy, or the phenomenon where 
a single locus contributes to variation in two or 
more phenotypes. Another cause is genetic linkage
such that two distinct loci, one locus affecting one
trait only, are in strong gametic disequilibrium. Both 
situations lead to correlated changes in phenotypes

for two or more traits when genotype frequencies
change in a population.

Both phenotypic and genetic correlations are 
represented mathematically in matrices that have 
as many rows and columns as there are phenotypes
being considered. The values that represent the 
phenotypic variance and covariance are contained
in a P matrix. The diagonal elements in P represent
trait variances whereas the off-diagonal elements
represent the covariance for each pair of traits.
Similarly, the G matrix contains individual values
that measure both the additive genetic variance and
covariance. The diagonal elements in a G matrix 
are simply the narrow-sense heritabilities for each
trait. The off-diagonal elements in G represent the
additive genetic covariance for each pair of traits, 
or the degree to which trait values are co-inherited.
Table 9.4a shows each element in G and P matrices
for the case of two traits.

To see how the response to selection for one trait 
is a special case because there are no phenotypic or
genetic correlations, the breeder’s equation can be
re-written as

R = (G/P)s (9.20)

where G is the additive genetic variance, P is the 
total phenotypic variance, and s is the selection 
differential. In the breeder’s equation for one trait, P
is implicitly set to one so that the response to selec-
tion is then expressed per unit of phenotypic variance.
For example, if G = 0.5, P = 1, and s = 0.5 pheno-
typic units for a single trait, then the population would
have an increase of R = 0.25 phenotypic units in 
the next generation. A larger value of P would yield 
a smaller response to selection (e.g. P = 2 yields 
R = 0.125) whereas a smaller value of P would 
produce a greater response to selection (e.g. P = 0.5
yields R = 0.5). The phenotypic variance plays a role
in response to selection since the selection differ-
ential is relative to the trait variance. In order to
compare traits or populations with different values 
of P and G, the additive genetic variance is scaled to
the total phenotypic variance. This change of scale
assures that the additive genetic variance is then equal
to the heritability, a quantity that is independent of
the magnitude of the total phenotypic variance. To
see this scaling, imagine that P1 = 1.0 for one trait
and P2 = 5 for another trait but that both traits have
G = 0.3. The additive genetic variance relative to 
the total phenotypic variance is G/P1 = 0.3/1 = 0.3
for trait one and G/P2 = 0.3/5 = 0.06 for trait two.

Genetic correlation Non-independence of
inherited values for two traits. A correlation
between the breeding values of two
quantitative traits.
Phenotypic correlation Non-independence
of the values of two or more quantitative traits
within individuals.
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Dividing G by P expresses the additive genetic vari-
ance per unit of phenotypic variance. In this example,
the heritabilities are h2 = 0.3 for trait one and h2 = 0.06
for trait two so clearly trait one would show a greater
response to selection for a given value of the selection
differential.

With the potential for different phenotypic variances
for each trait, covariance between phenotypes, and
genetic correlation, the breeder’s equation needs to
be extended. For two or more traits, the change in
mean phenotype for each trait is predicted by

Δ7 = GP −1s (9.21)

where P −1 indicates a matrix inverse (Lande 1979;
Lande & Arnold 1983). For more than one trait, the
change in the mean trait value is represented by the
vector z rather than the scalar R since there are as
many means as there are traits. The selection differ-
ential is still symbolized as s even though it is now a
vector.

Some examples will help illustrate how equation 9.21
serves to combine the direct effect of selection on
each trait with the indirect effects of genetic and 

··

(a)
G

[Trait A] [Trait B]

Trait A h2 Genetic cov(A, B)
Trait B Genetic cov(A, B) h2

P
[Trait A] [Trait B]

Trait A Variance(A) Phenotypic cov(A, B)
Trait B Phenotypic cov(A, B) Variance(B)

s = [selection differential trait A, selection differential trait B]
Δ+ = [change in mean of trait A, change in mean of trait B]

(b)
G = 0.5 0 P = 1.0 0

0 0.5 0 1.5
s = 0.5, 0.5
Δ+ = 0.25, 0.1667

(c)
G = 0.5 0 P = 1.0 0.6

0 0.5 0.6 1.5
s = 0.5, 0
Δ+ = 0.3289, −0.1316

(d)
G = 0.5 0.6 P = 1.0 0

0.6 0.5 0 1.5
s = 0.5, 0
Δ+ = 0.25, 0.20

Table 9.4 Examples of response
to selection for two phenotypes
with the possibility of phenotypic
or additive genetic covariance. 
The elements of the phenotypic
variance/covariance matrix (P), 
the additive genetic variance/
covariance matrix (G), the vector
of selection differentials (s), and
the vector of predicted changes in
mean phenotype (Δ+) are shown 
in (a).

G matrix The genetic additive variance/
covariance matrix that expresses the heritability
of each trait (the diagonal elements) as well 
as the genetic covariance between each trait
(the off-diagonal elements).
P matrix The phenotypic variance/
covariance matrix that expresses the variance
of each trait (the diagonal elements) as well 
as the covariance between each trait (the 
off-diagonal elements).
s The selection differential, expressed as a
vector of values when there are two or more
traits.
+ The phenotypic mean, expressed as a vector
of values when there are two or more traits.
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phenotypic correlations between traits to predict the
total change in trait mean. In Table 9.4b, there is no
genetic correlation and also no phenotypic correla-
tion, making the traits completely independent. Both
traits have heritabilities of 0.5 and selection differ-
entials of 0.5. The response to selection is exactly 
as we would predict from the single-trait version of 
the breeder’s equation for each trait separately. Note
that trait B has a lower response to selection because
it has more phenotypic variance, making the selec-
tion differential of 0.5 effectively weaker.

In the example of Table 9.4c, there is a fairly
strong positive phenotypic correlation between the
two traits and natural selection applied only to trait
A but still no genetic correlation between traits. 
The mean of trait A is predicted to increase since it is
experiencing natural selection and has a non-zero
heritability. Trait B also shows response to selection,
in this case a reduction in mean value. This change
in mean is due to the correlation between the two
traits alone and not due to any direct natural selec-
tion in trait B since its selection differential is zero.

In the final example in Table 9.4d, there is a strong
positive genetic correlation between the two traits and
natural selection is acting to increase the average 
of trait A. There is now no phenotypic correlation
between the traits. The means of both traits are 
predicted to increase in this case. The mean of trait 
A will increase because of selection acting directly 
on it. At the same time the mean of trait B will also
increase. This occurs not because selection is acting
on trait B, after all it has a selection differential of
zero, but rather because the two traits are genetic-
ally correlated. The change in genotype and allele

frequency caused by response to selection on trait A
has also changed genotype and allele frequencies
that influence the mean of trait B. Direct selection 
for an increase in the mean of A indirectly causes an
increase in the mean of B due to a genetic correla-
tion between the traits. To distinguish direct and
indirect effects of natural selection, the change in a
trait mean due to a direct effect is called selection
for while selection of describes a change in a trait
mean caused by an indirect response to selection on
a genetically correlated trait.

When traits are genetically correlated, natural
selection and any response is potentially not as 
simple as it would be with a single trait, which would
be completely independent of all other traits. This 
is particularly true of quantitative traits related to
Darwinian fitness of individuals. First, natural selec-
tion experienced by one trait could lead to a response
to selection in another trait that does not directly
experience natural selection. This means that natural
selection on correlated traits is capable of indirectly
changing traits that have little or no relationship with
fitness. Second, when two traits respond to selection
over time it may lead to the evolution of a negative
genetic correlation that prevents further response to
selection. If two traits are both related to fitness and
each experience natural selection, then we expect
alleles at any loci that independently cause variation
in either trait to become fixed by long-term response
to selection. However, any loci that have opposite
effects on the two traits will not experience fixation
or loss caused by natural selection. For example, if
increased frequencies of AA genotypes increase fit-
ness of trait one but simultaneously lead to decreases
fitness for trait two, natural selection should result in
neither the A nor a allele fixing. Alleles at such loci
with contrasting effects cannot be fixed by selection
because changing the allele frequency to increase
fitness for one trait simultaneously causes a decrease
in fitness for the other trait. Genetic variation at 
loci with such contrasting effects on traits causes a
negative genetic correlation and prevents further
change in trait means by natural selection.

Many examples of correlated responses to natural
selection have been observed in agricultural organ-
isms since artificial selection is routinely practiced to
alter quantitative traits to increase yield and improve
growth and harvest phenotypes. In one experiment,
pigs were subjected to one generation of artificial
selection for increased litter size in sows (Estany et al.
2002). During the course of this artificial selection
experiment, the progeny of the selected females were

Solving the equation Δ+ == GP−1s requires
the use of matrix algebra. For those who
have access to the program Matlab, the text
web page has a short program that can be
used to define G, P, and s and then solve 
for Δ+.

As an exercise, change the sign of both
the phenotypic and genetic covariances
shown in the examples of Table 9.4. How
does the predicted response to selection
change?

Interact box 9.2
Response to natural selection 

on two correlated traits
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measured for a number of morphological and beha-
vioral phenotypes between the ages of 75 and 165
days old. A direct response to artificial selection was
observed, increasing the litter size of the selected sows
by an average of 0.46 piglets per litter compared to
unselected controls. At the same time, the progeny of
the selected sows showed a number of phenotypic
differences from the control progeny of unselected
sows. The pigs from selected sows deposited fat more
rapidly, grew at different rates, and gained less weight
per kilogram of feed. The pigs in the selected and con-
trol populations also showed behavioral differences,
with the progeny of selected sows visiting feeding
stations less frequently but spending more time 
eating and eating more per feeding bout. Since only
the number of piglets per litter was under artificial
selection, all of the other changes observed in quant-
itative traits were the result of correlated responses
to selection caused by genetic correlations.

Long-term response to selection

The breeder’s equation predicts response to selection
over single-generation intervals. Extrapolating the
breeder’s equation to longer time periods implicitly
assumes that h2 and s remain constant through time.
However, when natural or artificial selection con-
tinues for many generations, the assumptions of the
breeder’s equation may no longer hold. In particu-
lar, additive genetic variation may be consumed by
response to selection over time as allele frequencies at
the multiple loci that cause quantitative trait vari-
ation change over time. How rapidly additive genetic
variation is exhausted by selection depends critically
on the number of loci that underlie a quantitative
trait as well as the percentage of trait variation that is
caused by each locus (Fig. 9.12).

Genotypic variation in quantitative traits can
sometimes be caused by the alleles segregating at a
relatively small number of loci. When quantitative
trait variation is caused by a small number of loci,
additive genetic variance for a trait is depleted over
time by response to selection. The decline in herit-
ability occurs because response to selection causes
allele frequencies at the loci that cause genotypic
variation to move toward fixation and loss. When
only a few loci explain genetic variation in a quant-
itative trait, changes in the trait mean from one 
generation to the next come about due to substantial
changes in the allele frequencies of those few loci. 
For example, when there is artificial selection for 
an increased trait mean as in Fig. 9.10, alleles that

confer higher values of the trait at each locus are
increased in frequency each generation. The greater
a response to selection that has occurred, due to either
continued selection over time or stronger selection,
the more likely that allele frequencies at each locus
will have been altered toward fixation and loss 
(Fig. 9.12a). In addition, genotypic variation in all
traits will decrease over time in finite populations
due to genetic drift, a process that is accelerated by
selection since selection itself leads to reduced effective
population sizes because not all individuals in the
population contribute alleles to the next generation
of progeny.

An alternative model is that the additive genetic
variation in a quantitative trait is caused by a very
large number of individual loci and all of these many
loci have equal very small effects on a quantitative
trait. Under these assumptions, response to selection
may continue for a long time before changes occur in
the amount of additive genetic variance (Fig. 9.12b).
Under this infinitesimal model, as the number of loci
grows very large then the amount of trait variation
explained by any one locus approaches zero. Under
the many loci assumption, when a quantitative trait
responds to selection the trait mean changes but there
is almost no change in the allele frequencies of the
individual loci that cause genotypic variation because
each locus explains such a small fraction of the additive
genetic variation. Under the infinitesimal model then,
response to selection can occur for many genera-
tions without causing substantial changes in the
heritability required for response to selection. Note
that, even under the infinitesimal model, response to
selection acts to increase gametic disequilibrium for
the loci that cause genotypic variation, potentially
slowing response to selection over time.

The amount of additive genetic variation for a quant-
itative trait over many generations is not simply a
function of the amount of standing genetic variation
before natural selection starts. Rather, the amount
of additive genetic variation over time is the net out-
come of natural selection and genetic drift working

··

Infinitesimal model A model of the genetic
basis of quantitative traits that assumes that 
a very large number of independent loci
contribute equally to trait genotypic variation,
so that the impact of each locus on trait
genotypic variation approaches zero.
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to reduce genetic variation balanced by mutation
introducing novel genetic variation. Depending on
the number of loci influencing a trait and the muta-
tion rate, depletion of additive genotypic variance 

in quantitative traits caused by long-term selection
can be counteracted by the addition of new alleles
through mutation. Figure 9.12c shows an example of
the impact of recurrent mutation on a quantitative

5

(a)

10 15 20 25 30 35 40 45 50

1

0.8

0.6

0.4

0.2

0

0 5 10 15 20 25 30 35 40 45 50

15

10

5

0

0 5 10 15 20 25 30 35 40 45 50

4

3

2

1

0

5 10 15 20 25 30 35 40 45 50

1

0.8

0.6

0.4

0.2

0

M
ea

n
 v

al
u

es
Va

ri
an

ce
 in

 v
al

u
e

am
o

n
g

 in
d

iv
id

u
al

s

Generation

H
er

it
ab

ili
ty

 (V
G

/V
P)

Fr
eq

u
en

cy
 o

f t
h

e
p

lu
s 

al
le

le
 a

t 
Q

TL

VG VP

Genotypic Phenotypic

Figure 9.12 Simulations of directional selection on a quantitative trait with strictly additive genetic variance under three
scenarios (parts (a), (b), and (c)) for the genetic architecture of the trait. From top to bottom in each part, the graphs show the plus
allele frequencies (in b and c 10 loci are shown of the total 100 loci that influence the trait), the genotypic and phenotypic mean
values for the trait, genotypic and phenotypic trait variance (VP and VG), and the narrow-sense heritability. In (a), there are 10 loci
each with equal and large effects on the trait (10% of VG). In (b), 100 loci have equally small effects (each 1% of VG) on the trait. In
(c), there are two loci with large effects (20% of VG each) and 98 loci with small effects, as well as recurrent mutation between plus
and minus alleles (μ = 0.001 mutations gamete−1 generation−1). In (c), the initial allele frequencies for the two loci of large effect
(dashed allele frequency lines) and eight loci of small effect are initially 0.1 while the remaining 90 loci are fixed for the minus
allele. A selection plateau is reached in (a) when all of the loci causing genotypic variation in the trait reach fixation (VG and h2

drop to 0). Simulations in (b) and (c) never reach selection plateaus nor exhaust all trait variation because at least some loci that
influence trait variation remain segregating. Genetic variation is maintained in (b) because selection in finite populations is not
able to fix alleles at all loci with small effects. Even though the two loci with major effects fix rapidly in (c), recurrent mutation 
at the many loci with small effects maintains some additive genetic variation for continued response to selection. Selection was
accomplished by forming the next generation with the 50 individuals with the largest phenotypic values. In all simulations the
maximum genotypic value was 10.0, VE = 0.1, and the truncation point for natural selection each generation was the 50th
percentile of phenotypic value. QTL, quantitative trait loci.

9781405132770_4_009.qxd  1/19/09  1:49 PM  Page 308



Quantitative trait variation 309

··

5

(b)

10 15 20 25 30 35 40 45 50

1

0.8

0.6

0.4

0.2

0

0 5 10 15 20 25 30 35 40 45 50

8

6

4

2

0

0 5 10 15 20 25 30 35 40 45 50

2.5

2

1.5

1

0.5

0

5 10 15 20 25 30 35 40 45 50

1

0.8

0.6

0.4

0.2

0

Fr
eq

u
en

cy
 o

f t
h

e
p

lu
s 

al
le

le
 a

t 
Q

TL
M

ea
n

 v
al

u
es

Va
ri

an
ce

 in
 v

al
u

e
am

o
n

g
 in

d
iv

id
u

al
s

Generation

H
er

it
ab

ili
ty

 (V
G

/V
P)

VG VP

Genotypic Phenotypic

Figure 9.12 (continued )

Use the QTL module in PopGene.S2 to simulate response to selection for a quantitative trait that
has genotypic variation caused by either few loci or by many loci. The key parameter to vary 
is the number of loci that underlie the quantitative trait, nQTL. Select the option for All loci have
equal effects and try nQTL = 10 and nQTL = 100. Set the other simulation parameters at Natural
selection phenotypic value truncation point = 0.5 (only individuals in the upper 50% of phenotypic
value reproduce), N = 250, mutation rate = 0.0, generations = 100, VE = 0.1, Maximum genotypic
value = 10.0.

What is the heritability over time with nQTL = 10 or nQTL = 100? How does an increase in
environmental variation (VE = 0.1 or, say, VE = 1.0) influence your conclusion?

Interact box 9.3 Response to selection and the number of loci 
that cause quantitative trait variation
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trait that is the product of 100 loci. Even though 
90 of the loci start out fixed for one allele, mutation 
at these loci over time produces enough additive
genetic variation to maintain trait variation and a
linear response to selection over many generations.
Ultimately, the steady-state level of additive genetic
variation for a quantitative trait is a product of
genetic drift, mutation, and selection all acting on
the loci that cause variation in the trait. Because of
this, long-term response to selection will depend on
numerous parameters in a population such as the
effective population size, the mutation rate, and the
selection differential along with the number and 
distribution of effects of the loci that underlie the
quantitative trait.

The Illinois Long-Term Selection experiment pro-
vides one of the longest records of continuous response 
to selection for the phenotypes of oil content and 
percentage of protein in corn kernels (reviewed by
Moose et al. 2004). This long-term selection experi-
ment was initiated in 1896 with the goal of deter-
mining whether artificial selection could be used 
to develop strains of corn with kernel phenotypes
that were improved from the perspective of animal
feed and crop processing. Divergent selection for
both higher and lower oil and protein content has
been practiced for over 100 generations by using 
the highest and lowest scoring 20% of ears each 
generation to form the next generation (Fig. 9.13).
From an initial value of 4.7% oil content, response to
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Figure 9.12 (continued )
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selection steadily changed oil content to about 22%
in the high line and to 0% in the low line. Response 
to selection was similarly linear for protein content,
starting at 10.9% and reaching 32.1% in the high
line and 4.2% in the low line.

The Illinois Long-Term Selection experiment shows
that response to selection is relatively steady and 
linear over a long period of time. (Slight fluctuations
in the mean phenotype over time may be explained
by some variation in the selection differential each
generation as well as by environmental variation.)
The observed change in phenotypic means in the
Illinois Long-Term Selection experiment looks sim-
ilar to the predicted response to selection on traits
with many loci in the simulation results shown in
Figs 9.12b and 9.12c. The results are therefore 
consistent with genetic variation in the oil- and 
protein-content phenotypes being caused by a 
relatively large number of loci and the possibility
that mutation may have contributed some genetic
variation over time.

Another example is long-term selection carried
out for 70 generations to increase the percentage of
body muscle, measured as protein content, in mice 
at 42 days old (Bünger et al. 1998). Figure 9.14a
shows the mean amount of protein per individual
over the course of the experiment. Selection increased
protein content rapidly at first, but then response 

to selection slowed as the experiment continued.
This is a classic example of a selection plateau
where continued natural selection shows a dimin-
ishing response over time such that the trait mean
asymptotes toward a constant value even though
selection is still being applied to increase the trait
mean. The additive genetic variance (VA) and the
heritability (h2) shown in Fig. 9.14b explain why
response to selection decreased over time. The 
additive genetic variance, and therefore the herit-
ability, decreased through time so that the response
to selection was not constant over the 70 genera-
tions of the experiment. The observed reduction 
over time in the response to selection and the selec-
tion plateau are similar to the predicted response to 
selection on traits with few loci of large effects shown
in Fig. 9.12a. The response to long-term selection 
for protein content in mice is therefore consistent 
with genetic variation caused by a relatively small
number of loci having relatively large effects on the 
phenotype.

Two additional phenomena can cause limits to 
selection response. The first process is the accumula-
tion of gametic disequilibrium that alters the amount 
of additive genetic variance. The additive genetic 
variance (VA) can be decomposed into two parts:

VA = Va + D (9.22)
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Figure 9.13
Phenotypic means 
for oil and protein
content for high and
low selected lines of 
the Illinois Long-Term
Selection experiment
initiated in 1896.
Response to selection
has been nearly linear
over time, consistent
with additive genetic
variation that is caused
by a relatively large
number of loci each
with a small effect on
the phenotype. The
low-oil-selected line
was discontinued in
generation 89 because
oil content was too 
low to be measured
reliably and plants had
poor viability. Data
kindly provided by 
J.W. Dudley and 
S.P. Moose.
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where Va is the additive genic variance that is not
impacted by gametic disequilibrium and D is the
gametic disequilibrium coefficient. When there is
gametic equilibrium (D = 0) then the additive genetic
variance is all caused by variance in alleles, or genic

variance. However, when there is some level of
gametic disequilibrium then the additive genetic
variance can be reduced (negative D) or increased
(positive D). Directional and stabilizing natural selec-
tion tend to cause negative gametic disequilibrium
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Figure 9.14 Long-term selection for muscle mass in mice (measured as protein content per individual) over 70 generations. 
(a) The phenotypic mean over time, with a pronounced asymptote, or selection plateau, that indicates a diminishing response to
selection over time. The total phenotypic variance, the additive genetic variance, and the realized heritability are shown in (b).
Even though the selection differential is constant over time, the heritability declines steadily, as expected for a quantitative trait
where genetic variation is caused by relatively few loci. The dip in protein content during generations 18–20 was an artifact due to
an environmental effect. While the phenotypic variance increases over the experiment (b), this is caused largely by the increase in 
the phenotypic mean (the coefficient of variation of VP stays nearly constant). Redrawn from Bünger, L., Renne, U., Dietl, G., and
Kuhla, S. (1998) Long-term selection for protein amount over 70 generations in mice. Genetical Research 72: 93–109. Reprinted
with the permission of Cambridge University Press.
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because individuals with similar phenotypic values
tend to have a correlated set of alleles at each of the
loci that contribute to the trait (also see the example
in Chapter 2). In contrast, disruptive selection tends
to cause positive gametic disequilibrium. If selection
is strong relative to recombination, then gametic 
disequilibrium will alter the additive genetic vari-
ance and thereby the heritability. A reduction in 
the response to selection or a selection plateau can
occur when negative gametic disequilibrium caused
by selection has accumulated such that VA declines
even though the loci the underlie the trait have not
all reached fixation and loss. For more details on this
complex topic consult Bulmer (1985) and Lynch and
Walsh (in preparation; draft chapters available at
http://nitro.biosci.arizona.edu/zbook/book.html).

The other process that can limit response to selec-
tion is called antagonistic pleiotropy. It occurs
when response to selection changes the mean of one
trait (selection for) as well as the mean of a correlated
trait (selection of ). While selection for increased
fitness drives change in the mean of one trait over
time, the correlated change in the mean of the 
other trait may actually decrease fitness. After some
response to selection has occurred, the fitness trade
offs between the two traits may reach a point where
further change in the mean of one trait that increases
fitness is offset by the negative fitness consequences
of change in the mean of a correlated trait. When
such fitness trade offs for correlated traits exist, they
will ultimately limit response to selection even when
additive genotypic variation exists for both traits.
Examples of such trade offs for correlated traits have
been hypothesized or observed for a range of traits.
One possible trade off maintained by antagonistic
pleiotropy involves alleles that tend to increase repro-
duction at early ages but decrease lifespan (Williams
1957). In support of the hypothesis that survival and
reproduction have a fitness trade off, Silbermann
and Tatar (2000) have shown that a heat-induced
protein expressed by the hsp70 locus influences both
egg hatching rate and survival rate in Drosophila
melanogaster. Higher levels of hsp70 expression lead
to longer lifespans but at the same time lead to 
lower rates of egg hatching. If reproduction and sur-
vival in D. melanogaster are associated by antagonistic
pleiotropy via hsp70, then response to any selection
acting on these traits will not be able to exhaust all
the additive genetic variation if the highest fitness is
a balance of intermediate levels of both traits.

The genetic variance/covariance or G matrix has
also become a focus of research to better understand

how the genetic basis of potentially non-independent
quantitative traits changes over time with selection,
genetic drift, and mutation (reviewed by Steppan et al.
2002; Jones et al. 2003). The G matrix represents
the genetic inter-relationships among multiple traits,
so estimating it in a range of species and for a range
of traits is a prerequisite to understand how pheno-
types might respond to long-term natural selection.
Understanding how the G matrix changes over time
is also fundamental to understanding long-term
response to selection. The predicted trait means in
equation 9.21 rely on the constancy of the G matrix
over time. If G changes rapidly or unpredictably 
over time then predicted changes in trait means 
are not applicable over long periods of time. Rapid
changes in G would also reduce the ability to infer
past patterns of response to selection given a current
estimate of G.

Neutral evolution of quantitative traits

Considering a quantitative trait as selectively neutral
is useful to predict the action of basic processes that
will reduce as well as contribute to additive genetic
variation. If a quantitative trait is neutral, each 
locus that contributes to variation in the trait should
be neutral as well. Therefore, we can employ expres-
sions already developed to predict the consequences
of genetic drift. Additive genotypic variation is expected
to decrease with genetic drift over time because the
alleles at the loci that form the basis of VA will pro-
gress toward fixation and loss. The expected rate of
decrease in VA by genetic drift is

(9.23)

where VA
o is the initial additive genotypic variation,

Ne is the effective population size, and t is the number
of generations that have elapsed. As explained in 

Chapter 3, the term in this equation 

predicts the decline in heterozygosity through time
by genetic drift. Additive genetic variation is greater
when heterozygosity is greater because alleles are at
intermediate frequencies.

Next we can predict the balance between the 
additive genotypic variation lost by drift and new
additive variation gained due to new mutations at
the loci that influence a quantitative trait. Let’s start
by reworking the equation for decline in VA over an
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arbitrary time interval to instead predict the change
in additive genotypic variation each generation due
to drift:

(9.24)

This equation is obtained from equation 9.23 by 
setting t = 1, multiplying the right side out, and 
then subtracting VA

o from both sides. Then assume
that the amount of new additive genotypic variance
caused by mutation each generation is VA

M. The sum
of additive variation lost by drift and additive vari-
ation gained by mutation is

(9.25)

This defines the net change in additive genotypic
variation due to the action of both drift and mutation.
If we assume that a population is at drift–mutation
equilibrium then ΔVA = 0, allowing equation 9.21 to
be rearranged to give

VA = 2NeVA
M (9.26)

(see Lynch & Hill 1986; Bürger & Lande 1994).
The expected additive genotypic variance for a

neutral quantitative trait at drift–mutation equilibrium
was the basis of a much debated recommendation
that Ne = 500 would be sufficient to maintain additive
genotypic variation in populations of endangered
species (Franklin 1980; Lande 1995). This recom-
mendation came from rearranging equation 9.26 to
solve for the effective population size:

(9.27)

Assuming that total phenotypic variation is caused
only by VA and VE and using the definition of the 
narrow-sense heritability, VA can be expressed as 

. If h2 = 0.5, then VA in the numerator 

on the right side of equation 9.27 can be replaced
with VE. The final step was to utilize an estimate 
of the input of additive variation due to mutation 
available at the time that suggested VA

M ≈ 0.001VE.
Putting this all together results in

(9.28)
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as an estimate of the effective population size expected
to maintain a heritability of about one-half.

This recommendation for an effective population 
size target of 500 sparked a debate that centered
around the numerous assumptions about the nature
and causes of quantitative trait variation in natural
populations. Lande (1995) pointed out that VA

M ≈
0.001VE was probably too high since the mutation
rate needed to be discounted for the number of 
mutations that were highly deleterious and a more
realistic assumption was VA

M ≈ 0.0001VE by count-
ing only nearly neutral mutations. This change 
in the mutational input of quantitative genetic 
variance each generation substantially increases the
required effective population size to approximately
5000. Franklin and Frankham (1998) countered
that assuming a heritability of 0.5 was larger than
necessary because heritabilities for fitness-related
traits were often around 0.1 (see also Frankham 

In PopGene.S2, open the QTL simulation
module and then explore how the effective
population size influences the level of
genotypic variation for a selectively neutral
quantitative trait. The key parameter to
adjust is the number of individuals in the
population. Try N = 50 and then N = 500
while the other parameters are set at 
nQTL = 10, mutation rate = 0.00001,
generations = 100, VE = 0.1, Maximum
genotypic value = 10.0, and Selection
threshold = 0.0 (this last parameter 
value sets the truncation point so that all
individuals reproduce each generation,
effectively removing natural selection).

How much genotypic variance (VG) do
you find with these two effective population
sizes? How variable are the levels of VG over
time with N = 50 or N = 500? How do 
the mutation rate and the environmental
variance (VE) in the trait influence the 
long-term heritability for each effective
population size?

Interact box 9.4
Effective population size 

and genotypic variation in a
neutral quantitative trait
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and Franklin 1998). They reasoned that even if 
VA

M ≈ 0.0001VE, an effective population size of about
550 was sufficient to maintain a heritability of 0.1.  

In contrast, inferred ratios were observed in a 

range of organisms to be between 30 and 300 which
implies that Ne is between 15 and 150 (Houle et al.
1996; Lynch & Lande 1998). Since this effective 
population size is definitely too low for some of 
the species studied by Houle et al. (1996), such as
Drosophila, these findings then called into ques-
tion the very assumptions of neutral drift–mutation 
equilibrium. An alternative explanation is that 
stabilizing natural selection is operating and causing
reduced variation in quantitative traits and could 

explain the ratios rather than such low effective

population sizes.
The perspective of neutral evolution for quantitat-

ive traits has also been employed to make inferences
about the nature of the total genotypic variation
(VG). Genetic drift that occurs during genetic bottle-
necks and founder events as well as consanguineous
mating impacts the components of genotypic vari-
ation for neutral quantitative traits. In a seeming 
contradiction, genetic drift can produce a transient
increase in additive genotypic variance for neutral
quantitative traits that exhibit dominance (VD) or
epistasis (VI) genotypic variance (Robertson 1952;
Goodnight 1987, 1988; Willis & Orr 1993; Barton 
& Turelli 2004). For quantitative traits that exhibit
only VA and VD, higher heterozygote frequencies 
produce more VD and less VA when the dominance
coefficient (d) increases. Genetic drift causes an increase
in homozygosity as allele frequencies change toward
fixation and loss on average under random sampling.
An increase in homozygosity is also a decrease in
heterozygosity and thereby a decrease in VD. For a
single generation bottleneck of Ne = 2 and assuming
no epistasis, Willis and Orr (1993) showed that the
expected value of VA over many replicate popula-
tions increases if d > 0.29. They also showed that 
as Ne during a bottleneck increases, the threshold
dominance coefficient for VA to increase approaches
d > 0.20. The increase in VA is greater for larger 
d and for lower initial frequencies of the recessive
allele. These increases in VA translate into increases
in the heritability that also depend on the magnitude
of VE for the trait. Consanguineous mating also acts
to increase homozygosity while not altering allele
frequencies, and so can also cause a reduction in VD
that leads to a relative increase in VA.
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These predictions about changes in heritability
after genetic drift or consanguineous mating lead 
to a test of whether quantitative traits have geno-
typic variation that is exclusively additive or is a
combination of additive and non-additive genotypic 
variation. Van Buskirk and Willi (2006) reviewed
the results of numerous studies that estimated herit-
ability and VA from both small or inbred populations
as well as large randomly mated populations. They
found that phenotypes closely associated with fitness
(e.g. viability, fecundity, body size) often did show an
increase in heritability after consanguineous mating
or population bottlenecks. In contrast, phenotypes
not associated with fitness (e.g. morphological traits,
bristle number, oil content) showed only declines in
heritability after consanguineous mating or popula-
tion bottlenecks. This result is consistent with the
explanation that VG in fitness-related phenotypes
was caused by both allele and genotype variation
whereas VG in non-fitness phenotypes was caused by
alleles alone in the organisms studied.

9.3 Quantitative trait loci (QTL)

• QTL mapping with single marker loci.
• QTL mapping with multiple marker loci.
• Limitations of QTL mapping studies.
• Biological significance of QTL mapping.

Thus far in this chapter, quantitative traits have been
described based on the mean and variance of values
in a population. Quantities like the components of the
total genotypic variance and the heritability illumin-
ate population-level average qualities of phenotypes.
However, the numerous loci that each contribute to
such population variation have not been identified
nor described. This final section of the chapter intro-
duces the concepts and some methods needed to
identify the individual loci that ultimately contribute
to variation in quantitative traits.

Using the basic framework of phenotypic values
and the population mean already established, and
joining it with genetic marker data for individuals, it
is possible to identify individual regions in a genome
that contribute to quantitative trait variation. The
genomic regions that contribute to variation in 
quantitative traits are called quantitative trait loci
or QTLs. In the simplest idealized case, individual 
QTLs are single genes that contribute to the value of
a quantitative trait and have alternate alleles with
different effects on phenotypic value. The trait mean
and variance would then be the sum of the mean 

··
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and variance contributed by each gene that affects
the trait. In reality, QTLs are not necessarily indi-
vidual genes but can be larger chromosomal regions
held together by linkage that may contain several or
many genes. It is these linkage blocks, each of which
contains a genetic marker, that can be associated with
an effect on the variance of a quantitative trait.

A major goal in identifying and describing the 
individual QTLs that cause quantitative genetic 
variation is to understand the genetic architecture
of continuous phenotypes. By one definition, genetic
architecture is all of the genetic and environmental
factors that contribute to a quantitative trait, as well
as their magnitude and their interactions (National
Institute of General Medical Sciences 1998). More
narrowly, genetic architecture often refers to the
number of QTLs and the size of their effects on a
quantitative traits. Identification of the number and
phenotypic effects of QTLs has applications in many
areas of biology. Identification of QTLs helps test the
role, if any, of candidate loci (identified through
independent molecular biology research or sequence
analyses, for example) in explaining a portion of the
genetic variance in quantitative traits. The reverse 
is also true, since loci identified by QTL mapping
(which is described below) as causing some of the
genetic variation in a quantitative trait are often 
further studied to better understand their function.
In clinical settings, QTL mapping helps identify genes
and alleles that cause disease conditions as well as
genetic markers associated with disease QTLs that can
be used to screen for disease risk. Identifying QTLs
can improve the efficiency of animal and plant breed-
ing, such as in the development of genetic markers

associated with QTLs that can be used to screen 
individuals early in life for traits that may only be
manifest later in life. One example would be screen-
ing tree seedlings for mature wood characteristics
and planting those individuals with genetic marker
genotypes associated with desirable phenotypes that
appear only after many years of growth.

The number of QTLs and the size of their effects 
on a quantitative trait also have profound implica-
tions for evolutionary change such as the response
to natural selection and the amount of variation
generated by mutation. QTL mapping has the 
potential to deconstruct phenomena in quantitative
genetics that have traditionally only been analyzed
via variance components. In principle at least, QTL
mapping can distinguish the specific causes of
genetic correlations (pleiotropy or linkage), identify
the loci and alleles that demonstrate dominance 
and epistasis, and show how specific loci involved in
genotype-by-environment interactions respond to
their environments.

QTL mapping with single marker loci

The process of identifying quantitative trait loci is
called QTL mapping because it is based on the tech-
nique of linkage mapping that establishes the linear
order of loci on chromosomes based on recombina-
tion frequencies. QTL mapping takes basic linkage
mapping one step further by determining whether any
of the mapped loci are associated with variation in 
a quantitative trait. QTL mapping requires variation
for a quantitative trait within or between popula-
tions and numerous polymorphic genetic marker loci
that are spread across the genome of the organism.
The mapping is carried out for the marker loci, since
after all the QTLs are unknown. QTLs are identified
by differences in the mean phenotype of groups of
individuals with different marker locus genotypes.
Any association between phenotypic means and
marker genotypes is caused by gametic disequilib-
rium between QTLs and marker loci when the two
types of loci are close enough on a chromosome to 
be linked. Thus, QTL mapping uses known marker
loci to detect the phenotypic signature of unknown
QTLs that are in the same linkage block.

Genetic marker loci are a critical ingredient in QTL
mapping. First and foremost, marker loci should be
both independent of the phenotype(s) being mapped
(i.e. not a QTL themselves) and also selectively 
neutral so that genotype frequencies are determined
only by mating and recombination but not by viability

Candidate loci Loci that have known 
or inferred function and therefore are
hypothesized to be causal contributors to
genetic variation in a quantitative trait.
Genetic architecture The number of 
loci that underlie a quantitative trait and 
the magnitude of their contributions to
quantitative trait genetic variation.
Quantitative trait locus or QTL A gene, 
or more often a genome region associated by
linkage, possessing multiple alleles that affect
the average value of a quantitative trait in a
defined population associated through linkage
with a genetic marker.
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or fecundity selection. Marker loci must be poly-
morphic because they are only informative when
individuals with different phenotypic values possess
distinct maker locus genotypes. Codominant marker
loci where all possible genotypes are detectable 
present the easiest case to consider, although mating
designs exist that can utilize dominant marker loci.
Before the present age of genomics, only loci with
phenotypic effects or protein polymorphisms were
used as markers and QTL mapping was generally
limited by the small number and low polymorphism
of such marker loci. In the present day, QTL mapping
can employ a full battery of DNA markers such as
restriction fragment length polymorphisms (RFLPs),
amplified fragment length polymorphisms (AFLPs),
microsatellites, and single nucleotide polymorphisms
(SNPs). The numerous genome-sequencing projects
that have been completed or are planned lead to the
identification of marker loci spread across the entire
genome. Linkage maps based on many molecular
markers are also now available for humans as well as
model and agricultural species.

Experimental mating designs are a major compon-
ent of QTL mapping. One of the most basic breeding
schemes for QTL mapping in organisms that can be
raised and mated in captivity is called the F2 design
or recombinant inbred line design (Fig. 9.15). It
starts with a population, perhaps in the wild, that has
considerable phenotypic variation as well as genetic
variation at numerous molecular marker loci. From
this original population, individuals are sampled 
to start inbred lines or subpopulations. The inbred 
lines are maintained by some type of consanguine-
ous mating (e.g. selfing, brother–sister mating) for
numerous generations. The inbred lines eventually
contain individuals with a high probability of homo-
zygosity for different alleles at the loci that cause
variation in the phenotype (Q1 and Q2) as well as for
the different alleles present at the genetic marker 
loci (M1 and M2). An individual is sampled from 
each of two inbred lines that exhibit different values
for the phenotype(s) of interest as well as different
homozygous genotypes at the marker locus. These
individuals form the P1 generation in Fig. 9.15.

When the P1 individuals are mated, they pro-
duce progeny that are all heterozygotes for both the
QTL and the marker locus. Note that recombination
events do not alter the gametes produced because
each P1 individual is a double homozygote. The pro-
geny of the P1 generation form the F1 generation.
Figure 9.15 shows the four gametes that are pro-
duced by the F1 individuals and transmitted after

random mating to their progeny in the F2 genera-
tion. Notice now that recombination between the
QTL and the marker locus does influence gamete 
frequencies and thereby the genotype frequencies 
in the F2 generation. The QTL mapping analysis is
based on two types of data for all F2 individuals: 
that is, (i) the marker locus genotype is known and
(ii) the phenotypic value is known.

The 10 unique two-locus genotypes in the F2 
population are shown in Table 9.5, grouped into
three classes based on the marker-locus genotype.

··
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M1Q1

M1Q1

−a +a
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M1Q1

M2Q2
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d d

F1 Gametes

Frequency
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phenotypic

variation and variable
genetic marker loci
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diverged phenotypes and

genetic marker loci
homozygous for
different alleles

Figure 9.15 The F2 or recombinant inbred line design 
for QTL mapping assuming one QTL (Q) and one genetic
marker locus (M). The top phenotypic distribution represents
the variance in value in the population that is subject to 
QTL mapping. Individuals at the edges of this phenotypic
distribution are then sampled to start lines to be inbred for 
five (self-fertilization) to 10 (sib mating) generations to
achieve high homozygosity. Individuals are then sampled
from inbred lines with diverged phenotypes to form the 
P1 generation. The progeny of the P1 individuals are 
all double heterozygotes and form the F1 generation. 
Gamete frequencies produced by F1 individuals depend 
on recombination rates between loci. Random mating 
among F1 individuals produces the F2 individuals which 
are genotyped for the marker loci and measured for 
their phenotypic values.
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Let’s work through the steps needed to obtain the
expected genotypic value of those F2 individuals
with a M1/M1 marker locus genotype. The mean
genotypic value is obtained by determining the fre-
quency and the genotypic value of each QTL genotype
that is associated with an M1/M1 marker genotype.
There are three possible ways to make an M1/M1
marker-locus genotype in an F2 individual: (i) com-
bine two M1Q1 coupling gametes, (ii) combine an
M1Q1 coupling gamete with an M1Q2 recombinant
gamete, and (iii) combine two M1Q2 recombinant
gametes. Each of these possible genotypes will have 
a frequency in the F2 population that is a product 
of the respective gamete frequencies. Expected F2

genotype frequencies are therefore: (i) for 

the combination of two coupling gametes, (ii) 

for the combination of a coupling and a

recombinant gamete, and (iii) for the com- 

bination of two recombinant gametes.
Each F2 genotype frequency must also be weighted

to account for a genotype’s relative abundance.
Constructing a 4 × 4 Punnett square using the four
possible F1 gametes that are shown in Fig. 9.15
reveals that in the F2 population all double homo-

zygote genotypes (e.g. ) have a frequency of

1/16, all Q locus heterozygotes (e.g. ) have a

frequency of 2/16, and all double heterozygotes (e.g. 

) also have a frequency of 2/16. Given an

M1/M1 marker-locus genotype, the Q locus homo-

zygote genotypes and occur half as

often as the Q locus heterozygote . Therefore, 

the Q locus heterozygote frequency is weighted by 
a factor of 2, as shown in Table 9.5.

Each of the individuals carrying an M1/M1 marker
locus genotype will have a genotypic value that
depends on the genotype at the QTL locus. It is 
customary to use an arbitrary scale of measurement
for the genotypic values (see section 10.1). On this
scale, the genotypic value of the Q1Q1 genotype is
assigned +a, the genotypic value of the Q2Q2 geno-
type is assigned −a, and the genotypic value of the
Q1Q2 genotype is assigned d (refer to Fig. 10.1). 
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The point exactly mid-way between the genotypic 
values of the homozygotes, called the midpoint, is
defined to be zero. When the genotypic value of the
heterozygote is at the midpoint, d = 0. The degree of 
dominance can be expressed as the ratio of d/a. Using  

this scale to measure genotypic values, the 

genotype has a value of +a, the genotype a 

value of d, and the genotype a value of −a. The

expected frequency of each of the three genotypic
values within the M1/M1 marker-locus genotype is
then the product of the genotype frequency and the
corresponding genotypic value.

The portion of the mean genotypic value for the
entire F2 population due to those individuals with an
M1/M1 marker genotype, call it Qpop

M1M1
, is the sum of

the genotype-frequency-weighted genotypic values
for each QTL genotype associated with an M1/M1
marker genotype:

(9.29)

Each term can be multiplied out and the first term
separated to give

(9.30)

which after addition simplifies to

(9.31)

as the expected genotypic mean value of all indi-
viduals with an M1/M1 marker locus genotype.

Since 1/4 of all individuals in the F2 population 
are expected to have an M1/M1 marker genotype by
Hardy–Weinberg, we can multiply by a factor of 
4 to obtain the actual genotypic mean of that subset 
of individuals in the F2 population with M1/M1
genotypes:

QM1M1
= a(1 − 2r) + 2dr(1 − r) (9.32)

The same logic can be used to obtain expressions 
for Q pop and Q for the M1/M2 and M2/M2 marker
genotypes. Note that environmental variation in
phenotype does not need to be accounted for because
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it is not expected to change the average phenotypic
value. However, variation in phenotype about the
average will be caused by both VG and VE.

Examine the expression for the mean genotypic
values for each marker genotype in Table 9.5. If
there is free recombination between the QTL and the
marker locus, r = 0.5 and the marker locus segregates
independently of the QTL that influences phenotype.
With free recombination between the M and Q loci,
the marker class genotypic means should not differ
because the marker genotype is not associated with
the QTL genotype. You can see that this is true by
solving each marker class mean for r = 0.5 and
finding that the expected mean for all marker geno-
types is 0.5d. Therefore, when M is not associated 
by linkage with a QTL locus there should be no dif-
ference between the marker class means QM1M1

and
QM2M2

. If, on the other hand, the average phenotypic
values of those individuals with different marker
genotypes are different, then this is evidence that
there is a QTL linked to the marker. In other words, a
difference between QM1M1

and QM2M2
is evidence that

the marker locus is located inside a linkage block
that also contains a QTL.

Given a difference between QM1M1
and QM2M2

, it is
then possible to estimate the values of a and d for 
the linked QTL. We will need to make a distinction
between the true values of a and d and the estimated
values of â and O since recombination between the
marker and QTL will cause a ≠ â and d ≠ O. The differ-
ence between the two most extreme phenotypic values
in the F2 population defines the genotypic scale from
+a to −a as in Fig. 9.15. Therefore, the difference
between the M1/M1 and M2/M2 marker class means
is equal to 2â. In an equation this can be stated as

2â = QM1M1
− QM2M2

(9.33)

Substituting the definitions of QM1M1
and QM2M2

from
Table 9.5 gives

2â = [a(1 − 2r) + 2dr(1 − r)]
− [−a(1 − 2r) + 2dr(1 − r)] (9.34)

which then simplifies to

â = a(1 − 2r) (9.35)

The expected degree of dominance of the QTL is also
obtained using the definition of d from the geno-
typic scale of measurement as the difference between 
the heterozygote genotypic value and the midpoint

between +a and −a. For QTL mapping data, the value
of the midpoint is half the difference between the
M1M1 and M2M2 marker class mean values and the
heterozygote genotypic value is the M1M2 marker
class mean value. The estimated degree of domin-
ance is therefore

O = (9.36)

Using the definitions of QM1M2
, QM1M1

, and QM2M2

from Table 9.5 yields

(9.37)

which after simplifying the rightmost term gives

O = d[(1 − r)2 + r2] − 2dr(1 − r) (9.38)

This equation is then simplified by factoring out d,
multiplying through, and adding terms to obtain the
expression

O = d (1 − 2r)2 (9.39)

A numerical example will help to illustrate the
marker class phenotypic mean values and how 
they result in estimates of â and O. Different breeds 
of dog exhibit a very wide range of body sizes. An 
allele of the insulin-like growth factor 1 gene (IGF1)
has been shown to be frequent in small dog breeds
(<9 kg) but to have a frequency of near zero in large
dog breeds (>30 kg; Sutter et al. 2007). Therefore,
the IGF1 locus is likely to be a major gene (a QTL
that explains a large amount of quantitative trait
variation) for body size in dogs. Let’s assume there
are two IGF1 alleles segregating within a single 
randomly mating population of dogs and that body
size ranges between a minimum of 9 kg and a 
maximum of 30 kg (see Fig. 10.1).

Imagine that an F2 QTL mapping design was 
carried out along the lines of Fig. 9.15 using large
(30 kg) and small (9 kg) dogs as the P1 individuals.
Suppose that the marker class means were QM1M1

=
20 kg, QM1M2

= 18 kg, and QM2M2
= 12 kg. Also, make

the unrealistic assumption for the moment that
there is no recombination between the QTL and the
marker locus (r = 0). The observed value of 2â is 
the difference between QM1M1

and QM2M2
, which is 
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2â = 8 kg or â = 4 kg. To determine whether the 
QTL shows dominance, we first need to compute the 
midpoint value, which is 12 + (20 − 12)/2 = 16 kg. 
The M1M2 marker class mean is 18 kg and is 2 kg
above the midpoint. The degree of dominance is 
O/â, which in this case is 2/4 = 0.5. Therefore, in this
example the QTL allele that increases body mass is
50% dominant to the allele that decreases body mass.

The difference in body mass between the QM1M1
and

QM2M2
marker class means is 20 kg − 12 kg = 8 kg.

The total difference in body weight in these dogs is 
30 kg − 9 kg = 21 kg. The QTL linked to this genetic
marker therefore accounts for 8 kg of the total 21 kg
difference in body weight, or 8 kg/21 kg = 38% of the
total body mass difference between large and small
dog breeds. The percentage of the total difference 
in the phenotypic value of the two P1 individuals is
called the effect size of the QTL. In this hypothetical
example, the QTL would be considered a major gene
because its effect size is large. The QTL mapping
results also tell us that there is partial dominance 
for the two QTL alleles that have been examined in
this study based on the mean phenotypic value of
individuals heterozygous for the marker locus.

It is important to notice that the expressions for 
â and O are both functions of the recombination 
rate between the QTL and the marker locus. This 
is because the perceived true effect of the QTL is 
confounded with the recombination rate in a single-
marker QTL mapping analysis. The true additive
effect of a QTL (or a) based on â and the recombina-
tion rate can be found by rearranging equation 9.35
to give

(9.40)

Similarly, the true dominance effect of a QTL (or d )
based on O and the recombination rate can be found
by rearranging equation 9.39 to give

(9.41)

So unless the recombination rate between the marker
locus and QTL is zero, which it almost never is, a and
d are actually larger than the estimates of â and O
from a single-marker QTL mapping experiment.

To see that â and O are minimum estimates, let’s
reconsider the example above but assume a differ-
ent recombination rate. The estimated phenotypic

d
r

=
−

O
( )1 2 2

  
a

a
r

=
−
ˆ

( )1 2

effect of the QTL (â) is a constant. The observed differ-
ence in body mass between the QM1M1

and QM2M2

marker class means is 8 kg, yielding an estimate of
2â = 8 or â = 4 by equation 9.33. If the recombina-
tion rate is r = 0, then by equation 9.40 a = 4 kg/
(1 − 2(0)) = 4 kg. However, if the recombination rate
between the marker locus and the QTL is r = 0.25
instead, then by equation 9.35, a = 4 kg/(1 − 2(0.25))
= 8 kg. For dominance, if r = 0 then by equation 9.41,
d = 2 kg/(1 − 2(0))2 = 2 kg. However, if r = 0.25 then
by equation 9.41, d = 2 kg/(1 − 2(0.25))2 = 8 kg.
Therefore, the inferred true phenotypic effect of the
QTL (a) and its degree of dominance (d) are both 
a function of the recombination rate between the
marker locus and the QTL. The degree of domin-
ance (d/a) inferred with r = 0 is 2/4 = 0.5. In contrast,
the degree of dominance inferred with r = 0.25 is 
8/8 = 1.0.

In this example, a recombination rate of 0.25
rather than zero doubles both the perceived true effect

··

Sax (1923) was the first to carry out a QTL
mapping analysis. He showed evidence for
a QTL explaining continuous variation in
the trait of seed weight of the common
bean (Phaseolus vulgaris) based on
differences in the phenotypic means of
plants that differed in seed color. The P1
individuals had seed weights of 48 and 21
centigrams (cg) and were homozygous for
different alleles (P and p) for a codominant
gene that affects seed color. Using seed
color patterns to determine genetic marker
classes, the mean seed weights in the F2
individuals were

PM1M1
= 30.7 cg PM1M2

= 28.3 cg
PM2M2

= 26.4 cg

Using the data collected by Sax, estimate â
and N for the QTL for seed weight assuming
that r = 0.2 and r = 0. What is the effect of
the QTL in terms of the percentage of
phenotypic difference between the P1
individuals? Did Sax identify a major gene
for seed weight?

Problem box 9.2
Compute the effect and

dominance coefficient of a QTL
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of the QTL and the perceived degree of dominance.
With a higher recombination rate, the QTL has a
larger effect on the phenotype but not all of this 
effect is reflected in the marker class means since
recombination breaks down the association between 
QTL genotypes and marker locus genotypes. As the 
randomizing effect of recombination between a QTL
and a marker locus increases, the smaller the differ-
ence between QM1M1

and QM2M2
becomes for a QTL.

With free recombination between the QTL and the
marker locus, QM1M1

and QM2M2
are expected to be

equal because there is no association between the
QTL and the marker locus genotypes.

QTL mapping with multiple marker loci

QTL mapping that utilizes numerous genetic marker
loci is now routine. It is then possible to utilize all pairs
of genetic markers for QTL mapping. The advantage
of such flanking-marker QTL analysis or interval
mapping is that the resulting estimates of â and O
are not confounded with the recombination rate.
Interval mapping is carried out with an F2 mating
design like that shown in Fig. 9.15 to produce F1
individuals heterozygous at the two marker loci 
as well as the QTL. Figure 9.16 shows the arrange-

ment of two marker loci that flank a QTL in an F1
individual along with the eight types of gametes 
(two coupling, four single recombinants, and two
double recombinants) that can be produced by an 
F1 individual. These eight F1 gametes can be com-
bined to make nine two-locus marker genotypes 
and 28 possible F2 genotypes. The recombination
rate between the marker loci, r, can be estimated
from the two-locus marker genotype frequencies in
the F2 progeny. Assuming no interference (or that
recombination rates rA and rB are independent), then 
r = rA + rB − 2rArB.

Using the expected gamete frequencies shown 
in Fig. 9.16, the mean phenotypic value of each
marker genotype can be derived. Table 9.6 shows
the derivation of the expected phenotypic value for
the marker genotypes A1A1B1B1 and A1A2B1B2. As
for QTL mapping based on a single genetic marker,
the portion of the mean genotypic value for the entire
F2 population is referred to as Qpop

A1A1B1B1
and Qpop

A1A2B1B2
.

These population mean genotypic values are the
sum of the genotype-frequency-weighted genotypic
values for each QTL genotype associated with a 

two-locus marker genotype. Since of all indi-

viduals in the F2 population are expected to have 
an A1A1B1B1 marker genotype, we can multiply by a 

factor of to obtain the actual genotypic mean

of that subset of individuals in the F2 population
with A1A1B1B1 marker genotypes or QA1A1B1B1

. The
expected frequency of the A1A2B1B2 genotype is used
to obtain the actual genotypic mean of F2 individuals
with A1A2B1B2 marker genotypes or QA1A2B1B2

. The
expected genotypic means of the remaining seven
possible marker-class means as well as a regression
method to estimate â and O are given in Haley and
Knott (1992).

Like QTL mapping based on a single genetic
marker, the phenotypic value of the A1A1B1B1
marker genotype is a function of both the additive
and dominance effects of the QTL. In contrast, the
expected phenotypic value of the A1A2B1B2 marker
genotype is a function only of d. Therefore, the
A1A2B1B2 marker-class mean value provides an 
estimate of the dominance coefficient independent 
of a. Once the value of d is estimated, then other
marker-class means can be used to estimate the
value of a. As with single-marker QTL analysis, a 
statistically significant difference between marker-
class mean values indicates that a QTL is present
between a pair of genetic marker loci.

  

4
1 2( )− r

  

( )1
4

2− r

A1

A2

Q1

Q2

B1

B2

Genotype of
F1 individual

Possible gametes and their frequencies

No recombination

Single recombination

Double recombination

A1Q1B1

A2Q2B2

A1Q1B2

A2Q2B1

A2Q1B1

A1Q2B2

A1Q2B1

A2Q1B2

(1 − rA)(1 − rB)

2

(1 − rA)rB

2

rA(1 − rB)

2

rArB

2

r

rA rB

Figure 9.16 Interval mapping utilizes two marker loci 
(A and B) that sit on either side of a QTL. An individual with
the genotype shown can produce two types of gametes if there
is no recombination, four type of gametes if there is a single
recombination event, and two types of gametes from a double
recombination event. The expected gamete frequencies are a
function of the recombination rates.
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A hypothetical example of data produced by interval
QTL mapping in an F2 design is shown in Fig. 9.17.
This example illustrates the difference in the value 
of the homozygous marker-class means (e.g. the 
difference between QA1A1B1B1

and QA2A2B2B2
) for each of

17 genetic marker loci. The difference in marker-class
means is given on the y axis while the position of
each marker locus on a chromosome is given on the
x axis. The marker-class mean differences are near
zero for marker loci not in gametic disequilibrium
with a QTL. Marker loci near QTLs show some differ-
ence in marker-class means, but the marker loci and
the QTLs experienced frequent recombination and 
so are not strongly associated. As marker loci closer 
to the QTLs are considered, the amount of gametic
disequilibrium between a marker locus and a QTL
increases, producing a greater difference in marker-
class means. In this hypothetical example, the genetic
markers at 33 and 85 map units lie closest to QTLs,

as indicated by peak values for marker-class mean
differences. The marker-class means at these marker
loci differ by over one phenotypic standard devia-
tion, indicating a statistically meaningful difference
given sampling error and multiple statistical tests.
(The threshold for statistical significance of marker-
class mean differences is often judged by a log of odds
or LOD score and differs depending on the details 
of each QTL study; see Van Ooijen (1999).) The QTL
near 33 map units increases the mean value while
the QTL near 85 map units decreases the mean value.
These two hypothetical QTLs have opposite effects
on the trait, a situation sometimes called dispersion.
Dispersion can lead to downwardly biased estimates
of QTL effects because each marker locus is associated
with two QTLs with opposite phenotypic effects. The
perceived marker-class mean difference is therefore
the net phenotypic effect caused by association with
two QTLs.

A commonly employed QTL mapping design
is the backcross of an F1 individual to one of
the P1 individuals shown in Fig. 9.15. One
drawback of a backcross mating design for
QTL mapping is that the resulting estimates 
of â depend on the value of d. To see that 
this is the case, consider the backcross 

and the marker-class means 

in the population of progeny. Derive the
expected marker-class means for A1A1B1B1
and A1A2B1B2 marker genotypes (call these
PBC

A1A1B1B1
and PBC

A1A2B1B2
respectively) and 

then compute the expected value of 
â = PBC

A1A1B1B1
− PBC

A1A2B1B2
.

To work through this problem, first notice 

that the P1 individual will produce 

only one type of gamete whereas an F1 

individual will produce eight 

types of gametes with the frequencies 
given in Fig. 9.16. This problem is made 
easier by the commonly invoked assumption
that the marker loci are close enough on 

A Q B

A Q B
1 1 1

2 2 2
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2 2 2
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×

the chromosome such that double
recombination events are so rare they 
can be ignored. Therefore, the F1 parent
gametes A2Q1B2 and A1Q2B1 can be left 
out of the marker-class means.

Start by constructing a table with two 
rows for the two F1 gametes produced 
by no recombination and four rows for 
the F1 gametes produced by a single
recombination event. Then, following the
model of Tables 9.5 and 9.6, fill in columns 
for the six categories of backcross progeny.
The column headings are F1 parent gamete,
expected F1 gamete frequency, backcross
progeny genotype, backcross progeny
genotypic value, frequency-weighted
genotypic value, backcross progeny marker
genotype expected frequency, and marker-
class genotype mean. When adding the two
terms that make up the A1A1B1B2 or A1A2B1B1
frequency-weighted genotypic values, any
terms that contain rArB can be crossed out
because of the assumption that double
recombination events are so rare that they 
can be ignored. The marker class means are
obtained by dividing the frequency-weighted
genotypic value by the marker genotype
expected frequency.

Problem box 9.3
Derive the expected marker-class means for a backcross mating design
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A large number of QTL mapping breeding designs
and estimation methods exist. Some methods are
related to interval mapping but utilize more than just
pairs of marker loci (composite interval mapping)
or utilize all of the linked markers on individual chro-
mosomes (multipoint mapping). Another approach
is to test for associations between marker genotypes
and phenotypic means in only those individuals 
that show extreme phenotypic differences in an F2
population such as the individuals at the upper and
lower tails of the phenotypic distribution. In such
bulked segregant analyses the marker loci near
QTLs are expected to be in gametic disequilibrium
because of linkage. Therefore, the individuals in the
lower tail of the phenotypic distribution would have
one marker genotype and the individuals in the
upper tail of the phenotypic distribution would have
another marker genotype if a marker locus were
very tightly linked to a QTL. In contrast, a marker
locus independent of any QTL would show all geno-
types at equal frequencies in the individuals that 
represented the upper and lower tails of the pheno-
typic distribution.

Limitations of QTL mapping studies

QTL mapping results are highly context-sensitive, just
like heritability estimates. The number and effects 
of QTLs identified in one population may not be 
representative of QTL effects in another population
of the same species. Mapping only identifies QTLs
that are segregating in the population at the time of 
mapping. Further, QTL mapping by the F2 design
can only detect and estimate the phenotypic effects 
of two alleles at a QTL. The two QTL alleles detected
are those fixed when inbreeding lines to form P1 
in Fig. 9.15. In reality, there may be more than 
two alleles segregating in a population for any QTLs 
and detecting these requires screening replicate P1
crosses. Alleles at QTLs that are fixed or lost in the
original population or become fixed or lost by genetic
drift during the formation of inbred lines cannot be
identified. Likewise, the estimates of QTL effect sizes
are always relative to the other QTL loci segregating
in a population. For example, QTL X could explain
10% of the phenotypic difference between marker-
class means in one population whereas QTL Y has
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Figure 9.17 The difference in phenotypic mean values for each of 17 genetic marker loci versus the position of each marker
locus on a chromosome. In this hypothetical example, there are two genetic markers that lie closest to QTLs indicated by two peak
values for marker-class mean differences. The phenotypes of the homozygote classes for the marker loci at 33, 41, and 85 map
units (or centimorgans, cM) differ by over one phenotypic standard deviation. The QTL near 33 cM increases the mean value 
while the QTL near 85 cM decreases the mean value. Marker-class mean value differences greater than ±1 phenotypic standard
deviation (blue dashed lines) are considered statistically meaningful in this example. Marker-class mean differences smaller than
one standard deviation could be different due to chance alone. The close proximity of these two QTLs with opposite effects on the
trait would lead to reduced estimates of QTL effects at all marker loci. This occurs because each marker locus is partly linked to a
QTL of both positive and negative effect, so the perceived marker class mean difference is the net effect of the two QTLs. Genetic
marker locus positions are established by observed recombination rates. One map unit or centimorgan distance along a
chromosome is equal to a 1% recombination rate. LOD score, log of odds score.
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even bigger effect but happens to be fixed for one
allele. If QTL Y is segregating instead, then QTL X 
will have a smaller perceived effect on the pheno-
type in a mapping study. This occurs because when
two alleles are segregating at QTL Y, there will be 
a greater difference in phenotype between P1 indi-
viduals than when QTL Y is fixed.

Several types of statistical power limitations impact
QTL mapping results. Actual QTLs of small effect
cannot be identified easily because it is difficult to
show that a small difference between marker-class
means is statistically meaningful given inherent
environmental variation, experimental measurement
error, and corrections required when carrying out a
very large number of statistical tests. The effect sizes
of QTLs that are identified as statistically meaningful
can be substantially inflated since the QTLs with
small effects are not identified. This so-called Beavis
effect is pronounced if the number of progeny in a
mapping study is about 100 and modest with about
500 progeny (Beavis 1994; Xu 2003).

The number of QTLs identified in mapping studies
is likely to underestimate the true number of QTLs
that cause variation in a trait (Otto & Jones 2000).
Under conditions similar to many actual QTL map-
ping studies, no more than about a dozen QTLs 
will be identified as statistically meaningful (Hyne &
Kearsey 1995). In addition, two or more QTLs that
are adjacent in the genome may appear as a single
QTL. If the effects of two linked QTLs are in the 
same direction, the perceived single QTL will have an
inflated effect. On the other hand, if the two linked

QTLs have contrasting (or antagonistic) effects on the
trait, then a single perceived QTL will be detected that
has a downwardly biased effect size that is therefore
less likely to be detected as statistically meaningful.
The number and spacing of genetic markers also influ-
ences the perception of QTL numbers and effect sizes,
since widely spaced markers (relative to the recom-
bination rate) may miss QTLs or aggregate the effects
of multiple QTLs. The term quantitative trait region
or QTR is sometimes used to describe an association
between a marker locus and a marker-class mean
difference since multiple linked QTLs may exist within
the genome interval mapped. Further fine-scale map-
ping with genetic markers spaced at smaller intervals
along the chromosome in the specific chromosomal
regions around QTR can be used to identify true 
single QTLs (e.g. Kroymann & Mitchell-Olds 2005).

Biological significance of QTL mapping

QTL mapping is now carried out routinely in model
and domesticated species, facilitated by the large
numbers of molecular markers and high-throughput
genotyping techniques as well as genome sequencing
and genetic linkage mapping projects. QTL mapping
can also be carried out, albeit usually with more diffi-
culty and less resolution, in some non-domesticated
species using crosses within and between species
(reviewed by Slate 2005). Table 9.7 shows some
examples of the number of QTLs identified for vari-
ous phenotypes in a range of species. In Table 9.7 
the results range from one or a few QTLs with large

Table 9.7 Examples of QTLs identified by mapping with genetic marker loci.

Organism Phenotype Number of Number Reference
marker loci of QTLs

Arabidopsis thaliana Days to first flower 65 7 Kearsey et al. 2003
Number of buds at flowering 28
Rosette size at 21 days 4
Rosette size at flowering 10

Dogs Body size 116 1 Sutter et al. 2007
Drosophila santomea Prezygotic reproductive isolation 32 6 Moehring et al. 2006

× D. yakuba
Humans Taste sensitivity to PTC 50 1 Kim et al. 2003

Stature > 253 3 Perola et al. 2007
Louisiana irises Flowering time > 414 17 Martin et al. 2007
Stickleback fish Bony plates 160 4 Colosimo et al. 2004
Zea mays Kernel oil concentration 488 > 50 Laurie et al. 2004

PTC, phenylthiocarbamide.
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effects on phenotypic variation (dog body size, human
stature) to a large number of QTLs with individual
small effects on phenotypic variation (kernel oil con-
tent). This mirrors the overall trend in QTL mapping
results, where the number of QTLs and their effect
sizes are strongly dependent on the species, popula-
tion, and phenotype studied. Whereas part of this
diversity in QTL mapping results is likely caused 
by methodological and statistical power differences
among studies, some of it likely reflects actual vari-
ability in the number and effects of QTLs that cause
phenotypic variation.

QTL mapping studies not only identify effect sizes,
but can also quantify the degree of dominance and
epistasis for QTLs. QTLs have been observed to have
dominance that ranges from zero (additive gene
action), through all degrees of partial dominance 
to complete dominance, to cases of overdominance.
One classic example is the wide range of the d/a ratio
(a is the estimated additive effect of an allele and d is
the estimated heterozygote value), spanning −2.0 to
+2.0, observed for 74 QTLs detected for 11 pheno-
types in tomato (de Vincente & Tanksley 1993). Based
on these results, dominance frequently contributes to
the genotypic variation of quantitative traits. Evidence
for interaction variance caused by epistasis has been
equivocal. Interactions between or among loci did
not often explain much of the observed genotypic
variation in early QTL mapping studies. However, 
it is generally more difficult to detect epistasis for
QTLs due to statistical and sample size limitations
(see Carlborg & Haley 2004). Recently, more effort
has been directed toward testing for epistasis in QTL
studies and numerous empirical studies have iden-
tified statistically meaningful interactions between
two or more QTLs as often as additive effects of QTLs
(reviewed by Malmberg & Mauricio 2005).

The genetic architecture of quantitative traits – the
effect size and gene action (additivity, dominance, 
or epistasis) of QTL underlying a trait – plays a 
crucial role in how quantitative traits will respond 
to natural selection. As an illustration, imagine that
dog body mass is under natural selection for larger
size such that s = 0.3 with h2 = 1.0. The breeder’s
equation R = h2s predicts response to selection 
without reference to the genetic architecture of the 
quantitative trait. In this example, R = (1.0)(0.3) = 0.3,
or a predicted increase of 0.3 standard deviations per
generation. Now imagine that the additive genetic
variation in body mass is caused by a number of
QTLs. The strength of selection on the trait is divided
across the independent loci that cause the additive

genetic variation in the trait. The pressure of natural
selection on one QTL is then only as large as its role in
causing additive genetic variance in the phenotype.
Said another way, the selection experienced by one
QTL is proportional to its effect size. The breeder’s
equation can be modified for a single QTL by adjust-
ing the selection differential for the proportion of
additive genetic variation explained by a QTL
according to

R = h2(s(QTL effect size)) (9.42)

To see how this modified breeder’s equation works,
let’s return to the example of the QTL that explains
38% of the total body mass difference between large
and small dog breeds. That one QTL experiences
38% of the selection pressure that is exerted on 
the entire phenotype because it causes 38% of the
additive genetic variation. Response to selection will 
be accomplished by relatively large changes in the
allele frequencies at that one QTL with a 38% effect.
In fact, the selection differential on that one QTL is 
s = (0.3)(0.38) = 0.114. This also leads to a predicted
response to selection of 0.144 standard deviations
for that one QTL alone.

The predictions of the nearly neutral theory (see
Chapter 8) show the consequences of this division of
the selection differential among QTL in proportion 
to their effect size. In finite populations, the balance
between genetic drift and natural selection can be
predicted with the quantity 4Nes where s is the selec-
tion differential. When 4Nes >> 1 then selection is
the primary determinant of allele frequency, when
4Nes << 1 then genetic drift is the main process
influencing allele frequency, and when 4Nes is on the
order of one then both selection and genetic drift
determine allele frequency. For a QTL of 38% effect
experiencing a selection differential of s = 0.114, 
the response to selection will depend on Ne. In the
context of an effective population size greater than
about 25, the frequencies of the alleles at a QTL 
with a 38% effect would be expected to be dictated
exclusively by natural selection. Only if the effective
population size were less than 10 would we expect
genetic drift to exclusively dictate the fate of allele
frequencies at the QTL.

Under more realistic circumstances, many QTLs
will have effect sizes much smaller than 38% and
traits will most commonly have heritabilities less than
1.0. To take another example, imagine a QTL with 
a 2% effect for a trait with h2 = 0.3 that is experi-
encing an identical selection differential of s = 0.3.

··
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The effective response to selection for this QTL of
small effect is R = (0.3)((0.3)(0.02)) = 0.0018, or a
predicted increase of 0.0018 standard deviations 
per generation. This QTL of small effect experiences a
very weak pressure from natural selection precisely
because it is a weak cause of additive genetic vari-
ation in a trait that has a low heritability. According
to the 4Nes rule, this QTL would have to experience
selection in the context of an effective population 
size greater than about 2000 for natural selection
alone to dictate allele frequencies over time.

These observations about how the effective popula-
tion size influences response to selection on individual
QTLs shed light on an implicit assumption of the
infinitesimal model of the genetic basis of quantitat-
ive traits. It is only in the context of large effective
population sizes that the allele frequencies of QTLs
with small effect sizes will respond to natural selec-
tion. In a finite population, as the number of QTLs
grows large and the effect size approaches zero, the
net response to selection will shrink and each locus
will be subject to genetic drift rather than natural
selection. Therefore, the infinitesimal model must also
assume that the effective population size is inversely
related to the QTL effect size. Drift–selection balance
for QTLs in finite populations also serves to explain
the simulation results in Fig. 9.12 that relate to 
long-term response to selection. In Fig. 9.12b there
are many QTLs of small effect that clearly remain
segregating for a longer period of time than the QTLs
of large effect in Fig. 9.12a. The reason why the QTLs
of small effect remain segregating longer is that they
experience a relatively weak net selection pressure.
The allele frequencies at the loci in Fig. 9.12b are
clearly spreading out toward fixation and loss as we
would expect of many replicate neutrally evolving loci
(see Chapter 3), although perhaps the probability 
of fixation is greater than it would be under pure
genetic drift.

The expected behavior of QTLs under the pro-
cesses of genetic drift and natural selection has lead
to a possible test for the action of natural selection 
on quantitative traits. Under the influence of natural
selection alone, QTL alleles that fix in a population
should all cause the trait value to change in the same
direction (Orr 1998b; Anderson & Slatkin 2003).
For example, if natural selection is acting to increase
the trait mean then only QTL alleles that increase 
the trait value should be fixed in the population.
Alternatively, under pure genetic drift QTL alleles
that both increase and decrease the trait value
should fix with equal frequency. Based on this logic,
Rieseberg et al. (2002) used QTL effects estimated
from 42 traits with greater than six QTLs to test for
the action of directional selection. They concluded that
alleles at QTLs are very often under the influence of
natural selection and that life-history traits experi-
ence stronger natural selection than morphological
traits. Interpreting this test for natural selection on
QTLs is problematic, however, since quantitative
traits in general are not sampled at random for 
QTL mapping studies. Rather, quantitative traits in
domesticated organisms that have been under 

Use the QTL module in PopGene.S2

to simulate response to selection for a
quantitative trait that has QTL with variable
effect sizes. The key parameter to vary is 
the percentage of genotypic variation
explained by each QTL. Select the option
for Some loci have large effects and the
rest have equal small effects, set Number
of large effect loci = 3, and VG explained by
each large effect locus = 0.20. Set the other
simulation parameters at Natural selection
phenotypic value truncation point = 0.5
(only individuals in the upper 50% of
phenotypic value reproduce), N = 250,
mutation rate = 0.0, generations = 100, 
VE = 0.1, and Maximum genotypic 
value = 10.0.

Use the modified breeder’s equation
given in equation 9.42 to compute the net
response to selection for the QTL with large
and small effects in this simulation. When
the selection truncation point is 0.50 in 
the simulation, the selection differential 
is s ≈ 0.399 (see the text web page for more
details). The heritability is also h2 ≥ 0.5.
Using these parameter values, what would
you predict about the patterns of allele
frequency change for QTL of large and
small effect sizes?

Try out different values for the Natural
selection phenotypic value truncation point
or N and predict the consequences using
equation 9.42. Then run the simulation to
test your predictions.

Interact box 9.5
Effect sizes and response 

to selection at QTLs
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long-term selection are most likely to be subject to
QTL mapping since the effort to map QTLs is justified
by the potential for improvements in selective breed-
ing. While Rieseberg et al. (2002) showed that QTL
alleles do tend to cause the trait value to change in
the same direction as expected under selection, it is
not clear whether the sample of taxa and phenotypes
used for the test is representative of taxa and pheno-
types in general.

Other results suggest that QTLs experience a com-
bination of both genetic drift and natural selection.
The QTLs of small effect identified from the Illinois
Long-Term Selection study clearly show the effects of
both genetic drift and natural selection. Among the
QTLs identified for kernel oil concentration, about
20% show effects that are opposite to the direction of
natural selection, such as QTLs that reduce oil con-
centration segregating in the lines selected for high
oil concentration (Laurie et al. 2004). Since selection
is acting against these QTLs with opposite effects,
they must have escaped loss due to strong genetic
drift in the context of an effective population size of
about 10. Results similar to kernel oil concentration
have been observed for tomato QTLs.

The results of QTL mapping studies can also be used
to estimate the distribution of effect sizes for numer-
ous QTLs. Figure 9.18 shows distributions of QTL
effect sizes estimated for numerous phenotypes in dairy
cows, pigs, and D. melanogaster. The distributions
show the difference in phenotypic values for altern-
ative homozygous genotypes (or the equivalent of 2a)
at QTLs in units of phenotypic standard deviations.
QTLs with smaller effect sizes explain a smaller pro-
portion of the additive variance in a quantitative
trait. QTLs at the right-hand edge of the x axis have a
large effect on the genotypic variance.

These distributions of QTL effect sizes can be related
to the models of mutation considered in Chapter 5. 
In particular, Fisher’s geometric model of mutation
(refer to Fig. 5.5) predicts that mutations of smaller
phenotypic effect are more likely to improve fitness.
Extending this model to QTLs, we can now think 
of QTLs with larger and smaller effects on genotypic
variation (refer to Fig. 5.6). Kimura’s version of
Fisher’s geometric model of mutation predicts that
the genetic drift–natural selection balance will lead
to fixation of alleles with the same effect on trait
value (all either increasing or decreasing the trait
mean) for those QTL of medium to large effect. Orr’s
(1998a) version of the geometric model considers 
a series of QTL mutations over time (but only one
mutation segregates at a time) that take the popula-

tion closer to the optimum. Orr’s model differs from
Fisher’s because it predicts that QTLs with larger effects
can be fixed by selection. In addition, Orr’s model
suggests that the distribution of QTL effect sizes should
have an increasing number of QTLs with small effects
so that the number of QTLs increases rapidly as the
QTL effect size decreases. Looking at the data provided

··
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Figure 9.18 Distributions of estimated QTL effect sizes from
several animal species. The distributions show the difference
in phenotypic values for alternative homozygous genotypes
(or the equivalent of 2a) at a QTL in units of phenotypic
standard deviations. QTLs with larger effect sizes explain a
large proportion of the additive variance in a quantitative
trait. The distribution in (a) represents QTLs identified from
multiple phenotypes in dairy cattle while the distribution in
(b) represents QTLs identified in multiple phenotypes in pigs.
The distribution in (c) shows QTLs located on the third
chromosome that influence sternopleural bristle number in
D. melanogaster. Data in (a) and (b) from Hayes and Goddard
(2001); data in (c) from Shrimpton and Robertson (1988).
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in Fig. 9.18, it is difficult to test the predictions of
Fisher’s or Orr’s models. The QTLs from dairy cows 
in Fig. 9.18a have the largest number of QTLs with
small effect. In contrast, the effect distribution in 
Figs 9.18b and 9.18c have more QTLs in the middle
effect sizes. Because Fisher’s and Orr’s models make
abstract rather than specific predictions they are
difficult to test in practice. In addition, the potential
biases and uncertainties in QTL data themselves
leave us uncertain whether the distribution of effect
sizes has been estimated accurately.

Chapter 9 review

• Variation in quantitative trait values among 
individuals within a population (VP) has both
genetic and environmental causes. The genetic
causes are due to genotypic variance (VG) that
can be partitioned into the distinct components of
additive (VA), dominance (VD), and epistasis (VI)
variance.

• Phenotypic variation can be caused by genotype-
by-environment interaction (VG×E) where geno-
types express heterogeneous phenotypic values in
response to different environmental conditions.

• The additive component (VA) of the genotypic
variance (VG) is caused by the sum of the pheno-
typic effects of alleles when they are assembled
into genotypes. Phenotypic effects of alleles cause
the resemblance of parents and offspring as well
as the resemblance among relatives.

• Dominance (VD) and epistasis (VI) components of
VG are caused by the effects of genotypes. VD and
VI do not contribute to phenotypic resemblance
between parents and offspring because particulate
inheritance breaks up genotypes (additive by
additive epistasis is an exception).

• The proportion of the total genotypic variance (VG)
due to the additive effects of alleles is measured by
the narrow-sense heritability h2 = VA/VP. Parent–
offspring regression is one method to estimate h2.

• Response to selection over one generation depends
on the force of natural selection and the heritability
and is predicted by the breeder’s equation R = h2s.

• Because traits show both genetic and phenotypic
correlations, response to selection on one trait
may change the mean of other correlated traits or
be constrained by correlations with other traits.

• Long-term response to natural selection depends
on the number of loci that underlie a quantitative
trait. Linear response to selection over many 

generations is expected when many loci with
small effects underlie a trait, consistent with the
infinitesimal model. In contrast, selection plateaus
are consistent with fewer loci of larger effect since
selection causes fixation and loss at these loci.
Depending on the rate, mutation may replace
variation lost due to fixation and loss caused by
response to selection.

• The neutral evolution of genotypic variance depends
on the balance of genetic variation lost by genetic
drift and mutation that replaces variation.

• The individual loci that cause variation in quant-
itative traits, or QTLs, can be identified by taking
advantage of gametic disequilibrium between
QTLs and genetic marker loci.

• In an F2 mating design, comparing the phenotypic
means of F2 individuals bearing different marker
genotypes identifies marker loci near QTLs.

• QTL mapping can only identify alleles that are
segregating in the individuals used to found 
the mapped populations. QTL mapping tends to
underestimate the true number of QTLs and over-
estimate the true effects of QTLs.

• QTL mapping quantifies the genetic architecture
of quantitative traits by estimating the number 
of loci that cause quantitative trait variation, the
distribution of QTL phenotypic effects, and the
physical organization of QTLs on chromosomes.

Further reading

For a review of the progress over the last one hundred
years on fundamental questions in quantitative
genetics and the evolution of quantitative traits see:

Roff DA. 2007. A centennial celebration for quantitative
genetics. Evolution 61: 1017–32.

More detail on statistical estimators as well as experi-
mental designs used to estimate heritability and map
QTLs can be found in:

Lynch M and Walsh B. 1998. Genetics and Analysis of
Quantitative Traits. Sinauer Associates, Sunderland,
MA.

The response to selection predicted by the breeder’s
equation is actually an approximation that neglects
four other types of parent–offspring phenotype rela-
tionship, as explained in:

Heywood JS. 2005. An exact form of the breeder’s
equation for the evolution of a quantitative trait
under natural selection. Evolution 59: 2287–98.
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The concepts involved in predicting levels of 
quantitative genetic variation and the evolution of 
quantitative traits are reviewed by:

Barton NH and Keightley PD. 2002. Understanding
quantitative genetic variation. Nature Reviews Genetics
3: 11–21.

Quantitative trait mapping methods and empirical
observations from QTL mapping are reviewed by:

Mackay TFC. 2001. The genetic architecture of 
quantitative traits. Annual Reviews of Genetics 35:
303–39.

For a review of how epistasis can be detected in QTL
mapping studies, see:

Carlborg Ö and Haley CS. 2004. Opinion: epistasis: 
too often neglected in complex trait studies? Nature
Reviews Genetics 5: 618–25.

For a critical review of the evolutionary inferences
about quantitative traits that can be drawn from
QTL mapping data, see:

Erickson DL, Fenster CB, Stenøien HK, and Price D. 2004.
Quantitative trait locus analyses and the study of
evolutionary process. Molecular Ecology 13: 2505–22.

··

Problem box 9.1 answer

For three diallelic loci each with codominance, the expected genotype frequencies in the
population can be obtained by expanding

or by constructing an 8 × 8 Punnett square (the gametes are ABC, AbC, ABc, Abc, aBC, abC, aBc,
and abc). The phenotypes are in an expected ratio of 1 : 6 : 15 : 20 : 15 : 6 : 1 for phenotypes of 1, 

2 , 3 , 5, 6 , 7 , and 9 as shown in Fig. 9.19.
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Figure 9.19 The genotypes and distribution of
phenotypic values for a trait caused by three codominant
diallelic loci in a randomly mating population where 
all alleles at each locus have a frequency of 1/2.
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Problem box 9.2 answer

The difference between the homozygote marker class means is 30.7 − 26.4 = 4.3 cg so that 
â = 2.15 cg. Assuming that r = 0, a = 2.15 cg. Assuming instead that r = 0.2, then a = 2.15/
(1 − 2(0.2)) = 3.58 cg. The midpoint value is 26.4 + (30.7 − 26.4)/2 = 28.55 cg. The M1M2
marker class mean is less than the midpoint so d = 28.3 − 28.55 = −0.25. With r = 0.2, 
d = −0.25/(1 − 2(0.2))2 = −0.69. The coefficient of dominance is −0.25/2.15 = −0.12 if r = 0 
and −0.69/3.58 = −0.19 if r = 0.2. The difference in seed weight between the Q1Q1 and Q2Q2
genotypes accounts for 4.3 cg/27 cg or 16% of the total seed weight difference between the 
two parental lines. The phenotypic effect is large enough to be considered a major gene.

Problem box 9.3 answer

The backcross design results in â = a − d and therefore is a biased estimate of the additive effect 
of a QTL unless there is no dominance (d = 0). See Table 9.8.
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10.1 The connection between particulate
inheritance and quantitative trait variation

• Establishing a scale for genotypic values.
• Defining +a, d, and −a.
• Phenotypic values as population averages.
• Why we can neglect environmental variation

(VE).

This chapter will develop the concepts needed to
understand the detailed connections between quant-
itative trait variation and particulate inheritance.
Although the components of quantitative trait vari-
ation were described in Chapter 9 as population-level
phenomena, the variance is ultimately caused by dif-
ferent alleles and genotypes possessed by individuals.
The goal of this chapter is to show how additive and
dominance components of variation in quantitative
traits (VA and VD) are caused by allele and genotype
frequencies in a population as well as by the nature
of gene action when alleles are combined into geno-
types. To accomplish this goal, we will work with a
hypothetical quantitative trait that is the product of a
single locus with two alleles throughout the chapter.
While use of a single diallelic locus as an example does
not approximate the multilocus basis of quantitat-
ive traits and the multiallelic state of many loci, it
greatly simplifies the resulting mathematical expres-
sions while still illustrating key biological concepts.
Bear in mind that the epistatic component of genetic
variance (VI) arises due to interaction between two
or more loci and therefore cannot be represented 
in a single-locus model. Therefore, the use of a single
locus is an implicit assumption that VI is zero. This
chapter will start by constructing expressions that
predict the phenotypic mean value of some type of
population. The population of interest will initially
be all individuals and later be only those individuals
with genotypes that contain a certain allele. The
population mean value will also be divided into com-
ponents due to the additive action of alleles and the

dominance effect of genotypes. Ultimately, these mean
values will be used to build expressions for the vari-
ance in phenotypic values expected in a population,
specifically the additive and dominance components
of genetic variation (VA and VD). The chapter will
conclude with a section on the expected phenotypic
resemblance among populations of relatives based on
the probabilities that related individuals share alleles
or genotypes in common.

Scale of genotypic values

The hypothetical single locus used throughout this
section will have two alleles, A1 and A2. By conven-
tion, the A1 allele contributes to larger phenotypic
values and the A2 allele to smaller phenotypic values.
A conceptual scale of measurement is used to 
represent the genotypic values of each of the three 
genotypes (Fig. 10.1a). On this scale, the genotypic
value of the A1A1 genotype is +a, whereas the geno-
typic value of the A2A2 genotype is −a. The genotypic

CHAPTER 10

The Mendelian basis of quantitative trait variation

Genotype

Genotypic value

A1A1 A1A2 A2A2

d 0
Midpoint

(a)

Genotype

Genotypic value

(b)

+a −a

IGF1+ + IGF1+ − IGF1− −

9 kg19.5 kg
Midpoint

24.75 kg
d = 5.25

30 kg

Figure 10.1 The genotypic scale of measurement for
quantitative traits. The variables +a and −a define genotypic
values of the A1A1 and A2A2 homozygotes, respectively. 
The genotypic value of the heterozygote is defined as d and is
measured relative the midpoint (d = A1A2 genotypic value
minus the midpoint). The degree of dominance is expressed as
the ratio d/a. These genotypic measurements are illustrated
for the IGF1 gene in dogs, which is a major gene contributing
to body-size differences. Since the degree of dominance is
unknown for IGF1 genotypes, the genotypic value of the
heterozygote is hypothetical.
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It is common to assume that the mean environ-
mental deviation is zero so that it can be ignored
when deriving genotypic values. An example can be
see in Fig. 9.3, where the genotypic value of an aabb
genotype is 1 unit of pigment and the genotypic value
of a AaBb genotype is 5 units of pigment. The effect 
of the environment on individuals of a given geno-
type is an equal probability of deviating from the
genotypic value by plus or minus 1 unit of pigment,
which averages to an environmental deviation of 
0 units of pigment.

With the definition of phenotypic value as a 
population average phenotype established, we can
now develop expressions for the mean genotypic value
based on genotypic values and population allele 
frequencies. Such mean values are prerequisites for
determining how the phenotypic value of a popula-
tion will change over time. As we will see eventually,
mean phenotypic values are also needed to deter-
mine components of phenotypic variance since a
variance is always a function of the mean.

Mendelian basis of quantitative variation 335

value of the A1A2 genotype is d and it is always 
measured relative to the midpoint as the A1A2 geno-
typic value minus the midpoint value. The midpoint
on this scale of genotypic measurement, or the point
exactly mid-way between the genotypic values of 
the homozygotes, is defined to be zero. Notice that
when the genotypic value of the heterozygote is at
the midpoint, d = 0. This corresponds to the hetero-
zygote having a genotypic value that is exactly the
average of the two homozygotes as expected under
additive gene action. In contrast, when the geno-
typic value of the heterozygote is not at the midpoint
then there is some type of dominance. When d = +a
or d = −a there is complete dominance. If the geno-
typic value of the heterozygote is outside the range 
of the homozygotes, then there is overdominance 
(d > +a) or underdominance (d < −a). The degree of
dominance can be expressed as the ratio of d/a.

Throughout this section, body size in domestic
dogs will be used as an example to illustrate concepts
and computations as it was in Chapter 9. Comparing
large (>30 kg) and small (<9 kg) dog breeds, Sutter
et al. (2007) showed that an allele of the insulin-like
growth factor 1 gene (IGF1) was common to all small
breeds and had a frequency of near zero in large
breeds. Thus, the IGF1 locus is likely to be a major
gene (a single locus that explains a large amount 
of quantitative trait variation) for body size in dogs. 
For the sake of illustration, assume there are two
IGF1 alleles segregating within a single randomly
mating population of dogs and that body size ranges
between a minimum of 9 kg and a maximum of 30 kg.
Genotypic values for IGF1 under these assumptions
are shown on the genotypic scale of measurement 
in Fig. 10.1b.

In Chapter 9, the term phenotypic value was
introduced to refer to the phenotype of an individual
in the same units that it is measured in. Alternatively,
phenotypic value refers to the average phenotype of 
a population of individuals. In the sense of the 

population average value, P refers to the average
phenotypic value, G refers to the average phenotype
for many individuals with a given genotype called the
genotypic value, and E refers to the average devia-
tion in phenotype among many individuals caused
by all environmental factors combined. This leads to
an equation for the causes of mean phenotypic value:

P = G + E (10.1)

In words, this equation says that the mean pheno-
type in a population is the sum of the mean genotypic
value plus the average change in phenotype due to
the environment.

··

Using the genotypic values of 30, 24.75,
and 9 kg for the three IGF1 genotypes,
compute a, the midpoint, d, and the 
degree of dominance.

Problem box 10.1
Compute values on the 

genotypic scale of measurement
for IGF1 in dogs

Environmental deviation The change in
mean phenotype of a population caused by 
all non-genetic influences. Often assumed 
to be zero because environment is equally
likely to cause an increase or decrease in
individual phenotypic value, yielding a net
change of zero.

Genotypic value The average or expected
phenotype of a population of individuals all
possessing an identical genotype.

Phenotypic value The average or expected
phenotype of a population of individuals; the
observed phenotype of a single individual.
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··

10.2 Mean genotypic value in a population

• Deriving the population mean phenotypic value.
• The population mean phenotypic value under

random mating.
• The population mean phenotypic value with

non-random mating.

The mean phenotypic value of a population (symbol-
ized M) is dictated by the genotypic values and the
genotype frequencies. Table 10.1 shows the fre-
quencies, genotypic values, and frequency-weighted 
genotypic values for the three genotypes under the
assumption of random mating. The average pheno-
type of the entire population is just the sum of the
phenotypic values of all individuals divided by the
number of individuals. If the average environmental
deviation for all genotypes is zero, then the mean
phenotype of the population is the sum the three 
frequency-weighted genotypic values:

M = p2a + 2pqd + (−q2a) (10.2)

This can be simplified by factoring an a out of the 
first and third terms:

M = a(p2 − q2) + 2pqd (10.3)

Then notice that (p2 − q2) = (p + q)(p − q) and also
that p + q = 1 for a diallelic locus. Making this sub-
stitution leads to

M = a(p − q) + 2pqd (10.4)

This population mean genotypic value is identical 
to the population mean phenotypic value if the mean
environmental deviation is zero. It is important to
note that M is measured as a deviation from the 
midpoint on the scale of genotypic values. Therefore,

M must be added to the midpoint value to obtain the
absolute population genotypic mean value.

This expression for the mean genotypic value in a
population leads to two important biological conclu-
sions. First, it shows that the mean of a quantitative
trait depends on allele frequencies in the popula-
tion because these dictate genotype frequencies.
Second, the division of the expression for the mean
phenotype into two terms is informative. The a(p − q)
term shows that changes in allele frequencies shift the
mean up or down by some fraction of a depending on
which of the two homozygotes is more frequent. At
the extremes of allele frequency, when p = 1 then the
mean phenotype is equal to +a and if q = 1 then the
mean phenotype is −a. The 2pqd term shows that 
the frequency of the heterozygote alone determines
the impact of dominance on the mean phenotype.
When the phenotypic value of the heterozygote is
exactly at the midpoint between the homozygotes 
(d = 0), the heterozygote genotype has no impact 
on the population mean. Completely additive gene
action exists when d = 0.

The role of allele frequency on the population
mean can be seen in an example. Imagine a popula-
tion of dogs where mating is random and the IGF1+

and IGF1− alleles are both segregating. For IGF1 in
dogs, a = 10.5 kg, d = 5.25 kg, and the midpoint is
19.5 kg (see Problem box 10.1). If the two IGF1 
alleles are at equal frequencies then p = q = 0.5. The
mean phenotypic value would be

M = 10.5(0.5 − 0.5) + 2(0.5)(0.5)(5.25)
= 2.625 kg (10.5)

as a deviation from the midpoint. In absolute terms,
the mean phenotype in the population would be
2.625 + 19.5 = 22.125 kg. Since both homozygotes
are equally frequent their effect on the average 
cancels out. That leaves 50% of the population as

Table 10.1 The population mean phenotype (M) obtained from genotype frequencies under random
mating, genotypic values, and frequency-weighted genotypic values for a diallelic locus. These expectations
assume that the environmental deviation is zero for each genotype.

Genotype Frequency Genotypic value Frequency-weighted genotypic value

A1A1 p2 a p2a
A1A2 2pq d 2pqd
A2A2 q2 −a −q2a

M = a(p − q) + 2pqd

9781405132770_4_010.qxd  1/16/09  7:09 PM  Page 336



Mendelian basis of quantitative variation 337

heterozygotes, shifting the mean above the mid-
point by 1/2d. If the two IGF1 alleles are at unequal
frequencies, say p = 0.9 and q = 0.1, the mean pheno-
typic value would be

M = 10.5(0.9 − 0.1) + 2(0.9)(0.1)(5.25)
= 9.345 kg (10.6)

as a deviation from the midpoint and 28.845 kg in
absolute terms. At these allele frequencies the A1A1
homozygote composes 81% of the population while
the A2A2 homozygote is only 1% of the population so
the balance is strongly in favor of +a. The remaining
18% of the population is made up of heterozygotes,
which also shift the average toward +a since d is 
positive.

The role of gene action on the population mean
phenotype can also be seen in this example. Suppose
that the IGF1 alleles are p = 0.9 and q = 0.1 but that
d = 0. The mean phenotypic value is then

M = 10.5(0.9 − 0.1) + 2(0.9)(0.1)(0)
= 8.4 kg (10.7)

as a deviation from the midpoint and 27.9 kg in
absolute terms. This population mean phenotype 
is lower than the result in equation 10.6 because the
genotypic value of the heterozygotes is zero when 
d = 0. Therefore, the 18% of the population made up
of heterozygotes does not contribute to any deviation
from the midpoint in addition to that caused by the
frequencies of the two homozygotes.

So far, random mating has been assumed when
predicting the mean phenotype. However, consan-
guineous mating is also common in populations 
and will change the mean phenotype in predictable
ways. Using the results of equation 2.20, the expected
genotype frequencies can include the impact of 
non-random mating. The mean phenotype with the
possibility of non-random mating is given by

M = (p2 + fpq)a + (2pq − f2pq)d + (q2 + fpq)(−a)
(10.8)

where f is the inbreeding coefficient. Changes in
autozygosity ( f ≠ 0) alter all genotype frequencies
but will only impact the population mean phenotype
when there is some degree of dominance (d ≠ 0). The
impact of the inbreeding coefficient is identical on
each of the homozygotes, increasing or decreasing
them both by the same amount fpq with no impact on
the mean. In contrast, changes in the autozygosity

will impact the mean phenotype if there is domin-
ance because the frequency of heterozygotes will
change by the amount −f2pq.

Extending the IGF1 example further, imagine there
is consanguineous mating so that f = 0.2 when allele
frequencies are p = 0.9 and q = 0.1, and d = 5.25.
This would lead to f2pq = 0.036 or a 3.6% deficit 
of heterozygotes and a 1.8% excess of both homo-
zygotes compared to random mating. The mean 
phenotype is then

M = (0.81 + 0.018)(10.5) + (0.18 − 0.036)(5.25)
+ (0.01 + 0.018)(−10.5) (10.9)

which equals 9.156 kg as a deviation from the 
midpoint, or 28.656 kg. This final example shows
that changes in genotype frequencies caused by 
non-random mating, even when allele frequencies
remain constant, can impact the population mean
phenotype.

10.3 Average effect of an allele

• Deriving the average phenotypic effect of an allele
in a population.

• The average effect as a deviation from the popula-
tion mean.

• The average effect as substitution of one allele in a
genotype for another.

To describe the inheritance of quantitative pheno-
types across generations, it is necessary to think in
terms of alleles. Although genotypes determine geno-
typic values, alleles and not genotypes are inherited
by individuals. Thus, a new measure of value is needed
that can be used to link the genotypic values of one
generation with the genotypic values of their progeny
in the next generation. The concept of average effect
is used to assign a value to an allele and predict how 
it impacts the mean genotypic value of the popula-
tion. As we will see, the average effect depends on 
the genotypic values a and d as well as the allele and
genotype frequencies in the population.

··

Average effect of an allele The mean
phenotypic deviation from the population
mean of that group of individuals which
received a particular allele from one parent
and the other allele from a parent drawn at
random from the population.
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One way to visualize the basis of the average effect 
is to think of a slot machine used in gambling (also
called a poker or fruit machine). Mechanical slot
machines normally have three wheels that are each
labeled with symbols having different frequencies on
the wheels. When the wheels are spun, they will each
stop and display a random symbol. An imaginary
average-effect slot machine has just two wheels that
represent the two alleles in a diploid genotype. One 
of the wheels is broken and does not spin, so that 
a single symbol is always displayed. For the average
effect of the A1 allele for example, A1 would always
appear on the broken wheel. The other wheel has
symbols for all of the alleles in the population in pro-
portion to their frequency in the population. Spinning
this slot machine many times with one allele on the
broken wheel and recording the value of the geno-
type for each spin would give expected frequencies of
all of the genotypes in the population that contain an
A1 allele under random mating. The average of all 
of the genotypic values from many spins would give
the average value of all the genotypes that contain 
a given allele. This average value of genotypes con-
taining one allele may very well be different than 
the average value of the population. This difference
in averages is the average effect of the allele that is
present on the broken wheel.

The derivation of the mean value of all genotypes
that contain either an A1 (MA1

) or an A2 (MA2
) allele

is shown in Table 10.2. This logic could be used for a
locus with any number of alleles. If mating is random,
we expect an A1 allele to be paired in a genotype with
another A1 allele p percent of the time and with an A2
allele q percent of the time. The average value of all
genotypes that contain an A1 allele is the frequency-
weighted sum of the values of each genotype that has
at least one A1 allele. In symbols, this mean value is

MA1
= pa + qd (10.10)

for the A1 allele. This quantity can be thought of as
the mean value of a large number of individuals that
all inherit the same allele from the same parent but
that inherit the other allele in their genotype from a
parent drawn at random from the population. Notice
that Hardy–Weinberg expected genotype frequencies
are a key assumption in Table 10.2, since expected
genotype frequencies would be different if any of the
Hardy–Weinberg assumptions did not hold.

The average effect is a deviation that measures the
difference between the value of all genotypes that con-
tain a given allele and the population mean. Therefore,
the population mean must be subtracted from the
mean values of genotypes produced by a given allele
that are shown in Table 10.2. The average effect is then

αx = MAx
− M (10.11)

using the α to represent the average effect and x
to indicate any allele. The average effect is deter-
mined by a regression line (see Fig. 10.4, below) that
minimizes the deviations (rather than the squared
deviations) of individual values from the line. In many
cases, when genotypes are in Hardy–Weinberg fre-
quencies, the simple relationship of equation 10.11
suffices to describe the average effect. In more com-
plicated situations such as when Hardy–Weinberg is
not met ( f ≠ 0), the line that minimizes the deviations
is determined by a least-squares fit.

Substituting the expression for the population
mean from equation 10.4 and the mean value of all
genotypes containing the A1 allele from Table 10.2,
the average effect of the A1 allele is

α1 = pa + qd − (a(p − q) + 2pqd ) (10.12)

which simplifies to

α1 = q(a + d(q − p)) (10.13)

Table 10.2 The mean value of all genotypes that contain either an A1 (MA1
) or an A2 (MA2

) allele. The average
effect of an allele (αx) is the difference between the mean value of the genotypes that contain a given allele
and the population mean (αx = MAx

− M).

Allele Genotype value Mean value of all genotypes containing a given allele

A1A1 A1A2 A2A2
+a d −a

A1 p q 0 MA1
= pa + qd

A2 0 p q MA2
= pd − qa
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as shown in Math box 10.1. The average effect of the
A2 allele is

α2 = −p(a + d(q − p)) (10.14)

based on the difference between the mean values 
of genotypes produced by A2 and the population
mean.

Working through several examples based on the
IGF1 locus in dogs will help illustrate the average
effect and what it measures. Table 10.3 gives four

examples of the average effect for the A1 allele for 
the four combinations of two allele frequencies and
two levels of dominance. In all of the examples, bear
in mind that the A1-containing genotypes are A1A1
and A1A2 and that all values are relative to a mid-
point value of 19.5 kg.

In example (a) in Table 10.3, the A1 and A2 allele
frequencies are equal. Since there is no dominance,
the heterozygotes have a mean value equal to the
midpoint. The two homozygotes are equally frequent
and their average values are equal but have opposite
signs. This results in a population mean value of zero.
Given an A1 allele, when sampling a second allele
from this population to make genotypes it is equally
likely to obtain either allele. Thus, 50% of the A1 con-
taining genotypes are A1A1 with a value of +a = 10.5
and 50% are A1A2 with a value of d = 0. In total, the
mean value of the A1-containing genotypes is 0.5(a)
or 5.25 kg. This is the same as the average effect since
the mean value of all three genotypes is zero. At these
allele frequencies, the population mean is exactly at
the midpoint and the A1-containing genotypes serve
to increase the average value of the population by
5.25 kg.

The situation is different in example (b) in 
Table 10.3 since the frequency of A1 is high and the
frequency of A2 is low. Given an A1 allele, when a
second allele is drawn at random from this popula-
tion to make genotypes, it is much more likely to be
another A1 allele rather than an A2 allele. Thus, the
mean of the A1-containing genotypes is nearly the
same as a (9.45 kg), the genotypic value of A1A1.
However, the average effect is small (1.05 kg) since
the mean value of all three genotypes is also large
(8.4 kg). At these allele frequencies, the population
mean is near its upper limit due to the low frequency
of the A2 allele and the resulting low frequency of 
A2-containing genotypes that would reduce the
average value of the population.

Comparing cases (a) and (c) in Table 10.3 is inform-
ative since allele frequencies are identical but the
degree of dominance is different. With dominance 
in example (c), 50% of the A1-containing genotypes
are A1A1 with a value of +a = 10.5, and 50% are
A1A2 with a value of d = 5.25. The mean value of the 
A1-containing genotypes is now larger at 0.5(a) +
0.5(d) or 7.875 kg. However, because of dominance,
the mean value of the total population is also greater
at 2.625 kg. Thus, the difference between the mean
value of the A1-containing genotypes and the mean
value of the entire population remains at 5.25 kg,
exactly as it was in example A. Comparing examples

··

Start with the difference between the mean
value of all genotypes produced by the 
A1 allele in Table 10.2 and the population
mean in equation 10.4:

α1 = pa + qd − (a(p − q) + 2pqd) (10.15)

Then expand a(p − q) to give

α1 = pa + qd − pa + qa − 2pqd (10.16)

Cancel terms to obtain

α1 = qd + qa − 2pqd (10.17)

Then factor out q:

α1 = q(d + a − 2pd) (10.18)

Inside the parentheses, two terms contain d
in common that can be factored to give

α1 = q(a + d(1 − 2p)) (10.19)

The final step is to notice that p + q = 1 so
that (p + q) can be substituted:

α1 = q(a + d(p + q − 2p)) (10.20)

After adding p to −2p, the simplified
equation for the average effect of the 
A1 allele is

α1 = q(a + d(q − p)) (10.21)

Math box 10.1
The average effect of the A1 allele
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(b) and (d) in Table 10.3 illustrates that the average
effect changes with a shift in the dominance value.
Both the population mean and the mean of the 
A1-containing genotypes change with a change in
dominance at those allele frequencies.

A critical lesson to take from these examples is 
the contextual nature of the average effect. Average
effects depend on allele and genotype frequencies and
are therefore specific to the population and time point
when they are measured. This is sometimes a difficult
point to grasp when considering the genetic basis 
of phenotypic variation. Even though the genotypic
values and the degree of dominance may remain
constant among populations, the average effect of 
an allele shifts depending on the allele and genotype
frequencies. This is a part of the major distinction
between identifying genes and alleles that impact
phenotype viewed from the perspective of Mendelian
genetics (e.g. an allele causes a certain phenotype)
and understanding how such alleles shape pheno-
typic distributions within and between populations
(e.g. an allele has a large average effect).

Another way to understand the average effect
when there are two alleles at a locus is to suppose
that it is possible to randomly sample genotypes 
from a population and then be able to substitute one
of the alleles in a genotype for another. When there
are two alleles, it would be possible to replace one 
A2 allele initially present in the genotype with one 
A1 allele or vice versa. The average effect can be
thought of in terms of the change in the mean value
of the population when one allele replaces another 
in all the sampled genotypes. To measure the average
effect in this manner requires determining the change
in value that comes about by allelic replacement as 
well as the frequency with which the change in
value occurs. Summing these frequency-weighted
value changes will give the mean change in value
that is the average effect.

Imagine we elect to replace an A2 allele with an A1
allele in genotypes sampled at random from the popula-
tion that contain at least one A2 allele (see Fig. 10.2).
Let p be the frequency of the A1 allele and q be the fre-
quency of the A2 allele. Changing an A1A2 genotype

(a) d = 0.0, p = 0.5, q = 0.5
M = 10.5(0.5 − 0.5) + 2(0.5)(0.5)(0.0) = 0.0
A1 MA1

= pa + qd = (0.5)(10.5) + (0.5)(0.0) = 5.25
α1 = MA1

− M = 5.25 − 0.0 = 5.25
α1 = q(a + d(q − p)) = 0.5(10.5 + 0.0(0.5 − 0.5)) = 5.25
α = a + d(q − p) = 10.5 + 0.0(0.5 − 0.5) = 10.5
α1 = qα = (0.5)(10.5) = 5.25

(b) d = 0.0, p = 0.9, q = 0.1
M = 10.5(0.9 − 0.1) + 2(0.9)(0.1)(0.0) = 8.4
A1 MA1

= pa + qd = (0.9)(10.5) + (0.1)(0.0) = 9.45
α1 = MA1

− M = 9.45 − 8.4 = 1.05
α1 = q(a + d(q − p)) = 0.1(10.5 + 0.0(0.1 − 0.9)) = 1.05
α = a + d(q − p) = 10.5 + 0.0(0.1 − 0.9) = 10.5
α1 = qα = (0.1)(10.5) = 1.05

(c) d = 5.25, p = 0.5, q = 0.5
M = 10.5(0.5 − 0.5) + 2(0.5)(0.5)(5.25) = 2.625
A1 MA1

= pa + qd = (0.5)(10.5) + (0.5)(5.25) = 7.875
α1 = MA1

− M = 7.875 − 2.625 = 5.25
α1 = q(a + d(q − p)) = 0.5(10.5 + 5.25(0.5 − 0.5)) = 5.25
α = a + d(q − p) = 10.5 + 5.25(0.5 − 0.5) = 10.5
α1 = qα = (0.5)(10.5) = 5.25

(d) d = 5.25, p = 0.9, q = 0.1
M = 10.5(0.9 − 0.1) + 2(0.9)(0.1)(5.25) = 9.345
A1 MA1

= pa + qd = (0.9)(10.5) + (0.1)(5.25) = 9.975
α1 = MA1

− M = 9.975 − 9.345 = 0.630
α1 = q(a + d(q − p)) = 0.1(10.5 + 5.25(0.1 − 0.9)) = 0.630
α = a + d(q − p) = 10.5 + 5.25(0.1 − 0.9) = 6.3
α1 = qα = (0.1)(6.3) = 0.63

Table 10.3 Examples of the
average effect for the IGF1 locus 
in dogs. All cases assume that 
a = 10.5 kg as shown in the
genotypic scale in Fig. 10.1. 
For each set of allele frequencies
and dominance, the table shows
the population mean (M), the
mean value of all genotypes 
that contain an A1 allele (MA2

), 
the average effect of an allelic
replacement (α), and the average
effect of an A1 allele (α1). Values
are all in kilograms and relative to
the midpoint value of 19.5 kg.
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to an A1A1 genotype will change the value from d
to +a, so the difference in value is a − d. Since the 
frequency of the A1 allele that remains intact in the
genotype is p, then the frequency of changing an A1A2
genotype to an A1A1 genotype is p. The frequency-
weighted change in value when making this allelic
substitution is therefore p(a − d). Similarly, when
changing an A2A2 genotype to an A1A2 via replace-
ment of one A2 allele, the value changes from −a to 
d, so the difference in value is d − (−a) or d + a. The 
frequency of the A2 allele that remains intact in the
second genotype is now q, so the frequency-weighted
change in value when making this allelic substitu-
tion is therefore q(d + a). The total average change in
value when replacing an A2 allele with an A1 allele 
is the sum of these two separate changes in value or 
p(a − d) + q(d + a). (Note that the same result, except
multiplied by −1, can be obtained by electing to replace
an A1 allele with an A2 allele. The negative sign comes
about because A2 is the allele that decreases value.)

Using algebraic manipulation similar to that in
Math box 10.1, the expression for the average change
in value due to an allelic replacement simplifies to

α = a + d(q − p) (10.22)

with α not bearing a subscript denoting the average
change in value caused by an allele replacement.

Notice that a + d(q − p) also appears in equations
10.13 and 10.14. On a strictly mathematical basis,
we could substitute α in these two equations to
restate the expressions for the average effects of the
A1 and A2 alleles:

α1 = qα (10.23)

and

α2 = −pα (10.24)

However, this reformulation makes intuitive sense in
terms of our imagined ability to replace one allele with
another in genotypes used to derive equation 10.22.
When replacing an A2 allele with an A1 allele, the fre-
quency of the A2 allele in the population is q and this
is the frequency of allelic replacements under random
mating (see Fig. 10.2). Likewise, p is the frequency 
in the population of the A1 allele being replaced with 
A2 alleles. The expression for α2 is negative because 
A2 is the allele that decreases value. Table 10.3 also
gives computations of the average effect using equa-
tions 10.23 and 10.24, with identical results.

10.4 Breeding value and dominance deviation

• Deriving breeding values in a population.
• Breeding values under random and non-random

mating.
• Deriving dominance deviations in a population.
• Dominance deviations under random and non-

random mating.

··

A2 A1*

A1A2 A1A1* A2A2 A2A1*

Original
allele

Replacement
allele

Genotypic
value

Change in
genotypic value

Frequency of allele
not replaced

d +a

a – d

Frequency of A1 = p

p(a – d) q(d + a)

Frequency of A2 = q

Frequency-weighted
change in value of
allele replacement

–a d

d + a

Average change
in value of

allele replacement

p(a – d) + q(d + a)
= a + d(q – p)

Figure 10.2 The derivation of the average change in value
caused by replacing one A2 allele with an A1 allele in those
genotypes sampled at random from the population that
contain at least one A2 allele. The mean change in value
caused by an allelic replacement forms the basis of the
average effect once it is multiplied by the frequency of the
allele that is replaced.

Using Table 10.3 as a guide, compute 
the average effect in three ways: (1) as 
the difference between MA2

and the 
population mean M, (2) by the formula 
α2 = −p(a + d(q − p)) from equation 10.14,
and (3) by α2 = −pα from equation 10.24.
Be sure to compare your results with the
average effects for the A1 allele given in
Table 10.3 and explain why the average
effects are the same or different with
reference to dominance and the allele
frequencies.

Problem box 10.2
Compute the allele average effect

of the IGF1 A2 allele in dogs
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The next step in understanding the Mendelian basis
of quantitative trait variation is to move back to the
level of the genotype. In Chapter 9, both additive (VA)
and dominance (VD) genetic variation were identified
as separate components of the total genetic variation
in quantitative traits. In terms of population mean
values, we can divide the genotypic mean value into
its components due to additive effects of alleles and
the dominance effects of genotypes

G = A + D (10.25)

In words, this equation says that the mean genotypic
value (G) is the sum of the mean breeding value (A)
and the mean dominance deviation (D). As pointed
out above, this assumes that there is no interaction
genetic variance due to epistasis because we are work-
ing with a one-locus example. If there were epistasis,
then there would also be a mean value for an interac-
tion deviation due to the mean value of interactions
among loci that make up genotypes.

This subsection will address how the mean pheno-
type of a population of progeny depends on mating
among the population of parents. It is important to
first understand the motivation to predict what is
called the breeding value of a genotype. When 
natural selection occurs, it is essentially the differ-
ential mating success of certain phenotypes. Humans
achieve the same thing in domestic plants and animals
through artificial selection by allowing only those
individuals with preferred phenotypes to breed. To
the extent that phenotype is a function of genotype,
natural and artificial selection allow some genotypes
to breed more often than others. A full understand-
ing of how and why a given mean phenotype occurs
in a population of progeny therefore requires an
understanding of the consequences of mating in 
the parental generation. Here we will start with the
genotypic value of an individual, and then track the
frequencies and genotypic values of its progeny to
predict the mean genotypic value of its progeny.

Parents pass on alleles and not genotypes to their
progeny. (From the progeny point of view, individuals

inherit one allele from each of two parents rather than
a diploid genotype.) The impact of a single parent 
on the mean value of the progeny population could
be measured in a manner akin to the average effect.
Now, instead of a special slot machine, we could just
take a single individual and have it mate with many
individuals drawn at random from the parental 
population. Each progeny from these matings would
inherit one allele from the focal parent and another
allele from an individual drawn at random. The
resulting population of progeny would have a mean
value that could be measured. The breeding value
of a genotype is two times the difference between the
progeny mean value and the parental population
mean value (M). Expressed as an equation:

Breeding value = 2(Mprogeny AxAx
− M) (10.26)

where Mprogeny AxAx
is the mean value of progeny 

produced when an individual of genotype AxAx is
mated to many individuals drawn at random from
the parental population. The difference between the
means is multiplied by 2 because a parent’s genotype
possesses two alleles but its progeny inherit only one
allele at a time.

The components that lead to an expression for
Mprogeny for the A1A1 genotype are shown in Table 10.4.
When the A1A1 genotype mates, it will encounter
and mate with individuals of a given genotype in
proportion to the frequency of that genotype in 
the population. An A1A1 individual is expected to
mate with A1A1, A1A2, and A2A2 individuals with
frequencies of p2, 2pq, and q2, respectively, since
these are the Hardy–Weinberg expected genotype
frequencies in the population. Each of the matings
between an A1A1 genotype and another genotype
will produce progeny with one or two genotypes.
The phenotypic values of each of the progeny geno-
types is also known. To obtain an expression for the
mean phenotypic value of the progeny that result
from the A1A1 genotype mating at random in the
population (Mprogeny A1A1

), add up all of the progeny
phenotypic values after weighting each one by its
relative frequency among all of the progeny and by
the frequency of mating pairs to obtain

Mprogeny A1A1
= p2a + 2pq(1/2a + 1/2d) + q2d (10.27)

This expression can be simplified by first expanding
the middle term

Mprogeny A1A1
= p2a + pqa + pqd + q2d (10.28)

Breeding value of an individual Twice the
mean value of the progeny that would be
produced by a single genotype under random
mating expressed as a difference from the
population mean.

9781405132770_4_010.qxd  1/16/09  7:09 PM  Page 342



Mendelian basis of quantitative variation 343

and then factoring to give

Mprogeny A1A1
= ap(p + q) + dq(p + q) (10.29)

and then noticing that p + q = 1 so that

Mprogeny A1A1
= ap + dq (10.30)

The same logic can be applied to obtain the progeny
mean values for the A1A2 and A2A2 genotypes under
random mating.

Prepared with the expression for Mprogeny A1A1
, we

can now obtain an equation for the breeding value 
of the A1A1 genotype. Using the definition of the
breeding value given in equation 10.26,

Breeding value A1A1 = 2(Mprogeny A1A1
− M) (10.31)

Substituting in the expression for mean progeny
value in equation 10.30 and the expression for the
population mean in equation 10.4 gives

Breeding value A1A1 = 2(ap + dq − (a(p − q) + 2pqd))
(10.32)

Rearrangement of this equation yields

Breeding value A1A1 = 2q(a + d(q − p)) (10.33)

(Readers carrying out the algebra can refer to Math
box 10.1 for the steps that show d(1 − 2p) = d(q − p)).
Notice that the q(a + d(q − p)) term is equal to the
definition of the average effect of the A1 allele given
in equation 10.13. Therefore, the breeding value of
the A1A1 genotype is simply equal to two times the
average effect of the A1 allele.

Based on the definition of the breeding value as 
the difference between the progeny mean and the
population mean, the breeding value of any geno-
type is simply the sum of the average effects of each of
the alleles that make up the genotype. We can there-
fore use the definitions of the average effect in the 
last section to define breeding values for the three
genotypes at a diallelic locus:

Breeding value A1A1 = α1 + α1 = qα + qα
= 2qα (10.34)

Breeding value A1A2 = α1 + α2 = qα + −pα
= (q − p)α (10.35)

Breeding value A2A2 = α2 + α2 = −pα + −pα
= −2pα (10.36)

Because breeding values are made up of the average
effects of the two alleles in a genotype, breeding values
also depend on the population context in which 
they are measured. Thus, breeding values are not
universal features of genotypes but rather depend on
the population allele and genotypes frequencies.

The breeding value expressions tell us the mean
value of the progeny that would be produced by each
genotype under random mating. Look at the example
breeding values for the three genotypes at the IGF1
locus in dogs (Table 10.5). Under the allele frequencies
and zero dominance in case A, a population of pro-
geny from an individual with an A1A1 genotype would
have a mean of 10.5 kg relative to the midpoint. (In
the absolute, the progeny would have a mean value
of 30 kg, which is identical to the A1A1 genotypic
value.) In case (a) with p = q = 0.5, an A1 allele would
be paired with an A1 allele in half of the progeny and

··

Table 10.4 The mean phenotypic value of progeny that result when an individual of the genotype A1A1
mates randomly. All genotypes in the population have Hardy–Weinberg expected frequencies. Therefore,
each of the mating pairs has an expected frequency of p2, 2pq, or q2. The mean value of all progeny produced
by the A1A1 genotype is the frequency-weighted sum of the progeny phenotypic values. Mprogeny A1A1

forms the
basis of the breeding value since the breeding value for A1A1 is Mprogeny A1A1

− M.

Focal genotype A1A1

Mate genotypes A1A1 A1A2 A2A2
Mating frequency p2 2pq q2

Progeny genotype and relative 
frequency from each mating A1A1

1/2 A1A1
1/2 A1A2 A1A2

Progeny values +a +a d d

Progeny mean value Mprogeny A1A1
= p2a + 2pq(1/2a + 1/2d) + q2d = ap + dq
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with an A2 allele in half of the progeny to make equal
frequencies of A1A1 and A1A2 progeny. The mean
value of these progeny, and hence the average effect of
an A1 allele, would be 0.5(10.5) + 0.5(0.0) = 5.25 kg.
The breeding value of an A1A1 genotype is twice the
average effect of the A1 allele because it has two A1
alleles. Therefore, we double the average effect of 
an A1 allele to determine that the breeding value of 
the A1A1 genotype is 2(5.25) = 10.5 kg. Figure 10.3
also shows two examples of the breeding value for
the IGF1 locus in dogs in relation to the genotypic
scale of measurement and the population mean.

As another example, focus on cases (a) and (c) of
Table 10.5 and consider why the heterozygotes both
have breeding values of zero. When heterozygotes
breed, they contribute equal proportions of A1 and A2
alleles to their progeny. With a dominance value of
zero and equal allele frequencies, it makes intuitive
sense in case (a) that the heterozygotes have a breed-

ing value of zero. Each of the A1 and A2 alleles that 
a heterozygote contributes to its progeny is paired
with A1 and A2 alleles in equal frequency from the
population. That would form an equal number of
A1A1 and A2A2 genotypes with a mean value of zero
whereas all heterozygous progeny would also have a
mean value of zero since the heterozygote genotypic
value is zero. In example (c), the progeny genotypes
and frequencies are identical to example (a) since 
the allele frequencies are the same. However, there 
is now dominance such that the heterozygote has a
genotypic value of 5.25 kg. Still the breeding value
of a heterozygote is zero. An equal frequency of A1A1
and A2A2 genotypes in the progeny gives a mean
value of zero. The 50% of progeny that are hetero-
zygotes have a value of 5.25 because of dominance.
Nonetheless, 0.5(5.25) = 2.625 exactly equals the
population mean of 2.625 so the heterozygous
progeny also do not alter the population mean.

Table 10.5 Examples of breeding values for the three IGF1 locus genotypes in dogs. Values are all in
kilograms and relative to the midpoint value of 19.5 kg.

Breeding value

A1A1 A1A2 A2A2

(a) d = 0.0, p = 0.5, q = 0.5, M = 0.0, α = 10.5 2(0.5)(10.5) = 10.5 (0.5 − 0.5)(10.5) = 0.0 −2(0.5)(10.5) = −10.5

(b) d = 0.0, p = 0.9, q = 0.1, M = 8.4, α = 10.5 2(0.1)(10.5) = 2.1 (0.1 − 0.9)(10.5) = −8.4 −2(0.9)(10.5) = −18.9

(c) d = 5.25, p = 0.5, q = 0.5, M = 2.625, α = 10.5 2(0.5)(10.5) = 10.5 (0.5 − 0.5)(10.5) = 0.0 −2(0.5)(10.5) = −10.5

(d) d = 5.25, p = 0.9, q = 0.1, M = 9.345, α = 6.3 2(0.1)(6.3) = 1.26 (0.1 − 0.9)(6.3) = −5.04 −2(0.9)(6.3) = −11.34

Genotype

Genotypic value

(a)

IGF1+ + IGF1+ − IGF1− −

+a = 10.5 −a = −10.5Midpoint = 0d = 5.25

Genotype

Genotypic value

(b)

IGF1+ + IGF1+ − IGF1− −

+a = 10.5 −a = −10.5Midpoint = 0d = 5.25

M = 2.625

7.875
Genotypic value of A1A1 relative to M

10.5 Breeding value of A1A1

–2.625
Dominance deviation

M = 9.345

1.155 Genotypic value of A1A1 relative to M

1.26 Breeding value of A1A1

–0.105 Dominance deviation

Figure 10.3 Illustration of dominance
deviation for the IGF1 gene in dogs. 
The dominance deviation is the
difference between the genotypic value
(measured relative to the population
mean, M) and the breeding value. The
dominance deviation is a consequence 
of the heterozygote genotypic value 
not falling at the midpoint. Panels (a) 
and (b) correspond to cases (c) and (d),
respectively, in Tables 10.3, 10.5, 
and 10.7.
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Another way to understand the breeding values is to
determine the total breeding value in a population
where all three genotypes are mating at random. 
Let the population of parents have Hardy–Weinberg
expected genotype frequencies of p2, 2pq, and q2. To
find the average breeding value of all three genotypes
in the parental population, multiply the breeding
value of each genotype by its corresponding genotype
frequency. This gives

Mean breeding value of all genotypes
= p22qα + 2pq(q − p)α − q22pα (10.37)

This equation can be simplified by factoring 2pq from
each term and expanding (q − p)α in the middle term
to give

Mean breeding value of all genotypes
= 2pq(pα + qα − pα − qα) = 0 (10.38)

The conclusion is that the mean breeding value of all
three genotypes mating at random is zero. This result
makes intuitive sense because when a large parental
population composed of genotypes in Hardy–Weinberg
expected frequencies mates at random, the mean value
of the progeny population should be exactly the same
since the progeny genotype frequencies are exactly
the same as in the parental population. It is only when
genotypes mate more or less often than expected by
random mating that the progeny population mean
value differs from the parental population mean
value. Note that with natural or artificial selection,
mating is by definition non-random and some geno-
types mate more frequently than others. It is the
over- or under-representation of parental genotypes
in mating that causes the mean value of progeny to
differ from the mean value of their parents.

Dominance deviation

With the breeding value established, we can now
focus on the dominance deviation that makes up the
second portion of the total mean genotypic value 
in G = A + D (equation 10.25). While the breeding
value measures the mean value of alleles passed 
to progeny by a given genotype, these same progeny
also possess genotypes. Due to dominance, geno-
types may not completely reflect the combinations 
of the alleles that make them up. For example, with
complete dominance of the A1 allele, an A1A2 geno-
type masks the fact that it has one A2 allele since its
phenotype is indistinguishable from that of an A1A1
genotype. When there is no dominance, the aver-
age value of progeny is a perfect representation of 
the parental genotypic value. However, dominance
changes the average value of progeny and can make
the breeding value different than the parental geno-
typic values. The difference between the genotypic
value and the breeding value caused by dominance
is called the dominance deviation.

Expressions for the dominance deviations are obtained
by taking the difference between the genotypic value
and the breeding value for each genotype. We have
already obtained all of the expressions needed for 
the dominance deviation. We do, however, need to
obtain one new equation. Since breeding values are
expressed relative to the population mean, we have
to start by also expressing genotypic values relative
to the population mean rather than relative to the
midpoint. For the A1A1 genotype, the difference
between the genotypic value and the population
mean in equation 10.4 is

a − (a(p − q) + 2pqd) (10.39)

which simplifies to

2q(a − dp) (10.40)

as the genotypic value of A1A1 relative to the popula-
tion mean.

··

Average effects, breeding values, and
dominance deviations across all allele
frequencies can be interactively graphed
using an Excel spreadsheet. Parameter
values of a and d can be set in the model.
Use a = 10.5 as in the IGF1 example. Then
set d to 0.0 and 5.25 view the graphs in
each instance.

Interact box 10.1
Average effects, breeding values,

and dominance deviations

Dominance deviation The difference
between the genotypic value and the
breeding value where the genotypic value is
measured relative to the mean value of the
population.

9781405132770_4_010.qxd  1/16/09  7:09 PM  Page 345



346 CHAPTER 10

··

Using the A1A1 genotype breeding value of 2qα
where α = a + d(q − p), the difference between the
genotypic value relative to the population mean and
the breeding value is

A1A1 Dominance deviation
= 2q(a − dp) − 2q(a + d(q − p)) (10.41)

This equation can be expanded to

A1A1 Dominance deviation
= 2qa − 2qdp − 2qa − 2q2d + 2qdp (10.42)

and then canceling terms gives

A1A1 Dominance deviation = −2q2d (10.43)

Table 10.6 gives the expressions for all three geno-
typic values relative to the population mean as well
as the dominance deviations derived using this same
reasoning.

The dominance deviations for the four IGF1
examples are shown in Table 10.7. Examination of
Table 10.7 shows that the genotypic values of the
heterozygotes (measured from the population mean)
and breeding values in the table are always zero when
there is no dominance. In both cases (a) and (b), 
the A1A2 genotypic value is at the midpoint (d = 0), 
giving dominance deviations of zero regardless of the
allele frequencies. Another way to describe this is 
to say that when there is no dominance, a genotype
has a breeding value that is identical to its genotypic
value (measured relative to the population mean)
since genotypic values are determined by the addition

of average effects alone. Without dominance, geno-
typic values in progeny as measured by the breeding
value can be predicted perfectly from the combina-
tion of average effects.

In cases (c) and (d) the A1A2 genotypic values are
not at the midpoint (d ≠ 0), resulting in dominance
deviations that are not zero. Let’s examine the domi-
nance deviation for the A1A1 genotype in case (c) of
Table 10.7 as illustrated in Fig. 10.3a. The genotypic
value of the A1A1 genotype when measured relative
to the population mean is 10.5 − 2.625 = 7.875. The
breeding value of the A1A1 genotype is 10.5 based on
the average effects of its two alleles. With this breeding
value, the mean of the progeny from an A1A1 geno-
type would be outside the largest phenotypic value,
which is physically impossible. The breeding value
has in essence assumed that the population mean is
zero, as it would be at p = q = 0.5 without dominance.
But there is dominance, so the population mean is
greater than it would be without dominance. The
A1A1breeding value needs to be adjusted downward
so that it does not exceed the largest phenotypic value.
This adjustment is the dominance deviation. In this
particular case, the population mean is 2.625 rather
than zero because of dominance shown by the A1A2
genotype (the A1A2 genotype has a value of 5.25
and makes up 50% of the population at p = q = 0.5).
Therefore, the dominance deviation is −2.625. Note
that in general the magnitude of dominance devia-
tions changes with population allele frequencies just
as the magnitude of genotypic values measured from
the population mean and breeding values do.

The dominance deviation for the A1A1 genotype in
case (d) of Table 10.7 is also diagrammed in Fig. 10.3.

Table 10.6 Expressions for genotypic values relative to the population mean, breeding values and
dominance deviations. Genotypic values can be expressed relative to the population mean by subtracting 
the population mean (M = a(p − q) + 2pqd) from a genotypic value measured relative to the midpoint. The
dominance deviation is the difference between the genotypic value expressed relative to the population 
mean (M) and the breeding value.

Value

Genotype . . . A1A1 A1A2 A2A2

Genotypic value relative to midpoint +a d −a
Genotypic value relative to population mean 2q(a − dp) a(p + q) + d(1 − 2pq) −2p(a − dp)

2q(α − qd) (q − p)α + 2pqd −2p(α + pd)
Breeding value 2q(a + d(q − p)) (q − p)(a + d(q − p)) −2p(a + d(q − p))

2qα (q − p)α −2pα
Dominance deviation −2q2d 2pqd −2p2d
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At the allele frequencies in case (d), the dominance
deviation is smaller because the frequency of A1A2
individuals in the population is smaller, causing less
dominance contribution to the population mean.
That ultimately results in a smaller difference between
the genotypic value of A1A1 measured relative to M
and the breeding value of A1A1.

We can also determine the mean dominance 
deviation in a population where all three genotypes
are mating at random. As for the average breeding
value, the average dominance deviation of all three
genotypes is obtained by multiplying the domin-
ance deviation of each genotype by its corresponding
genotype frequency. This gives

Mean dominance deviation of all genotypes
= p2(−2q2d) + 2pq(2pqd) − q2(−2p2d) (10.44)

which simplifies to zero since the first and third 
terms cancel with the middle term. The mean 
dominance deviation of all three genotypes mating
at random is zero. Just as for the mean breeding
value, a mean dominance deviation makes intuitive

sense because when a large parental population 
in Hardy–Weinberg expected genotype frequencies
mates at random, the mean value of the progeny
population should be exactly the same since the
progeny genotype frequencies are exactly the same
as in the parental population. Thus, the impacts of
dominance on the progeny means of each genotype
counteract each other to give an overall mean of 
zero under random mating.

One last illustration will help show the connec-
tion between the genotypic values and the genotype
frequencies on one hand and the breeding values
and dominance deviations on the other. Figure 10.4
shows the least-squares regression line between 
the genotypic values and the number of A1 alleles 
in a genotype for a population of 100 individuals
(since genotype frequencies equal Hardy–Weinberg
expectations, the population contains 25 A1A1, 
50 A1A2, and 25 A2A2 individuals). The slope of the
regression, line gives the average phenotypic effect 
of a change in the number of A1 alleles in the geno-
type. So, for example, changing all A2A2 genotypes
to A1A2 genotypes (replacing one A2 allele with an

··

Table 10.7 Genotypic values, breeding values, and dominance deviations for the three IGF1 locus genotypes
in dogs. Genotypic values, breeding value and dominance deviation values are all given relative to the
population mean, M. All values are in kilograms.

Genotype

A1A1 A1A2 A2A2

(a) d = 0.0, p = 0.5, q = 0.5, M = 0.0, α = 10.5
Genotype frequency 0.25 0.5 0.25
Genotypic value 10.5 0.0 −10.5
Breeding value 10.5 0.0 −10.5
Dominance deviation 0.0 0.0 0.0

(b) d = 0.0, p = 0.9, q = 0.1, M = 8.4, α = 10.5
Genotype frequency 0.81 0.18 0.01
Genotypic value 2.1 −8.4 −10.5
Breeding value 2.1 −8.4 −10.5
Dominance deviation 0.0 0.0 0.0

(c) d = 5.25, p = 0.5, q = 0.5, M = 2.625, α = 10.5
Genotype frequency 0.25 0.5 0.25
Genotypic value 7.875 2.625 −13.125
Breeding value 10.5 0.0 −10.5
Dominance deviation −2.625 −2.625 −2.625

(d) d = 5.25, p = 0.9, q = 0.1, M = 9.345, α = 6.3
Genotype frequency 0.81 0.18 0.01
Genotypic value 1.155 −4.095 −19.845
Breeding value 1.26 −5.04 −11.34
Dominance deviation −0.105 0.945 −8.505
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A1 allele) would change the phenotypic value of that
group of individuals from −10.5 to zero. Likewise,
changing all A1A2 genotypes to A1A1 genotypes
would change the phenotypic value of that group of
individuals from zero to 10.5. The average pheno-
typic effect of increasing the number of A1 alleles is
therefore 10.5 (or the slope of the regression line), so
α = 10.5 as shown in Fig. 10.4.

Given the average effect of an allele replacement,
we can then predict the expected phenotypic value of
the progeny of any one genotype. Let’s use the A2A2
genotype as an example. When A2A2 individuals
mate, the mean value of the progeny population will
decrease because progeny of A2A2 individuals receive
the A2 allele that confers the lower genotypic value.
The amount of the decrease in value is −2qα, which in
Fig. 10.4a equals −2(0.5)(10.5) = −10.5. Figure 10.4b
shows the impact of dominance. Even with domin-
ance, when A2A2 individuals mate the mean value 
of the progeny population still decreases because
their progeny receive the A2 allele. The decrease in

phenotypic value is −2qα = −10.5. But dominance
has caused the population mean to be 2.625 rather
than zero. Another consequence of dominance is that
when A2A2 individuals mate, some of the A2 alleles
will pair with A1 alleles to make heterozygotes with
the phenotype of d. Therefore, the average effects 
of two A2 alleles need to be adjusted by the domin-
ance deviation. The dominance deviation for A2A2 is
−2p2d, which in panel (a) equals zero and in panel (b)
equals −2(0.5)2(5.25) = −2.625.

10.5 Components of total genotypic variance

• Deriving the additive (VA) and dominance (VD)
components of genotypic variation.

• VA and VD are related to allele frequencies and
genotypic values.

We are at last in a position to obtain expressions 
for the components of variance in phenotype due 
to additive genetic variation and dominance genetic
variation. Recall from earlier in the chapter that
additive genetic variation (VA) contributes to the
resemblance between parents and offspring. Using
the terminology of this section, we can say that VA
is due to the variance in breeding values. Similarly,
earlier in the chapter dominance genetic variation
(VD) was described as being due to the effect, if any, 
of combining different alleles into a heterozygote
genotype. We can now recognize VD as the variance
in dominance deviations. These variances describe
the spread or range of values in a population caused
by breeding value or by dominance.

The previous subsections devoted considerable
effort to developing expressions for average values.
In particular, we obtained expressions for the average
breeding value and average dominance deviation of
each genotype. Obtaining these averages was import-
ant because an average is a critical part of a variance
(see the Appendix for the definition of a variance). As
was shown above, in a randomly mating population
both the mean breeding value and the mean domin-
ance deviation are zero. These are extremely useful
results because they greatly simplify the expressions
for the variance in breeding value and the variance
in dominance deviation.

The additive variance, or VA, is the variance of
breeding values in a randomly mating population.
Since the mean breeding value taken over all geno-
types is zero, the variance in breeding value is simply
the square of the mean breeding value for each geno-
type multiplied by the frequency of each genotype:
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Figure 10.4 The relationship between average effect of 
an allele replacement, genotypic values, breeding values, 
and dominance deviations. The solid line represents the 
least-squares regression of genotypic value on number of 
A1 alleles in a genotype in a population of 100 individuals
with Hardy–Weinberg genotype frequencies. The slope of 
the line is equal to the effect of an allelic replacement or α.
There is no dominance in (a) and partial dominance 
in (b). The breeding value is equal to the genotypic value
adjusted by the effects of dominance on the progeny
population mean as measured by the dominance deviation.
All values are deviations from the population mean.
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VA = p2(2qα)2 + 2pq((q − p)α)2 + q2(−2pα)2 (10.45)

By expanding each term, factoring out 2pqα2 and
then canceling, the equation simplifies to

VA = 2pqα2 (10.46)

or, after substituting the definition of α from equa-
tion 10.22, to

VA = 2pq(a + d(q − p))2 (10.47)

Similarly, the dominance variance, or VD, is the vari-
ance in dominance deviation values in a randomly
mating population. As before, the mean dominance
deviation taken over all genotypes is zero so the 
variance in breeding value is the square of the mean
dominance deviation for each genotype multiplied
by the frequency of each genotype:

VD = p2(−2q2d)2 + 2pq(2pqd)2 + q2(−2p2d)2 (10.48)

Expanding each term gives 4p2q2d2(p2 + 2pq + q2),
which then gives the equation for the dominance
deviation variance as

VD = (2pqd)2 (10.49)

The separate expressions for VA and VD give us the
means to estimate the total genotypic variance or 
VG as

VG = VA + VD (10.50)

which after substitution of the expressions for VA and
VD becomes

VG = 2pq(a + d(q − p))2 + (2pqd)2 (10.51)

Note that VG is commonly referred to as the total
genetic variance, even though it is the variance in
genotypic values.

The components of the genetic variance and their
relationship to the allele frequencies and the geno-
typic values can be seen in Fig. 10.5. In all cases, VG
is greatest at intermediate allele frequencies. When
there is no dominance as in Fig. 10.5a, VG is made 
up exclusively of additive genetic variation. Without
any dominance VA is greatest at intermediate allele
frequencies where the total frequency of the two homo-
zygotes equals the frequency of the heterozygotes
under random mating. When there is dominance, as
in panels (b) and (c), VG is made up of both additive and
dominance genetic variation. Dominance variance
is greatest when the frequency of all heterozygotes is
the greatest, or p = q = 0.5 for a diallelic locus under
random mating. Also notice that with dominance 
VG is low when the frequency of the recessive allele
(A2) is low because the population has very few 
individuals with the −a genotypic value. This means
that VG is made up mostly of the variance in +a and 
d genotypic values that are very similar or identical
because of dominance. Since all of the illustrations 
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Figure 10.5 The
additive (VA) and
dominance (VD)
components of the total
genotypic variance
(VG). In (a) there is no
dominance (d = 0.0).
Panel (b) has partial
dominance (d = 5.25)
and panel (c) has
complete dominance 
(d = 10.5). In (b) and 
(c) the dominance
component of the total
genotypic variance is
greatest when allele
frequencies are equal
because the frequency
of heterozygotes is
greatest. In all cases,
the value of +a = 10.5.
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in Fig. 10.5 use a genotypic value of a = 10.5, each
panel represents one case of the components of geno-
typic variance for IGF1 depending on the degree of
dominance.

Across the three graphs in Fig. 10.5, the maximum
VG progressively increases and the allele frequency
where maximum VG occurs also shifts to lower values
of p. This increase in maximum VG corresponds to an

The additive and dominance components of the total genotypic variance can be interactively
graphed using an Excel spreadsheet model on the textbook website. Values of a and d can be set 
in the model. Set a = 10.5 as in the IGF1 example. Then set d to 0.0, 5.25, and 10.5 and view the
graphs in each instance. The graphs should be identical to those in Fig. 10.5.

What would the graph of the components of the total genotypic variance look like with strong
overdominance? Predict what the graph might look like and sketch it on paper. Then set d to a
value that constitutes overdominance and view the graph. Was your prediction correct? What is
the impact of strong overdominance on heritability? If a population with strong overdominance
and allele frequencies near p = q = 0.5 experienced genetic drift or consanguineous mating, how
would VA and the heritability change?

Interact box 10.2 Components of total genotypic variance, VG

While the method of adding VA and VD to obtain the total genotypic variance seems reasonable, it
does have an important assumption. The total genetic variance, VG , is the sum of VA + VD plus twice
the covariance between VA and VD :

VG = VA + VD + 2covAD (10.52)

This covariance can be estimated by summing the genotype frequency-weighted product of the
breeding value and the dominance deviation for each of the genotypes:

covAD = p2(2qα)(−2q2d) + 2pq((q − p)α)(2pqd) + q2(−2pα)(−2p2d) (10.53)

After multiplying out each term to get

covAD = −4p2q3αd + 4p2q2(q − p)αd + 4p2q3αd (10.54)

and then factoring out 4p2q2αd to get

covAD = −4p2q2αd(−q + q − p + p) (10.55)

it is then apparent that the covariance between the breeding values and the dominance deviations
is zero.

The same overall result of the total genetic variance being a function of VA + VD + 2covAD can be
shown by starting with the expression for the total genotypic variance based on the frequency-
weighted variances for each genotypic value

VG = p2(a − M)2 + 2pq(d − M)2 + q2(−a − M)2 (10.56)

and then using definitional substitutions and algebra to obtain an equation with terms that
represent the variance of the breeding values plus the variance of the dominance deviations and
the covariance between the breeding values and dominance deviations.

Math box 10.2 Deriving the total genotypic variance, VG
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increase in the maxima of both VA and VD. Complete
dominance causes more total genotypic variation
because the genotypic values in the population are
only the extremes of +a and −a without a genotypic
value that is intermediate. The variance in geno-
typic values is at a maximum when there are equal
frequencies of the +a and −a genotypic values. At 
p ≈ 0.29 and q ≈ 0.71 the combined frequencies of the
A1A1 and A1A2 genotypes are equal to the frequency
of the A2A2 genotypes, thus maximizing VG.

10.6 Genotypic resemblance between
relatives

• Additive (VA) and dominance (VD) components of
genotypic variation and resemblance of relatives.

• Resemblance of relatives depends on the prob-
ability that alleles or genotypes are shared.

• The covariance between mid-parent and offspring
genotypic values.

Obtaining expressions for the components of the total
genotypic variation is ultimately useful because the
variance components provide the basis to predict the
resemblance of genotypic values between populations
of related individuals. This relationship can also be
reversed, and the phenotypic resemblance between
relatives can be used to estimate the components of the
total genotypic variance for specific phenotypes. This
section shows how the variance within or covariance
between relatives are related to components of the
genotypic variance. In practice, VA is usually estimated
from the resemblance between relatives to then deter-
mine the heritability of a phenotype. See the Appendix
for background on the covariance if necessary.

The expected covariance in genotypic values
between relatives can be determined using the auto-
zygosity of the relatives compared (Cotterman 1974,
1983; Crow and Kimura 1970). The expected covari-
ance between related individuals is

cov(x, y) = rVA + uVD (10.57)

where x and y represent the phenotypic values in a
population of individuals and r and u are fractions
determined by probabilities of identity by descent 
for the individuals in groups x and y and for their 
parents. If the parents of individuals in group x are 
A and B and the parents of individuals in group y
are C and D then

r = 2fxy (10.58)

if the parental population is not inbred ( f = 0) and

u = fAC fBD + fAD fBC (10.59)

where f is the probability of autozygosity in a pedi-
gree as explained in Chapter 2.

These coefficients have a clear biological interpre-
tation based on the pedigrees of individuals x and y
(Fig. 10.6). The r coefficient is twice the probability
that individuals x and y inherit an allele that is ident-
ical by descent. The u coefficient is the probability
that individuals x and y inherit the same genotype.
The probability of inheriting the same genotype depends
on the probability that both alleles in the genotypes of
x and y are identical by descent. Two alleles could be
identical by descent through the parents in the left
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The probability that individuals x and y both inherit an allele
identical by descent from individual B is 1/4.  Therefore, fxy = 1/4. 
r = fxy = 1/4

A  ×  B B  ×  Cu = fABfBC + fACfBB

 = (0)(0) + (0)(1/4)
 = 0
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The probability that individuals x and y both inherit an allele
identical by descent from individual A or B is 1/4.  Therefore,
fxy = 1/4.  r = 2fxy = 2(1/4) = 1/2

A  ×  B A  ×   Bu = fAAfBB + fABfBA

 = (1/2)(1/2) + (0)(0)
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covariance(x, y) = (1/2)VA + (1/4)VD
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r = 2fxy for bilinear relatives
r = fxy for unilinear relatives
u = fACfBD + fADfBC

Figure 10.6 The expected covariance in genotypic values
for relatives based on probabilities that individuals share
alleles (r) and genotypes (u) that are identical by descent. 
(a) The pedigree for the general case. (b) Half siblings (half
brothers and sisters) share parent B in common and are thus
unilineal relatives. (c) Full siblings (full brothers and sisters)
share both parents in common and are thus bilineal relatives.
In general, bilineal relatives include dominance components
in their expected covariances.
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positions of each pedigree ( fAB) and at the same time
through the parents in the right positions of each
pedigree ( fBD), giving fAC fBD as the probability that 
the genotype is identical by descent. Alternatively,
two alleles could be identical by descent through 
the parents in the left and right positions of each
pedigree ( fAC) and through the two parents in the
right and left positions of each pedigree ( fBD), giving
fAD fBC as the probability that the genotype is ident-
ical by descent. Since both outcomes can occur in 
the populations of x and y individuals, the total 
probability of genotypes being identical by descent is
fAC fBD + fAD fBC. In all cases, if one parent of x and one
parent of y are unrelated there is zero probability
that the alleles they transmit to their progeny can 
be identical by descent.

Half and full siblings make instructive examples of
how to determine the expected covariance between
relatives. Figure 10.6 shows the pedigrees for these
two cases. For both half and full siblings, the prob-
ability that individuals x and y inherit an allele 
identical by descent is 1/4. Given that x and y have 
a parent in common, there is a probability of 1/2

that a given allele is transmitted from a common 
parent to individual x and an independent prob-
ability of 1/2 that a copy of the same allele is trans-
mitted to individual y, giving fxy = (1/2)(1/2) = 1/4. For
half siblings, parents A, B, and C are unrelated so
there is zero probability that they transmitted alleles 
identical by descent to their offspring. There is, how-
ever, a probability of 1/2 that both half sibs inherited
the same allele from parent B, but this is only one
allele and not a genotype. For full siblings, while A
and B are unrelated, A and B are the parents of 
both x and y. It is therefore possible that x and y
inherited the same allele from parent A and the same
allele from parent B to produce genotypes that are
identical by descent.

Half siblings resemble each other since 50% of
individuals share one allele that is identical by
descent. Full siblings have an even greater degree 
of resemblance since 50% of individuals share an
allele identical by descent and at the same time 
25% of individuals share a genotype identical by
descent. The variance in genotypic value caused 
by alleles and genotypes corresponds to VA and VD.
Therefore, the genotypic values of half siblings have
a covariance 1/2VA while the genotypic values of full
siblings have a greater covariance of 1/2VA + 1/4VD.
Table 10.8 gives additional examples of the expected
covariance between various relatives based on the
same logic used to obtain the covariances for half
and full siblings.

Unilineal relatives such as half siblings can share
only one allele in their genotypes that is identical 
by descent. This is the case since one of the parents 
of each individual are related and can provide an
avenue for inheritance of an allele that is identical 
by descent. The other allele in the genotype cannot
be identical by descent because they are inherited
from two different parents who are unrelated. In
contrast, bilineal relatives, such as full siblings, share
both parents in common or have parents who are
related. Bilinear relatives therefore have dominance
components in their expected covariances because
they have a chance of inheriting both alleles and
genotypes that are identical by descent. Sharing 
alleles in common leads to phenotypic resemblance
due to the additive phenotypic effects of alleles while
sharing genotypes in common leads to phenotypic
resemblance due to the phenotypic effects of genotypes
(dominance and epistasis).

With knowledge of the genetic basis of covari-
ance in genotypic values among relatives, we can
look back to Fig. 9.8 to better understand why Abney
et al. (2001) decided to estimate heritabilities in a

Table 10.8 Expected covariance in genotypic values between groups of relatives.

Relatives Covariance in genotypic values

Offspring (x) One parent (y) 1/2VA
Offspring (x) Mid-parent (y) 1/2VA
Half siblings 1/4VA
Full siblings 1/2VA + 1/4VD
Nephew/niece (x) Uncle/aunt (y) 1/4VA
First cousins 1/8VA
Monozygotic twins VA + VD
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Hutterite population. The 806 individuals in that
study descended from only 64 ancestors. That means
that all individuals in the study had a non-zero prob-
ability of sharing two alleles that were identical by
descent. The consequence is that the u coefficient 
in equation 10.57 was non-zero for all pairs of indi-
viduals in the study. This led to improved precision
for estimates of dominance variance because com-
parisons between all pairs of individuals could be used
to estimate the covariance between phenotype and
the u coefficient. In contrast, the u coefficient is zero
in randomly mating populations except for between
pairs of full siblings, making estimates of dominance
variance imprecise because the number of full siblings
in one family is quite small.

Since the expected covariance between the mid-
parent value and progeny values forms the basis of
the parent–offspring regression, it is worth working
through an additional method to obtain the covari-
ance between mid-parent and offspring values.
Deriving this covariance relies on a mathematical
property of the covariance, or what some might call
a math trick. The covariance can be expressed in a
different form as

(10.60)

In terms of the mid-parent and offspring values, the
covariance is then

cov(O,R) = (OR) − M2 (10.61)
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where O is the value of the offspring from each
parental mating, R is the mid-parent value of a 
mating between two parental genotypes, and M is
the population mean. In the case of parents and 
offspring, the average taken by multiplication by 
1/n in equation 10.60 is instead accomplished by
multiplying the product of R and O by the expected
frequency of each parental mating. Table 10.9 gives
the expected frequencies for each union of parental
genotypes under random mating, along with the
expected mid-parent and progeny values. Multi-
plying the appropriate three quantities from each
row in Table 10.9 and then summing across rows

cov(O,R) = p4a2 + 4p3q

+ 2p2q2(0) + 4p2q2 (10.62)

+ 4pq3 + q4a2 − M2

With some algebraic manipulation, canceling of terms
and substitution of the definition of the population
mean, the covariance between the mid-parent and
offspring values is

cov(O,R) = pq(a + d(q − p))2 (10.63)

Since α = a + d(q − p) and VA = 2pqα2, after substitu-
tion the variance becomes

cov(O,R) = VA (10.64)
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Table 10.9 Frequencies and mean values for parents and progeny used to derive the covariance between the
average value of parents (mid-parent value) and the average value of the progeny from each parental mating.

Parental mating Parental mating Mid-parent Progeny genotype Progeny 
frequency value (|i) frequencies value (Oi)

A1A1 A1A2 A2A2

A1A1 × A1A1 p4 a 1 – – a
A1A1 × A1A2 4p3q 1/2(a + d) 1/2 1/2 – 1/2(a + d)
A1A1 × A2A2 2p2q2 a + (−a) = 0 – 1 – a + (−a) = 0
A1A2 × A1A2 4p2q2 d 1/4 1/2 1/4 1/2d
A1A2 × A2A2 4pq3 1/2(−a + d) – 1/2 1/2 1/2(−a + d)
A2A2 × A2A2 q4 −a – – 1 −a
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Chapter 10 review

• Genotypic values can be expressed on an arbitrary
scale with +a and −a representing the values of the
homozygotes with respect to a midpoint between
+a and −a of zero. The value of the heterozygote is
represented by d.

• The mean phenotypic value of a population with
Hardy–Weinberg expected genotype frequencies
is M = a(p − q) + 2pqd where p is the frequency of
the allele that increases value and q is the frequency
of the allele that decreases value.

• The average effect of an allele is the difference
between the mean value of that subset of genotypes
that contain a given allele and the mean value of
the entire population. Because alleles are inherited
and genotypes are not, the average effect describes
the mean value of those progeny that inherit a
certain allele from one parent and the other allele
sampled at random from the population.

• The genotypic mean is the sum of the breeding
value and the dominance deviation.

• The breeding value of an individual is the mean
value of the progeny produced by a given geno-
type assuming random mating. The breeding value
is the sum of the average effects of the alleles in an
individual’s genotype.

• The dominance deviation is the difference between
the genotypic value of a given genotype and the
breeding value. When there is dominance (d ≠ 0),
those progeny that are heterozygotes will have 
a value that is not the sum of the two alleles in
their genotype.

• Since the mean breeding value of all genotypes 
is zero in a population under random mating, the
mean value of a population should not change
from one generation to the next under the many
assumptions of Hardy–Weinberg.

• The variance in genotypic values around the 
population mean under random mating, com-
monly called the total genetic variance VG, is the
sum of the squared breeding values and the
squared dominance deviations or VG = VA + VD.

• The resemblance in genotypic value between rel-
atives caused by VA and VD can be related to the
probability of identity by descent. The expected
covariance in genotypic values is a function of the
probability that individuals share an allele that 
is identical by descent plus the probability that
individuals share a genotype identical by descent.
This covariance in genotypic values forms the
basis of the parent–offspring method to estimate
heritability.

Further reading

For more details on the Mendelian basis of interac-
tion variance (VI) as well as numerous perspectives
on the role of epistasis in the evolutionary change of
phenotypes, see chapters in:

Wolf JB, Brodie ED III, and Wade MJ (eds) 2000. Epistasis
and the Evolutionary Process. Oxford University Press,
Oxford.

9781405132770_4_010.qxd  1/16/09  7:09 PM  Page 354



Mendelian basis of quantitative variation 355

··

Problem box 10.1 answer

The entire range of genotypic values is 2a = 30 − 9 = 21. Therefore, a = 10.5 kg. The midpoint is
then either 30 − 10.5 = 19.5 or 9 + 10.5 = 19.5. The genotypic value of the heterozygote relative
to the midpoint is d = 24.75 − 19.5 = 5.25. The degree of dominance is 5.25/10.5 = 0.50 or 50%.

Problem box 10.2 answer

Case (a):

A2 MA2
= pd − qa = (0.5)(0.0) − (0.5)(10.5) = −5.25 kg

α2 = MA2
− M = −5.25 − 0.0 = −5.25 kg

α2 = −p(a + d(q − p)) = −0.5(10.5 + 0.0(0.5 − 0.5)) = −5.25 kg
α = a + d(q − p) = 10.5 + 0.0(0.5 − 0.5) = 10.5 kg
α1 = −pα = −(0.5)(10.5) = −5.25 kg

Case (b):

A2 MA2
= pd − qa = (0.9)(0.0) − (0.1)(10.5) = −1.05 kg

α2 = MA2
− M = −1.05 − 8.4 = −9.45 kg

α2 = −p(a + d(q − p)) = −0.9(10.5 + 0.0(0.1 − 0.9)) = −9.45 kg
α = a + d(q − p) = 10.5 + 0.0(0.1 − 0.9) = 10.5 kg
α1 = −pα = −(0.9)(10.5) = −9.45 kg

Case (c):

A2 MA2
= pd − qa = (0.5)(5.25) − (0.5)(10.5) = −2.625 kg

α2 = MA2
− M = −2.625 − 2.625 = −5.25 kg

α2 = −p(a + d(q − p)) = −0.5(10.5 + 5.25(0.5 − 0.5)) = −5.25 kg
α = a + d(q − p) = 10.5 + 5.25(0.5 − 0.5) = 10.5 kg
α1 = −pα = −(0.5)(10.5) = −5.25 kg

Case (d):

A2 MA2
= pd − qa = (0.9)(5.25) − (0.1)(10.5) = 3.675 kg

α2 = MA2
− M = 3.675 − 9.345 = −5.67 kg

α2 = −p(a + d(q − p)) = −0.9(10.5 + 5.25(0.1 − 0.9)) = −5.67 kg
α = a + d(q − p) = 10.5 + 5.25(0.1 − 0.9) = 6.3 kg
α1 = −pα = −(0.9)(6.3) = −5.67 kg

Problem box answers
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11.1 Historical controversies in population
genetics

• The classical and balance hypotheses.
• How to explain levels of allozyme polymorphism.
• Genetic load.
• The selectionist/neutralist debates.

Although past debates in population genetics might
not seem relevant today, it is usually the case that
history has a strong influence on the present. This is
certainly true in population genetics. Often, contem-
porary approaches to problems or accepted inter-
pretations of a pattern are the products of rich and
sometimes contentious debates. New data types such
as DNA sequences and the sheer volume of genetic
data available today have put to rest some open ques-
tions of the past. However, it is often the case that older
controversies take new forms with some modifica-
tions, often because old problems are not completely
resolved even though the field moves on to new 
topics. An appreciation of some of the ideas that have
occupied population genetics in the past provides
invaluable perspective on the present and future of
population genetics. The brief and selective history
presented here starts in the 1940s and 1950s and is
meant to provide an overview of the spirit of past dis-
agreements rather than a rigorous review. Note that
the technical foundations involved in these topics
are presented in earlier chapters as indicated but 
are not repeated in detail here. Readers interested in
a history of early population genetics from Darwin
through the 1930s should refer to Provine (1971).

The classical and balance hypotheses

The theoretical work of Fisher, Haldane, and Wright
established the core principles of population genetics.
These included that natural selection was able to
alter allele frequencies rapidly, mutation and recom-
bination supply genetic variation, that mating patterns

and gene flow shape the hierarchical organization of
genetic variation, and that the effective population
size regulates the process of genetic drift. Taken col-
lectively, this body of theoretical expectations served
to fuse Darwin’s concept of natural selection with
the principles of Mendelian particulate inheritance.
These expectations form the foundation of popula-
tion genetics and were labeled neo-Darwinism by
Huxley (1942).

While the neo-Darwinian synthesis achieved by
population genetics reached orthodoxy in the 1930s
and 1940s, a long-running debate began to take
shape. Under the logic of early neo-Darwinism, 
natural selection was the dominant evolutionary
force in almost all aspects of evolutionary change. 
It was then a matter of debate as to what type of 
natural selection – directional or stabilizing – was
most common in captive and natural populations.
The answer to this question gradually turned into
two broad points of view based on what one assumed
and how one interpreted available data on genetic
variation. Dobzhansky (1955) labeled these schools
of thought the classical hypothesis and the balance
hypothesis. Both hypotheses rely on natural selec-
tion as the principal process operating in populations,
although they differ greatly in the predicted con-
sequences of natural selection.

CHAPTER 11

Historical and synthetic topics

Classical hypothesis The point of view that
directional natural selection is the dominant
process in populations, predicting relatively
little genetic variation except when selection
pressures are heterogeneous in time or space
or are frequency-dependent.
Balance hypothesis The point of view that
balancing natural selection is the dominant
process in populations, predicting extensive
genetic variation caused by overdominance
for fitness.
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The classical hypothesis was that directional selection
was the predominant process in populations and from
this two major predictions arose as a consequence.
The first prediction was that under random mating
populations contained individuals homozygous at
most loci. The second prediction was that popula-
tions harbored relatively little genetic variation since
the equilibrium points for any sort of directional
selection on a diallelic locus are fixation and loss or
near fixation and loss (see Chapter 6). The clas-
sical school recognized the existence of “wild-type”
alleles, or alleles at high frequency in a population
because such alleles were of higher fitness and were
brought to high frequency by directional selection.
Alternative “mutant” alleles that appeared in popula-
tions were most often deleterious but on very rare
occasions would have a higher fitness than the 
current wild-type allele and would then become the 
new wild-type allele. The classical school predictions
were supported by a range of empirical observations,
especially from laboratory populations of organisms
such as Drosophila. In such populations, phenotypes
are of the wild type (within some range of variation)
and mutations with visible phenotypic effects appear
rarely but are almost universally deleterious and do
not reach high frequencies.

The classical hypothesis predicted that genetic
variation in populations was produced in four ways
(Dobzhansky 1955). First, deleterious mutations con-
tinually occur and segregate for a short time before
they are eliminated by directional natural selection.
Most of these deleterious mutations are likely to 
be recessive and thus exist mostly in heterozygote
genotypes where they are sheltered from natural
selection. (Dobzhansky pointed out that these are the
sorts of mutations that cause hereditary diseases when
homozygous.) Second, some proportion of mutations
are adaptively neutral because they have marginal
fitness values very near the mean. A third possibility
is that rare beneficial mutations are found in a popula-
tion before they have become established as the new
wild-type allele. The fourth possibility is that some
mutations are slightly beneficial in one environment
but slightly deleterious in another environment.
Alleles will then persist in a population exposed to
environments that are heterogeneous in time or space.
This last category motivated numerous population
genetics models where directional selection occurs
but fitness varies in time or space, or individual fitness
is frequency-dependent (see Chapter 7).

The balance hypothesis took the alternate per-
spective that overdominance for fitness was the 

general rule in most populations, so that balancing
selection was the dominant process that regulated
genetic variation. Under balancing selection, hetero-
zygotes would have higher frequencies than in the
absence of selection or under directional selection 
(see Chapter 6). The balance hypothesis, therefore,
predicted that loci would maintain two or more alleles
indefinitely. Owing to balancing selection, hetero-
zygotes would be more frequent and homozygotes
much less frequent than expected by Hardy–Weinberg
or under directional selection. Of the new mutations
that enter a population, only those that exhibited
overdominance as heterozygotes were expected to 
be retained in the population.

As Dobzhansky (1955) explained, the balance hypo-
thesis was also associated with predictions about 
the inter-relationship among loci. Natural selec-
tion on multiple loci can lead to the accumulation 
of gametic disequilibrium (see Chapter 2). High 
levels of gametic disequilibrium are expected under
balancing selection in populations with all loci at
intermediate allele frequencies since only that subset
of gametes that produce multilocus heterozygote
zygotes would have high fitness. (Note that under
the classical hypothesis there is also strong natural
selection, but relatively little gametic disequilibrium
in absolute terms is expected because populations
would be close to fixation for the wild-type allele.)
Using this expectation for gametic disequilibrium and
then assuming that most loci experience balancing
selection leads to the prediction of coadapted gene
complexes or supergenes within species (reviewed
by Hedrick et al. 1978). A supergene is a haplotype
or genotype at many loci that is held together and
frequently inherited as an intact unit because gametic
disequilibrium is very strong. A coadapted gene com-
plex is a supergene where natural selection acts or
has acted so that the alleles or genotypes at each locus
have high fitness in the context of the alleles or geno-
types at all other loci. Stated another way, selection
will increase the frequency of new mutations that
interact well with the alleles and heterozygous geno-
types at other loci. In contrast, any mutations that
have reduced relative fitness caused by interactions
among loci will be reduced in frequency by natural
selection. Thus, the notion of a coadapted gene com-
plex assumes that epistasis for fitness is common.

Supergenes and coadapted gene complexes pre-
sented both a research agenda and a conceptual
challenge to biologists of the classical/balance hypo-
thesis era. A great deal of research was devoted to the
study of multilocus genetic variation in laboratory

··
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and natural populations. At the same time, numerous
models of multilocus natural selection and recom-
bination were developed and studied. Very high 
levels of gametic disequilibrium caused by balancing
selection and epistasis for fitness served to negate the
Mendelian process of independent assortment. What
then was the source of genetic variation required for
evolutionary change? The answer was often sought
in population genetic mechanisms that had the
potential to recombine or break up supergenes.

Although the notion that large supergenes or
coadapted gene complexes are widespread is not
popular now, contemporary population genetics has
inherited an appreciation of the processes that cause
gametic disequilibrium and evidence that multiple
loci are not necessarily independent. We now have
well-characterized examples of genome regions with
high levels of gametic disequilibrium. One of the best
examples is the major histocompatibility complex
(Mhc) loci in mammals. These loci experience balan-
cing selection because of their functional role in 
recognizing non-self peptide fragments and compose
a large chromosomal region that has relatively high
levels of gametic disequilibrium. The amorphous super-
gene prediction has now been refined into a series 
of much more specific hypotheses tailored to diverse
areas of population genetics. Non-independence of
loci is central to models of molecular evolution that
seek to explain polymorphism within populations, 
as embodied by concepts such as hitchhiking, back-
ground selection, and genetic draft (see Chapter 8).
Quantitative genetics recognizes non-independence
of traits caused by phenotypic and genetic correlations.
The idea that selection favors alleles that interact well
across multiple loci is now called the Dobzhansky–
Muller model and it serves as an explanation of how
isolated populations might develop reproductive 
isolation that leads to speciation (reviewed by Coyne
and Orr 2004).

The study of ecological genetics can be traced 
to efforts to test the classical and balance hypotheses
with empirical data. Today, ecological genetics is
defined as the study of genetic variation within species
in the context of environmental and organismal
interactions. Ecological genetics seeks to identify 
the causes of patterns of genetic variation, often with
reference to the assumed or demonstrated pressures
of natural selection imposed by ecological context.
Early ecological genetics was focused on testing the
classical and balance hypotheses for genetic variation.
On the one hand was the classical school prediction
that relative fitness of alleles varied in time and space.

On the other hand, the balance school predicted 
that overdominance for fitness was very common.
Both of these possibilities were testable to some extent
in natural populations, by measuring the relative
fitness of phenotypes with a known genetic basis or
observing the frequency of genetic polymorphisms.
Dobzhansky was among the first to study “laboratory”
organisms in the wild. He pioneered field research 
in Drosophila and established a tradition of empir-
ical research that is now the norm in population
genetics. Edmund B. Ford was also instrumental in
the establishment of the field of ecological genetics.
Ford studied wild butterflies and moths and wrote
the enormously influential book Ecological Genetics,
which was published in 1964.

Many of the widely known empirical studies 
in ecological genetics take on new meaning when
viewed through the lens of the classical hypothesis/
balance hypothesis debate. For example, industrial
melanism in populations of spotted moth (also known
as the peppered moth) in England was evidence 
for the classical-school position since it shows that
directional selection pressures vary among popula-
tions based on proximity to industrial centers whose
soot stained tree trunks black (reviewed by Majerus
1998). (It is no coincidence that Bernard Kettlewell,
who performed much of the original spotted moth
work as a research scientist at the University of Oxford,
was supervised by E.B. Ford.) Another universally
known example in ecological genetics, evidence that
heterozygous blood-group protein genotypes have
higher fitness in malarial areas of Africa, supports
the balance hypothesis of overdominance for fitness
as the force that maintains genetic variation.

How to explain levels of allozyme polymorphism

Another long-running controversy in population
genetics grew out of the classical hypothesis/balance
hypothesis debate. The new controversy revolved
around how to explain genetic polymorphism within
natural populations observed with a then radically
new technique. The technique was gel electro-
phoresis of enzyme polymorphisms, or allozymes
(see Box 2.2). Two papers published in 1966 ushered
in the new controversy. Hubby and Lewontin (1966)
presented allozyme estimates of heterozygosity for 21
loci estimated from multiple populations of 15–20
Drosophila pseudoobscura individuals. Nine of these
21 loci exhibited between two and six alleles segregat-
ing within populations. The Hubby and Lewontin
paper showed a technique that could be used to

9781405132770_4_011.qxd  1/19/09  1:53 PM  Page 358



Historical and synthetic topics 359

determine both the proportion of loci that possessed
more than one allele and the level of heterozygosity
for each polymorphic locus.

The controversy over the causes of allozyme poly-
morphism changed the focus of much of population
genetics within the span of only a few years starting
in the mid-1960s. Initially, the classical and balance
hypotheses were considered as primary explanations.
In fact, in a paper published along with the allozyme
data themselves, Lewontin and Hubby (1966) argued
that the level of heterozygosity observed (averaged
over populations 30% of loci were polymorphic) were
inconsistent with the balance hypothesis because of
the segregation load that would have been required
(see the Genetic load section, below). The remaining
explanation for the allozyme polymorphism within
the context of the time was directional natural selec-
tion consistent with the classical hypothesis.

The balance hypotheses experienced some setbacks
from empirical data around the same time. Apparent
overdominance in maize was shown to decline over
multiple generations (Moll et al. 1964; reviewed by
Crow 1993b). True overdominance should persist
indefinitely as a function only of heterozygosity. These
maize results, however, were consistent with the pre-
diction that overdominance was actually caused by
gametic disequilibrium between loci bearing beneficial
dominant alleles and other loci bearing deleterious
recessive alleles. When two individuals homozygous
for different alleles at two such loci are crossed, the
progeny will experience a great increase in fitness
because the recessive deleterious phenotype will be
masked by dominance. The maize results demon-
strated that apparent overdominance phenomena
were caused by the combination of simple dominance
and linkage rather than by true overdominance.

The classical hypothesis/balance hypothesis debate
soon receded. Selective neutrality was an explana-
tion under the classical hypothesis that predicted a
low level of genetic variation in populations. This idea
of selectively neutral alleles, which was developed
and mathematically formalized starting in the 1950s
and 1960s, emerged as a primary hypothesis for
genetic polymorphism. The neutral theory hypo-
thesized that many loci have selectively neutral 
alleles and that polymorphism was a product of 
the non-equilibrium random walk that new neutral
mutations experience because of genetic drift.

The waning of the balance hypothesis and the
ascension of the two components of the classical hypo-
thesis produced what was labeled the neo-classical
theory of population genetics by Lewontin (1974).

This label came about because both elements of the
classical hypothesis explanation for polymorphism 
– selectively neutral mutations and mutations under
directional or purifying selection – are drawn from
the early classical hypothesis. Under the neo-classical
hypothesis, the debate became one about the relative
contributions of neutral mutations or mutations acted
on by natural directional selection to levels of genetic
polymorphism. There was also continuing work 
on the selection element of the classical hypothesis,
which was updated and bolstered with empirical
support from more elaborate theoretical models and
ecological genetic studies.

In the years after 1966, until DNA-based molecu-
lar techniques became available in the late 1980s,
allozyme electrophesis was perhaps the most widely
used empirical technique in population genetics. 
The allozyme era of population genetics is some-
time derisively referred to as the period of “find ‘em
and grind ‘em”, in reference to collecting and then
homogenizing samples in preparation for allozyme
electrophoresis. It is certainly true that during this
time a great deal of empirical research focused on
gathering single-population estimates of hetero-
zygosity via allozyme electrophoresis. However, these
data were part of a very substantial shift in the con-
ceptual focus of population genetics. The addition of
allozyme data contributed to the shift in emphasis
away from the entrenched positions of those who
favored the classical or balance hypotheses to new
models, data, and hypothesis tests.

Genetic load

For natural selection to change allele frequencies in
a population, individuals of some genotypes must
experience higher rates of death (either actual for
viability selection or reproductive for fecundity selec-
tion) than other genotypes. Natural selection works
by culling individuals of some genotypes in favor of
individuals of other genotypes, increasing the mean
fitness in the process. The amount of death or failed
reproduction associated with natural selection was
first called the load by Muller (1950). Genetic load
comes in two forms. Substitutional load refers to
the reduction in mean fitness caused during fixation
of beneficial mutations or purging of deleterious
mutations. Distinctly, the production of individuals
with lower-fitness genotypes by Mendelian segrega-
tion during reproduction is called the segregational
load. Sexual reproduction leads to segregational
load because both recombination and independent

··
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assortment produce novel progeny genotypes that
have a range of fitnesses. Those progeny genotypes
with a lower fitness perish (or do not reproduce)
under viability selection. In principle, the genetic load
places an upper limit on the ability of natural selec-
tion to change genotype frequencies in a population.
Deaths due to viability selection cannot greatly exceed
the total demographic excess of a population (the
number of individuals produced each generation
beyond those needed for demographic replacement)
for long or the population will go extinct.

The genetic load has been a tool used to try to 
estimate the upper limits to the process of natural
selection. The goal has been to determine how strong
natural selection can be before an unrealistic genetic
load occurs. The genetic load has been used for 
two main purposes. The substitutional load has been
used to estimate mutation parameters in populations,
such as the rate of fixation of beneficial mutations,
the rate of deleterious mutations, or the decline in
fitness associated with deleterious mutations. Substitu-
tional load also played a prominent role in attempts
to set acceptable thresholds for human radiation
exposure during the 1950s. The segregational load
was used as a counter-argument against the balance
hypothesis during the 1960s in the early days of the
neutral theory of molecular evolution. In these roles
genetic load has been controversial and engendered
passionate arguments over the span of many decades
(see reviews by Wallace 1991; Crow 1993b). The
genetic load has been employed widely in popula-
tion genetics and evolutionary biology during the
last three decades. For example, the concept has been
invoked in the accumulation of deleterious alleles
that might cause mutational “meltdowns” in small
and endangered populations (e.g. Lynch and Gabriel
1990), and in arguments for the fitness advantage of
sexual reproduction.

The genetic load concept (although not the term)
was originated by Haldane (1937). Haldane’s result
can be seen with the general dominance model of
selection on a single diallelic locus (see Table 6.4).
Assume a population at Hardy–Weinberg equilib-
rium, with complete dominance (h = 0), and a max-
imum fitness that equals one. In such a population
the fitness-weighted genotype frequencies are p2, 2pq,
and q2 − sq2 where s is the selection coefficient. The
mean fitness in the population is then the sum of the
frequency-weighted fitness values or N = p2 + 2pq
+ q2 − sq2. The mean fitness is therefore N = 1 − sq2

because p2 + 2pq + q2 = 1. The process of forward
mutation (A to a) will make new recessive alleles in

the population each generation, transforming some
number of Aa genotypes into aa genotypes. Assuming
that natural selection and mutation are at equilib-
rium means that selection removes aa genotypes as
fast as they are made by mutation. The rate at which
new aa genotypes are made from Aa genotypes is 
the forward mutation rate or μ. The mean fitness 
of the population is then N = 1 − μ (also assuming
that reverse mutation can be ignored). With incom-
plete dominance (h ≠ 0), N = 1 − 2pqhs − sq2 and 
the mean fitness can be shown to be approximately 
N ≈ 1 − 2μ.

The genetic load is defined as

(11.1)

and expresses the difference between the maximum
fitness (wmax), which corresponds to the most fit geno-
type, and the average fitness (N) in a population at a
given point in time (Crow 1958). If wmax is defined as
one, then the genetic load is given more simply by

(11.2)

Substituting the mean fitness from Haldane’s result
above and recalling that wmax = 1, the genetic load
under complete dominance is L = 1 − (1 − μ) = μ and
under incomplete dominance L = 1 − (1 − 2μ) ≈ 2μ.
The straightforward conclusion is that higher muta-
tions rates lead to higher genetic loads because 
a larger number of deleterious mutations must be
purged by natural selection to remain at selection/
mutation equilibrium. This translates into some 
proportion of homozygous individuals that must 
die or fail to reproduce each generation. The load
never disappears because while selection removes
deleterious alleles from a population, mutation con-
tinually supplies new ones.

Later, Haldane (1957) used a mutational-load
argument to estimate the rate of substitutions. His
goal in this analysis was to understand the rate of
phenotypic evolution, perceived at that time to be 
relatively slow, consistent with Darwinian emphasis 
on gradual change. Haldane concluded that natural
selection could accomplish no more than about 
one beneficial substitution every 300 generations
and that this would require the deaths of 30 times
the population size present in one generation. This
result made a major impact on some researchers in
population genetics. Haldane’s conclusion was often
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applied very generally as a fundamental limit on 
the rate of natural selection. As shown later by
Ewens (2004), Haldane’s result implicitly assumed
that demographic excess in humans is limited to
10% of the population size and so was not as general
as some had originally thought.

To understand the segregational load, assume a
standard diallelic locus model of overdominance for
fitness where relative fitness values are 1 − s for the
AA genotype, 1 for the Aa genotype, and 1 − t for the
aa genotype, where s and t are selection coefficients.
As shown in Chapter 6, the expected equilibrium
allele frequencies for this model of natural selection
are

(11.3)

and

(11.4)

Using these equilibrium allele frequencies, it is possible
to express the equilibrium frequency of heterozygotes
expected under balancing selection as

(11.5)

This shows that the frequency of heterozygotes in a
population depends on the magnitude of the selec-
tion coefficients against the homozygous genotypes.
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For example, if both homozygotes have 10% lower
viability than the heterozygote, s = t = 0.1 and at
equilibrium half of the population is composed of 

heterozygotes ( ). Weaker 

selection results in less heterozygosity at equilibrium
while stronger selection results in more equilibrium
heterozygosity.

We can combine the expected frequency of hetero-
zygotes at equilibrium and the mean fitness to get an
expression for the genetic load at equilibrium under
balancing selection in terms of the homozygote selec-
tion coefficients:

(11.6)

as worked out in Math box 11.1. This popula-
tion mean fitness can also be expressed in terms 
of the heterozygosity maintained by balancing 
selection by utilizing the equilibrium frequency of 
heterozygotes given in equation 11.6. Notice that 

so that the mean fitness 

for one locus can be written as

(11.7)

This equation has the biological interpretation that
the mean fitness at equilibrium in a population under
balancing selection is one minus the product of the
equilibrium heterozygosity and the mean selection
coefficient. A population experiencing balancing selec-
tion therefore always has at least some genetic load
since the mean fitness will never reach the maximum
fitness of one (mating among heterozygotes will 
generate additional lower-fitness homozygotes every
generation).

Let’s use some data on heterozygosity and selection
coefficients similar to those available in the 1960s to
compute the segregational load caused by balancing
selection. Allozyme surveys in Drosophila of the time
estimated that average heterozygosity was around
0.3. A homozygote disadvantage of 10% was con-
sidered reasonable under the balance hypothesis,
giving a selection coefficient of s = 0.10. Putting
these two values into equation 11.7 gives the mean
fitness as
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Segregational load The decrease in the
mean fitness in a population caused by
individuals with low-fitness genotypes that 
are introduced in a population by each
generation of Mendelian segregation.
Substitutional load The decrease in the
mean fitness in a population caused by the
introduction of deleterious mutations or the
culling of lower-fitness genotypes required 
for the  eventual substitution of beneficial
mutations.
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N = 1 − (0.3)(0.1) = 1 − 0.03 = 0.97 (11.15)

so that the genetic load is 0.03. Allozyme surveys of
the time also suggested that about one-third of all loci
in Drosophila had more than one allele segregating.
Extrapolated to the entire genome, thought to be com-
posed of around 8000 to 10,000 loci, it was believed
that perhaps 2000–3000 loci were variable. If each
locus is completely independent, then the segrega-
tional load for the entire genome is

L = (1 − (0.3)(0.1))3000 = (0.97)3000

= 2.07 × 10−40 (11.16)

This produces a conclusion that the genetic load
would be enormous. Interpreted in biological terms,
this genetic load means that an individual hetero-
zygous at 3000 loci would have to produce 1040

progeny (the inverse of the load) for each progeny
produced by an individual homozygous at all loci.
Even using lower average heterozygosity per locus

To solve the equation for the mean fitness in terms of the selection coefficients s and t on the
homozygous genotypes, start with the standard expression for the mean fitness:

T = p2wAA + 2pqwAa + q2waa (11.8)

and then substitute the fitness values for each genotype:

T = p2(1 − s) + 2pq(1) + q2(1 − t) (11.9)

Then express the genotype frequencies as equilibrium allele frequencies given in terms of the
selection coefficients (equations 11.3 and 11.4):

(11.10)

and then multiply through to give

(11.11)

Expanding the numerators of the first and last terms gives

(11.12)

Notice that s2t + t2s = st(s + t) and t2 + 2st + s2 = (t + s)(t + s) in the numerator, and so making
these substitutions:

(11.13)

which on simplifying gives
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Math box 11.1
Mean fitness in a population at equilibrium for balancing selection

9781405132770_4_011.qxd  1/19/09  1:53 PM  Page 362



Historical and synthetic topics 363

and selection coefficients leads to impossibly high
genetic loads.

Segregational and substitutional loads played an
important role in attempts to explain the proportion
of segregating loci and levels of heterozygosity in 
the 1960s. Balancing selection was considered and
rejected by Lewontin and Hubby (1966) as a hypo-
thesis to explain the first allozyme polymorphism data
in Drosophila. Expectations for the substitutional and
segregational loads were explored and developed in a
series of papers authored and coauthored by Kimura
(Kimura 1960, 1967; Kimura et al. 1963; Kimura
and Maruyama 1966). The genetic load ultimately
played a key part of the argument given by Kimura
in his proposition of the neutral theory of molecu-
lar evolution (Kimura 1968). Kimura argued that
there was too much genetic polymorphism or too
fast a rate of divergence for all genetic changes to be
caused by natural selection. This is because natural
selection imparts a genetic load. Kimura’s altern-
ative was that many polymorphisms are selectively
neutral. The neutral explanation greatly reduces 
the genetic load since only a small portion of poly-
morphisms would be acted on by selection and accrue
a genetic load.

There are a series of counter-arguments to the
idea that natural selection is limited by the segrega-
tion load (reviewed in Wallace 1991; Crow 1993b;
section 2.11 in Ewens 2004). One criticism revolves
around the point of reference used for the maximum
fitness in a population (wmax above). Haldane and
Kimura defined load relative to the most fit genotype
in the population. In the case of the balance hypo-
thesis, the most fit genotype would be one that is 
heterozygous at all loci. However, such a genotype
that is heterozygous at all loci would be very, very
infrequent in an actual population if we assume 
that fitness is based on numerous loci. For example,
imagine that all allele frequencies are equal to 0.5
and fitness is determined by 100 loci of equal effect.
The expected frequency of a 100 locus heterozygote
is (0.5)100 = 7.89 × 10−31 in a randomly mating
population. Ewens (reviewed in 2004) showed that if
genotypes with fitness values four standard devia-
tions greater than the population mean of one are used
as a reference point, then wmax equals 1.98. This
implies that the most fit individuals need to produce
about two progeny for every one progeny produced
by average fitness individuals. This cost of selection
seems tolerable for many populations and species.

Another counter-argument focuses on the form
that natural selection takes while it works to cull

individuals with less-fit genotypes from a population.
Estimates of genetic load commonly assume that
every locus is independent, so that natural selection
must act against homozygous genotypes at each 
and every locus independently. This is equivalent 
to assuming multiplicative fitness across multiple
loci, seen as an exponent in equation 11.16. This
assumption has the consequence of maximizing the
perceived genetic load. Another possibility is that
natural selection can cull less-fit genotypes by acting
on several loci simultaneously. For example, if selec-
tion results in the death of an individual because it
bears a homozygous genotype at one locus, it also
has the effect of culling any other homozygous loci in
that individual from the population at the same time.
Thus, counting each homozygous locus toward the
genetic load, without regard to the fact that some
homozygous loci occur in the same individual and
can be selected against by only one selective death,
overstates the total genetic load.

A final category of arguments against the cost of
selection limits involves the way in which natural
selection works. A viability selection model assumes
that individuals selected against will die before repro-
duction. An obvious alternative is that selection
instead takes the form of fecundity selection among
reproducing adults. Some degree of fecundity selec-
tion (in lieu of some amount of viability selection)
would reduce the number of selective deaths required
for substitution or segregation. Instead, genetic load
would take the form of differences in fecundity among
individuals of different genotypes. This is often
described as the distinction between hard (viability)
and soft (fecundity) forms of selection. Further, trun-
cation selection as an alternative form of natural
selection (see Fig. 9.10) was modeled in detail as 
an alternative to assumption of independent loci in 
estimates of the genetic load. The genetic load is con-
siderably less under truncation selection, making
the cost of selection low enough to be approximately
consistent with the balance hypothesis. However, it
is not clear whether truncation selection ever actu-
ally occurs in nature.

The selectionist/neutralist debates

The neutral theory of molecular evolution was 
proposed by Kimura in 1968 (reviewed in Kimura
1983a), coupling his sophisticated knowledge of
models of genetic drift with the then novel (and scarce)
data on rates of amino acid divergence. Kimura 
used the amino acid divergence data in mammals 

··
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to estimate that the rate of nucleotide substitution
genome-wide was about one site every other year.
As discussed above, this implied a very large genetic
load if natural selection was the principal process that
governed the eventual substitution of new mutations.
Kimura showed, instead, that if new mutations are
neutral (meeting the condition that | 2Nes | << 1) then
the genetic load was low enough to seem reasonable.
(In the process of making the load calculation he 
also showed that the rate of substitution of a neutral
mutation was approximately the mutation rate.) 
In the same paper, Kimura considered the level of
polymorphism in the data of Hubby and Lewontin
(1966), estimating that an effective population size
of between 2300 and 9000 would produce the levels
of heterozygosity observed in Drosophila if alleles
were selectively neutral.

The controversy caused by the neutral theory was
both intense at times and long-standing. Defending
and extending the neutral theory would occupy
Kimura for the rest of his life. The proposal of the
neutral theory ushered in a new era in population
genetics that saw the development of numerous
models constructed with the goal of explaining 
levels of polymorphism or rates of divergence (see
Chapter 8). At the same time, there was an increas-
ing volume of genetic data available to test population
genetic models. New data often revealed patterns of
polymorphism or divergence that were not strictly
compatible with neutral theory, motivating con-
tinual extensions to the neutral theory. At the same
time, numerous advances in the theory of natural
selection at the molecular level (e.g. hitchhiking,
codon bias, background selection) were developed 
as alternative hypotheses to the neutral theory. After
Kimura’s (1968) initial proposal of neutral theory,
genetic load faded in importance while levels of 
polymorphism and rates of divergence became the
primary issues.

Pan-neutralism and pan-selectionism are 
caricatures that illustrate some of the exaggerated
stances taken in selectionist/neutralist debates. We
can redraw the mutation fitness spectrum presented
in Chapter 5 in a way that schematically represents
the extreme positions of pan-neutralism and pan-
selectionism (Fig. 11.1; compare with Fig. 5.1). Both
of these points of view are extreme because they 
rely on a picture of the fitness of mutations that does 
not match most observations. The neutral theory
was often misunderstood and taken by some as a
proposal that all nucleotide or amino changes were
selectively neutral (Fig. 11.1a). Pan-neutralism is 

an inaccurate description of neutral theory and one
that Kimura and others took pains to point out was
not correct. Pan-neutralism cannot explain patterns
of molecular evolution such as differences in diver-
gence rates at synonymous and nonsynonymous sites
within a gene (which share a common mutation rate
and effective population size). Functional constraint
due to natural selection (first suggested by King and
Jukes 1969), an important part of neutral theory,
can readily explain such observations. At the same
time, the neutral theory helped illustrate implications
of the classical and balance hypothesis perspectives,
often to the discomfort of advocates of these points 
of view. Both of the classical and balance hypo-
theses emphasize natural selection and tend toward
pan-selectionism. As Fig. 11.1b illustrates, arguing
for a complete absence of neutral mutations is an 
unreasonable position because it requires a muta-
tion fitness spectrum with a discontinuity around a
selection coefficient of zero.
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Figure 11.1 The caricatures of the mutation fitness
spectrum drawn to illustrate the extreme views of pan-
selectionism and pan-neutralism. (a) Under a pan-neutralist
view almost all mutations have little or no impact on fitness
and so are selectively neutral. (b) Under a pan-selectionist
view there would be almost no mutations that are selectively
neutral, many mutations that are selected against, and a
relatively high frequency of beneficial mutations. Neither of
these extremes is supported by most observations, except
perhaps in isolated cases. This illustration is inspired by
figures in Turner (1992) and Crow (1972).
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One part of the selectionist/neutralist debate
involved the level of allozyme polymorphism (estimated
by heterozygosity or gene diversity) in populations.
Kimura and Crow (1964) had developed an expecta-
tion for the level of heterozygosity at drift–mutation
equilibrium in the infinite alleles model (see Chapter 5).
After the proposal of neutral theory, this expectation
was applied to the growing body of protein poly-
morphism data. Observed polymorphism should
match this prediction if neutral theory were correct.
The problem at the time was that observed hetero-
zygosities fell into too small a range (see Lewontin
1974). Based on mutation-rate estimates, the species
sampled should have differed a great deal in their
effective population size if mutations were neutral.
Thus, there was perceived to be too little polymor-
phism to be consistent with neutral theory pre-
dictions. But at the same time, there was perceived to
be too much polymorphism to be consistent with the
classical hypothesis. Time has shown that estimates
of key population parameters like mutation rates,
assumed effective population sizes, and the estimates
of polymorphism were sometimes imprecise enough
to cause fairly large deviations from expectations.
There was also the limitation that empirical data were
not general since the sample of genes, population,
and species was limited. It was during this period
that Lewontin (1974) lamented that neutral theory
expectations depended on the product of a large
unknown number (the effective population size) and
a small unknown number (the mutation rate), a
comment he frequently repeated.

Numerous natural-selection-based explanations
of polymorphism were developed as alternatives to
or extensions of the neutral theory. One innovative
hypothesis put forth to explain the deficit of polymor-
phism relative to neutral theory expectations was 
that of genetic hitchhiking around positively selected
sites (Maynard Smith and Haig 1974). A reduction
in polymorphism was predicted for neutral loci in
gametic disequilibrium with positively selected loci,
explaining a possible cause of reduced polymorph-
ism. A decade later, Kreitman’s (1983) DNA sequence
data set showing polymorphism for the alcohol dehy-
drogenase or Adh locus in Drosophila melanogaster gave
new life to the balance hypothesis. The Adh locus had
originally been studied with allozyme techniques and
was known to exhibit high levels of polymorphism.
The Adh DNA sequences identified the basis of the
allozyme polymorphism as a threonine/lysine differ-
ence and also exhibited synonymous variation around
these nonsynonymous sequence changes. Overall, the

Adh sequences exhibited too much polymorphism 
to be consistent with strict neutrality but were con-
sistent with a model of balancing selection. These data
contributed to a renewal of the balance hypothesis
and sparked continued debate about the processes
regulating polymorphism at the DNA level.

Another part of the selectionist/neutralist debate
revolved around rates of divergence. Neutral theory
predicted that rates of divergence should be con-
stant through time since the expected time between
neutral substitutions is the inverse of the mutation
rate (see Chapter 8). Amino acid sequence data 
collected in the 1970s and DNA sequence data col-
lected in the 1980s showed that the variance in the
number of substitutions (as measured by the index 
of dispersion; see Chapter 8) was too large to be com-
patible with neutral theory. One explanation for the
variance was that the rates of fixation of new muta-
tions was largely a consequence of natural selection.
Since selection strength could vary for different muta-
tions and also be variable through time and space,
natural selection would cause variation in substitu-
tion rates. In particular, natural selection could cause
periods of little or no substitution because deleterious
mutations would be selected against while beneficial
mutations would be fixed rapidly. The high varia-
tion in rates of substitution, called the overdispersed
molecular clock, stimulated many extensions of the
simple neutral model in an attempt to explain the
degree of variation in substitution rates (see Gillespie
1991; Culter 2000a).

Originally, the neutral theory divided mutations
into two discrete categories, those that were neutral
and those that were either deleterious or advant-
ageous and therefore acted on by natural selection.
Kimura suggested that most mutations were in the
neutral category. An alternative view was pro-
posed by Ohta in an attempt to explain phenomena
inconsistent with strict neutral theory (reviewed in
Ohta 1992). Ohta suggested a third category of muta-
tions that were weakly deleterious and therefore
nearly neutral (see Chapter 8). A common misunder-
standing of nearly neutral theory was the failure 
to distinguish between strict neutrality and near
neutrality. A mutation is strictly neutral if there is 
no selection coefficient on it so that its fate is always
dictated only by genetic drift. In contrast, the fate of 
a nearly neutral mutation depends on its effective
population size context. With a selection coefficient
that is small relative to the effective population size,
the fate of a mutation is determined by genetic drift.
Alternatively, the same mutation can be acted on by

··
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natural selection if the selection coefficient is large
compared to the effective population size.

The nearly neutral theory helps to explain why
substitution rates are lower at nonsynonymous sites
than at synonymous sites: a greater proportion of
changes at nonsynonymous sites are deleterious and
therefore fixation is prevented by natural selection.
In contrast, synonymous sites are largely neutral
and thus have rates of fixation determined by genetic
drift. Codon bias (reviewed by Petrov 2008) is an
alternative natural selection hypothesis for rates of
synonymous substitution (unequal frequencies of
tRNAs available during translation impose a fitness
cost on infrequent codons because genes containing
them are translated more slowly). The notion of con-
straint on DNA sequences is now accepted and used
routinely to explain and predict rates of divergence
and levels of polymorphism.

Nearly neutral theory also helped to explain the
overdispersed molecular clock. Since rates of sub-
stitution for nearly neutral mutations would depend
on the effective population size of a species, rates of
substitution can vary among species because the
effective population size also varies among species. 
A large part of the variance in substitution rates 
for synonymous substitutions is in fact explained 
by variance among species as predicted by nearly 
neutral theory. However, relatively little of the non-
synonymous substitution rate variation is explained
by variation among species, an observation that 
is consistent with natural selection acting on non-
synonymous mutations.

The selectionist/neutralist debates produced a
rich set of expectations for polymorphism and diver-
gence that encompass the full range of population
genetic processes and are able to explain many
observed phenomena. Most contemporary popula-
tion genetic models have the common feature that
the strength of natural selection is expressed relat-
ive to the strength of genetic drift as measured by 
the effective population size. Natural selection and
genetic drift are now seen as inseparably linked 
processes that lie on a continuum between the
extremes of pure selection (large Nes) and pure drift
(small Nes). While debate over the relative roles of
natural selection and genetic drift in producing 
patterns of polymorphism or rates of divergence 
continues, discussions generally acknowledge the
central role of genetic drift. The neutral theory is
now almost universally utilized as a null hypothesis
in all of population genetics and its varied empirical
applications.

11.2 Shifting balance theory

• Sewall Wright’s classic model of natural selec-
tion, genetic drift, gene flow, and mutation on an
adaptive landscape.

If forced to choose a single model in all of population
genetics that has had the longest-running impact,
Sewall Wright’s shifting balance model and its asso-
ciated fitness surfaces would certainly be among the
top picks. Wright first described the fitness surface 
in a 1932 presentation at the Sixth International
Congress of Genetics. For that presentation, Wright
(along with J.B.S. Haldane and R.A. Fisher) was asked
to make a non-mathematical presentation of his 
theoretical work in population genetics. Wright’s
1932 presentation and associated paper (Wright
1932) was an attempt to distill his very long and
mathematically sophisticated 1931 paper (Wright
1931) that developed fundamental expectations 
for numerous population genetic processes. In a
biography of Sewall Wright, Provine (1986) argues
that Wright’s invention and articulation of fitness
surfaces as a heuristic aid to understand allele and
genotype frequency dynamics “was one of his single
most influential contributions to modern evolution-
ary biology.” Indeed, the fitness surface is a commonly
used metaphor in population genetics even today.
The goal of this section is to introduce Wright’s adapt-
ive landscape metaphor and then explain Wright’s
interpretation of how genetic drift, gene flow, natural
selection, and mutation might interact in the con-
text of genetically subdivided populations known as
the shifting balance process. After Wright’s ideas
are introduced, some of the criticisms of the adapt-
ive landscape metaphor and controversies over the
shifting balance process will be considered.

Allele combinations and the fitness surface

At the beginning of his 1932 paper, Wright starts
with the observation that there are a very large num-
ber of possible genotypes (what he called allelomorph
combinations) in any given species. He gives the
example that for 1000 loci with 10 alleles each,
there are 101000 possible combinations of alleles 
that might make up a 1000-locus gamete haplotype.
(Wright points out that this is a staggeringly large
number, which he compares to the estimated number
of electrons and protons in the visible universe.) He
then assumes that wild-type alleles have a frequency
of 0.99 at these 1000 loci, while the infrequent 
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alternate alleles at these loci confer phenotypes only
slightly different than wild type. Wright reasoned
that there will be only a very small proportion of 
individuals in a population exhibiting phenotypes
caused by any combination of more than 20 non-
wild-type alleles in a 1000-locus haplotype. For
example, the expected frequency of a single haplo-
type containing 20 non-wild-type and 980 wild-
type alleles is (0.0120)(0.99980) = 5.3 × 10−45 while
the expected frequency of a haplotype containing 
all 1000 wild-type alleles is 0.991000 = 4.3 × 10−5. 
A haplotype composed of all wild-type alleles is 40
orders of magnitude more frequent than a haplotype
with just 20 non-wild-type alleles.

Under these assumptions, the range of phenotypes
exhibited in a single population will represent only a
very small part of the possible range of phenotypes
because haplotypes composed mostly of wild-type
alleles are very common and haplotypes with numer-
ous non-wild-type alleles are very infrequent. Wright
draws the conclusion that “The population is thus
confined to an infinitesimal portion of the field of
gene combinations” even though there is only a very
small chance that two individuals possess identical
haplotypes. In other words, the individuals in any
population represent only a small portion of the very
large range of possible phenotypic variation because
haplotypes composed mostly of wild-type alleles are
very common whereas haplotypes composed of
numerous non-wild-type alleles are very rare.

With this perspective on the large number of allele
combinations in a haplotype or gamete, Wright goes
on to describe what a surface or plot would be like 
“If the entire field of possible gene combinations be
graded with respect to adaptive value under a par-
ticular set of conditions . . .” The fitness surface
presented by Wright (1932) is shown in Fig. 11.2 
as a two-dimensional representation of at least three
dimensions. The x and y axes, although unlabeled 
by Wright in the original, represented the range of
possible allelic combinations in a haplotype or geno-
type. The fitness of each genotype is represented 
by the height of each point (the dimension per-
pendicular to the page when the surface is drawn 
in two dimensions). In contemporary usage, the x
and y axes represent allele frequencies that vary
between zero and one while the height of each point
on the surface is the mean fitness of a population 
at those allele frequencies. (The distinction between
Wright’s surface and the contemporary interpreta-
tion of an adaptive landscape is taken up later in this
section.) The dashed lines represent contour lines 

of constant fitness. The high points on the surface 
are indicated by + while the low points are indicated
by −. Since Wright’s fitness surface is exactly analog-
ous to a topographic map with peaks and valleys, 
the term adaptive landscape is frequently used to
describe three-dimensional graphs where allele or
genotype frequencies are represented in two dimen-
sions and a measure of fitness is represented in a
third dimension.

Wright then imagined how evolution under 
natural selection would move a population on such
an adaptive landscape. He considered the possibility
that “a particular combination [of alleles] gives max-
imum adaptation and that the adaptiveness of other
combinations falls off more or less regularly accord-
ing to the number of removes.” In contemporary 
terminology, this is equivalent to additive gene action
where the genotypic value is a linear function of the
effects of the alleles in the genotype (see Chapters 9
and 10). Under additive gene action, a fitness surface
is simply a plane where the highest point can be
reached by moving through intermediate steps of
increasing population average fitness. Alternatively,
Wright also imagined fitness surfaces where “. . . it 
is possible that there may be two peaks . . .” Fitness
surfaces with multiple peaks result from dominance
and epistasis, types of gene action that can produce
large changes in average fitness with only minor
changes in allelic combinations because the genotypic
value is a non-linear function of the effects of the 

··

Figure 11.2 Sewall Wright’s original adaptive landscape
diagram. The high-fitness points on the surface are indicated
by + while the low fitness points are indicated by −. Original
caption: “Diagrammatic representation of the field of gene
combinations in two dimensions instead of many thousands.
Dotted lines represent contours with respect to adaptiveness.”
From Wright (1932); reproduced with permission.
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alleles in the genotype. Wright imagined that “In a
rugged field of this character, selection will easily
carry the species to the nearest peak, but there may be
innumerable other peaks which are higher but which
will be separated by ‘valleys’.” Refer to Chapter 7 for
examples of fitness surfaces when allele combinations
exhibit strict additivity as well as dominance.

One of the basic challenges of proposing that 
evolutionary change occurs by natural selection
exclusively can be visualized with the aid of Wright’s
adaptive landscape diagram. Natural selection acts
to increase the mean fitness of a population based 
on the slope of the adaptive landscape immediately
around the current allele frequency position of a
population. This leads to changes in allele frequency
that, if unopposed by other processes, will eventu-
ally lead to the maximum mean fitness that can 
be achieved by continuously moving uphill on the
adaptive landscape. The possible problem is that
selection does not take a broad view of the adaptive
landscape while causing generation-to-generation
changes in allele frequencies. The process of natural
selection “sees” only the slope of the adaptive land-
scape immediately around a population’s current
position in allele frequency space. If the adaptive
landscape has multiple peaks, the process of selection
alone can lead to populations becoming “stranded”
at points on the surface that are local mean fitness
maxima but not among the highest levels of mean
fitness that are possible. In terms of the landscape
metaphor, natural selection is like a climber who
must always go up in elevation and can never descend
(even temporarily), nor cross a valley. Because of 
this increasing fitness requirement, natural selection
may not be capable of reaching the highest peaks 
on a fitness surface.

Wright proposed his shifting balance model as a
possible mechanism that would prevent populations
from getting stuck forever on a limited number of
fitness peaks. Wright (1932) states clearly that “The
problem of evolution as I see it is that of a mechanism
by which the species may continually find its way
from lower to higher peaks” on a fitness surface. 
He goes on to say that “there must be some trial 
and error mechanism on a grand scale by which 
the species may explore the region surrounding the
small portion of the [fitness surface] field it occupies.
To evolve, the species must not be under strict con-
trol of natural selection. Is there such a trial and
error mechanism?” These sentences capture what
seems to have been the main question in Wright’s
mind when he wrote his 1932 paper. It is a funda-
mental question in population genetics.

Wright’s view of allele-frequency distributions

After describing the fitness surface metaphor and
asking what mechanisms might overcome the limita-
tions of natural selection, Wright then attempted to
summarize his work at that time on the shape of
allele-frequency distributions that would be expected
under the action of the basic processes of population
genetics. He summarized these ideas very succinctly
without reference to any equations in a total of three
paragraphs that refer to one figure (see Fig. 11.3).
The three panels of Fig. 11.3A refer to the expected
equilibrium distributions of allele frequencies for one
locus in many independent replicate finite popula-
tions in an entire species. The processes of natural
selection, genetic drift, and mutation act simultane-
ously to shape these allele-frequency distributions. 
A narrow distribution of allele frequencies among
independent populations is expected when 4NU
(equivalent to θ) and 4NS (four times the product 
of the effective population size and the selection
coefficient) are large (left-hand panel in Fig. 11.3A).
This distribution results from a large selection
coefficient in favor of the wild-type allele (S with solid
arrow) with genetic drift that is relatively weak 

(dashed arrows labeled where N is the effective 

population size). Frequent forward mutation (U
with solid arrow) prevents complete fixation of the
wild-type allele, shifting the distribution to the left. 
A lower rate of reverse mutation (V with dashed
arrow) increases the frequency of the wild-type allele
a small amount, shifting the distribution to the right.
A wider distribution of allele frequencies among
independent populations is expected when 4NU and
4NS take intermediate values as shown in the middle
panel of Fig. 11.3A. In that case, the forces of selec-
tion, mutation, and genetic drift (all solid arrows) are
approximately equal to each other so that replicate
populations exhibit a range of wild-type allele fre-
quencies. In the right-hand panel of Fig. 11.3A the
distribution of allele frequencies is horseshoe-shaped
(most replicate populations near fixation or loss)
when 4NU and 4NS are small because genetic drift is 

strong (solid arrows for ) relative to natural selec-

tion and mutation (dashed arrows for S, U, and V).
The three panels of Fig. 11.3B refer to the equilib-

rium distributions of allele frequencies at one locus
in many finite subpopulations connected by some
degree of gene flow. The forces that dictate the dis-
tribution of allele frequencies are now genetic drift 

(arrows labeled where n is the effective popula-
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tion size of demes) and migration (arrows labeled m
for the rate of migration in an island model). Here
Wright assumed that migration was much stronger
than mutation and selection so these later two pro-
cesses could be ignored. At one extreme shown in the
left-hand panel of Fig. 11.3B, a narrow distribution
of allele frequencies among demes is expected when
4nm is large because migration rates are high (solid
arrows) and and/or genetic drift is relatively weak
due to large effective population size (dashed arrows).
The middle panel of Fig. 11.3B shows the case when
genetic drift and migration approximately balance,
leading to a wide distribution of intermediate allele
frequencies in demes. At the other extreme, shown
in the right-hand panel of Fig. 11.3B, the distribu-
tion of allele frequencies is horseshoe-shaped (most
populations near fixation or loss) when 4nm is small
because migration rates are low and and/or genetic
drift is strong due to small effective population size.

Evolutionary scenarios imagined by Wright

With the allele-frequency distributions established,
Wright then returned to the movement of popula-
tions on fitness surfaces given different parameters

for the processes of natural selection, mutation,
genetic drift, and migration. Wright saw the position
of populations on the landscape, the area occupied
by populations on the landscape, and the very topo-
graphy of the landscape itself as subject to change
over time. His goal was to illustrate scenarios with
sufficient trial and error (or genetic drift) that the
tendency of natural selection to strand a popula-
tion on a single fitness peak could be overcome.
Figure 11.4 illustrates the six possibilities that Wright
considered. In each of these six cases, the allele-
frequency distributions in Fig. 11.3 define the range
of variation in fitness expected among individuals 
in a population or deme. The connection arises if
each locus in the allele-frequency distributions of
Fig. 11.3 is interpreted as having a phenotypic effect
and genotypes homozygous for the wild-type allele
have the highest fitness. Broader allele-frequency
distributions then lead to a larger number of possible
allele combinations that would produce a wider range
of fitness values.

Panels A and B in Fig. 11.4 show Wright’s ideas
about the area of the adaptive landscape that would
be occupied by a species in the context of large 
4NS and 4NU values. Imagine a population initially

··

Figure 11.3 Wright’s schematic representation of the simultaneous action of multiple population genetic processes leading to
equilibrium distributions of allele frequencies. Each distribution represents the allele frequencies of many replicate populations or
an ensemble distribution (in (A) numerous populations that make up a species are independent while in (B) subpopulations are
interdependent in an island model). The magnitude and direction of the effects of a process on the distribution of allele frequencies
is indicated by arrows bearing letters. Solid arrows indicate stronger processes and dashed arrows indicate weaker processes. For
example, in the left-most distribution of (B) strong migration relative to drift maintains subpopulation allele frequencies with little
divergence while weak genetic leads to a modest spread of subpopulation allele frequencies around the average allele frequency of
the total population. In all panels, the frequency of the wild-type allele (x) is given on the x axis and the frequency of populations
with a given allele frequency is given on the y axis. The probability on the y axis is given by the equation at the top of (A) and (B) for
the allele frequency on the x axis given values for the population parameters. Original caption: “Random variability of a gene
frequency under various specified conditions.” From Wright (1932); reproduced with permission.
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occupies some area around a fitness peak, as shown
by the dashed circle inside the shaded circle in 
Fig. 11.4A. If the selection coefficient against geno-
types with non-wild-type alleles were to decrease 
or the forward mutation rate were to increase, the
area a population occupies around the adaptive 
peak would spread out (larger shaded circle). This
would correspond to the allele-frequency distribu-
tion changing from one like that in the left-hand
panel of Fig. 11.3A to one like that in the middle
panel of Fig. 11.3A. In contrast, when selection
against genotypes with alleles other than the wild
type becomes stronger or forward mutation rates
decrease in the context of large 4NS and 4NU, the
area on the fitness surface occupied by a population
shrinks because populations take on a narrower range
of allele frequencies (compare the circle made by a
dashed line to the smaller shaded circle in Fig. 11.4B).
This case corresponds to the allele-frequency dis-
tribution changing in the opposite direction, from
one like the middle panel of Fig. 11.3A to one like
that in the left-hand panel of Fig. 11.3A. In the 
case of Fig. 11.4A, the average fitness of the species
decreases, making it possible that “. . . the spreading

of the [fitness surface] field occupied may go so far as
to include another and higher peak . . .” or that a
fitness valley is crossed. It is also possible that the
fitness peak itself could become taller if beneficial
mutations occurred in a population and were fixed
by selection. However, Wright pointed out that 
rates of mutation are very low so that evolutionary
change of this sort would be very slow.

Wright also considered how the shape of the 
adaptive landscape itself might change. Figure 11.4C
shows Wright’s concept of how the adaptive land-
scape might change over time due to changes in the
environmental context of a population (still in the
context of large values of 4NS and 4NU). Because
genotypic fitness values are defined by the physical
and biological environment a species experiences, the
fitness values of allele combinations may very well
change over time. This would lead to a reshaping 
of the fitness surface itself, with peaks and valleys
changing elevation or the position of peaks on the
adaptive landscape shifting over time. While such
change in the fitness surface would cause popula-
tions to track high fitness peaks, Wright saw this as
“change without advance in adaptation” because

Figure 11.4 Wright’s representation of the action of drift/mutation balance (dictated by the magnitude of 4NU), drift/selection
balance (dictated by the magnitude of 4NS), and drift/migration balance in the island model (dictated by the magnitude of 4nm).
Wright’s parameters are N for effective population size, U for mutation rate, S for the selection coefficient in directional selection,
and 4nm for the effective migration rate in the infinite island model. The word “inbreeding” is used in the population sense where
finite population size leads to genetic drift. Original caption: “Field of gene combinations occupied by a population within the
general field of possible combinations. Type of history under specified conditions indicated by relation to initial field (heavy broken
contour) and arrow.” From Wright (1932); reproduced with permission.
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populations were not necessarily occupying a number
of peaks in the fitness landscape nor were populations
necessarily evolving to higher levels of mean fitness.

This theme of constant environmental change
driving a continual redefinition of the genotypes
having highest fitness in a population was emphas-
ized by Fisher (1999). Under this view, rugged 
adaptive landscapes are less problematic since a 
population can be thought of as occupying a region
of allele-frequency space where the topography of
the fitness elevations changes over time. If the fit-
ness landscape is continually remodeling itself, a
population will not be stranded on a fitness peak
since eventually the peak itself will move or change
position. This view is also the foundation of the so-
called Red Queen or arms race model of Van Valen
(1973), where a species must constantly experi-
ence adaptive change to keep pace with continually
changing genotypic fitness values ultimately caused
by a perpetually changing environmental context
defined by other species that themselves are con-
stantly changing.

Another set of possibilities that Wright considered,
diagrammed in Figs 11.4D and 11.4E, focused on
effective population size. Wright pointed out that if
the effective population size were very small relative
to the selection coefficient and the mutation rate
(Fig. 11.4D), a population would likely experience
fixation or loss at all loci due to genetic drift (see 
the allele-frequency distribution in the right-hand 
panel of Fig. 11.3A). As a consequence, a popula-
tion would cease attraction to fitness peaks, would
wander at random around the fitness landscape, 
and would also experience the fixation of deleterious 
alleles, leading to inbreeding depression. If the effect-
ive population size became small rapidly, then after
fixation and loss at most loci, movement on the land-
scape would be very slow since most new mutations
would be unlikely to segregate for long. In contrast, 
a finite population with a medium effective popula-
tion size relative to the selection coefficient and the
mutation rate (Fig. 11.4E) would occupy a fairly
large area on the surface and would experience 
some random movement around a fitness peak but
would not stray too far from the peak. This would
occur because the population would experience an
approximate balance between natural selection and
genetic drift and would also have the input of new
mutations over time (see the allele-frequency dis-
tribution in the center panel of Fig. 11.3A). Wright
saw populations experiencing a balance of genetic
drift, natural selection, and mutation (medium 

values of 4NU and 4NS) as being able to shift fitness
peaks and a means by which “the species may work
its way to the highest peaks in the general field.” 
The limitation is that peak shifting by one such 
population was expected by Wright to be a very slow
process that would only occur if the mutation rate
was approximately equal to the reciprocal of the
effective population size.

The final case Wright considered, shown in 
Fig. 11.4F, was the situation where a species was
subdivided into a number of finite demes (or “small
local races”) that were nearly genetically isolated
but did experience some gene flow. Here Wright was
thinking of the allele-frequency distribution in the
center panel of Fig. 11.3B, where there is a balance
between genetic drift leading to population differen-
tiation and gene flow leading to homogenization 
of allele frequencies that produces a broad distribu-
tion of allele frequencies among demes. Wright’s
idea was that many semi-independent finite demes
would move positions on the fitness landscape more
rapidly than a single panmictic population. Wright
also conjectured that those demes that did reach
higher fitness peaks would produce more migrants.
The effect of more migrants would be for a deme on 
a higher fitness peak to shift the allele frequencies 
of the demes that received those migrants toward 
the positions of higher fitness peaks. This process of
higher rates of gene flow from those demes on higher
fitness peaks is often called interdemic selection
since it is equivalent to natural selection acting at the
level of demes with different levels of demographic
productivity. Thus, Wright envisioned that a species
made up of many subdivided demes experiencing
approximately equal pressures of natural selection
and genetic drift could explore more of the fitness
surface and would be more likely to find more of the
higher fitness peaks than natural selection alone.
Wright concluded that “subdivision of a species into
local races provides the most effective mechanism 
for trial and error in the field of gene combinations.”

The shifting balance process is often summarized
by the simultaneous operation of three “phases” of
population genetic change in a subdivided popula-
tion. Phase I involves genetic drift within demes that
causes the allele-frequency position of each deme to
shift randomly with respect to the position of fitness
peaks. Phase II is the operation of natural selection
on demes such that the allele-frequency position of
demes is shifted toward and higher up fitness peaks,
with taller peaks exerting a stronger influence on
allele frequencies. Phase III is interdemic selection

··
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such that the rates of emigration from demes are 
proportional to the mean fitness of a population.
Thus, demes at higher fitness peak elevations export
more migrants and comprise a larger proportion of
the immigrant pool of other demes, shifting allele 
frequencies of all demes toward the allele-frequency
locations of taller fitness peaks.

Critique and controversy over shifting balance

Although Wright’s metaphor of the adaptive land-
scape and proposal of the shifting balance theory has
stimulated the thinking of biologists for decades, 
his ideas have also generated sustained controversy.
The fitness surface metaphor itself has been one
focus of critique because the original fitness surface
described by Wright is problematic in some respects.
As Provine (1986) describes, Wright employed two
distinct versions of the fitness surface. One version of
the fitness surface illustrates the fitness of each genotype
based on an ordering of the allele combinations in
genotypes. In this version of the fitness surface, 
each combination of alleles has a relative fitness 
and defines one point on the landscape. This type 
of surface has been compared with the pixels that
make up a photographic print or digital image (Ruse
1996). In the genotype version of the fitness surface,
what is represented biologically by the dimensions
other than that representing fitness is not clear since
the genotype axes do not relate to the frequency of
genotypes or alleles in a population. Another version
of the fitness surface plots the mean fitness of a popula-
tion for all possible allele frequencies (examples of
population mean fitness surfaces can be found in
Chapters 6 and 7). Contemporary usage of the fitness
surface metaphor is often in the population mean
fitness sense, with axes representing allele frequencies
and one dimension representing the mean fitness 
of a population at those allele frequencies, although
there are exceptions (e.g. Weinreich et al. 2005).
Wright often switched back and forth between these
two types of fitness surface in his writing, leading 
to ambiguity and confusion (Provine 1986). Fitness
surfaces have been constructed and interpreted in a
wide variety of ways since Wright’s work (Gavrilets
2004; Skipper 2004).

Coyne et al. (1997) presented a detailed and 
vigorous critique of Wright’s shifting balance theory
that examined evidence for and against operation 
of the three phases in actual populations. They 
reexamined the theoretical basis of the shifting bal-
ance theory with the benefit of more than 60 years 

of work in theoretical population genetics, and con-
sidered empirical evidence for the shape of fitness
surfaces and operation of the stages of the shifting
balance process. They concluded that “although
there is some evidence for the individual phases of
the shifting balance process, there are few empirical
observations explained better by Wright’s three phase
mechanism than by simple mass selection.” Other
authors responded in defense of shifting balance 
theory or to offer alternative points of view (e.g. Peck
et al. 1998; Wade and Goodnight 1998), generating
a cascade of replies and counter-replies (Coyne et al.
2000; Goodnight and Wade 2000; Peck et al. 2000).
While it is not possible here to consider in detail all 
of the points raised in that debate, disagreements
over elements of the shifting balance process serve to
highlight difficulties that arise when attempting to
predict the outcome of multiple population genetic
processes operating simultaneously.

The third phase of the shifting balance process,
production of migrants in proportion to the popula-
tion mean fitness and shifting of demes via differential
contributions to the immigrant pool, is particularly
problematic (see Crow et al. 1990). The difficulty 
is that the migration rate must be low enough to 
permit population subdivision into semi-isolated
demes but at the same time high enough to permit
the exchange of individuals (or gametes) among 
subpopulations that leads to interdemic selection. 
A general objection is that interdemic selection is 
a form of group selection, a process where there is
greater survival or reproduction of a population 
of individuals compared to other populations such 
that some populations go extinct while others persist
and expand. Williams (1966, 1992) has presented
the classical arguments that natural selection on
additive genetic variation among individual geno-
types is expected to act more rapidly than selection
on groups because the frequencies of individuals 
can change more rapidly than the frequencies of
populations. Nonetheless, possible evidence for group
selection in the context of differential migration has
been shown in experiments with the flour beetle
Tribolium castaneum (Wade and Goodnight 1991).
Large changes in number of individuals per popula-
tion were observed over nine generations by selecting
individuals to be founders of the next generation
based on the total number of individuals in a popula-
tion. In contrast, the size of populations did not change
over time when founding individuals were selected
at random with respect to population size. The inter-
pretation of numerous Tribolium experiments of this
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type (reviewed by Goodnight and Stevens 1997) 
has been controversial since there is disagreement
over what exactly constitutes group and individual
selection and what type of selection is imposed by 
the experimental procedures (see Coyne et al. 1997;
Getty 1999; Wade et al. 1999).

Another aspect of the disagreement over shifting
balance theory involves the dual nature of the con-
cept of epistasis (see Cheverud and Routman 1995;
Whitlock et al. 1995; Fenster et al. 1997; Brodie
2000; Cordell 2002). Epistasis exists when genotypes
at two or more loci result in a genotypic value that is
greater or less than the sum of the genotypic effects of
the loci when taken individually (see Chapter 9). The
existence of an interaction between two or more loci
indicates the existence of physiological epistasis
(also known as functional or mechanistic epistasis).
The term physiological epistasis simply recognizes
that certain genotypes at two or more loci interact 
in the production of a phenotype. The contribution,
if any, of such physiological epistasis to popula-
tion level quantities is a function of the frequencies 
of interacting genotypes in a population. The term 
statistical epistasis is used to refer to the amount 
of standing population variation in genotypic values
caused by interactions among loci. In the symbols
and concepts of Chapters 9 and 10, statistical 
epistasis is VI. The amount of statistical epistasis 
present in a population is a function of the frequencies
of interacting multilocus genotypes and therefore a
function of population allele frequencies, as it is for
additive and dominance variance (VA and VD), as 
well as a function of mating system and the rate of
recombination.

Wright implicitly assumed that statistical epistasis
was abundant in natural populations. While there 
is evidence that statistical epistasis exists in natural
and laboratory populations (MacKay 2001; Cordell
202; Carlborg and Haley 2004; see chapters in Wolf
et al. 2000), statistical epistasis is not widespread in
populations, although it remains difficult to estimate.
There is currently no consensus over the relative
contribution of epistasis to overall quantitative trait
variation, although there is recognition that empir-
ical detection of epistasis is limited by experimental
designs and statistical power (see Whitlock et al.
1995). Some conclude that there is a lack of evidence
for strong or frequent statistical epistasis in natural
populations. Others suggest that there is some evid-
ence for epistasis in natural populations, and since
epistasis is difficult to detect, it is premature to draw a
conclusion about the prevalence of epistasis. These

disparate views translate into difficulty summarizing
the nature of adaptive landscapes in populations
that are genetically variable.

When a population is at fixation and loss for all
loci there can be no statistical epistasis since there is
no variation in genotypic value, even though physio-
logical epistasis may exist and even be very strong.
An alternative definition of epistasis is useful for 
populations that may exhibit little statistical epi-
stasis and yet have abundant physiological epistasis.
Sign epistasis is a special case of physiological 
epistasis in populations with little or no genetic vari-
ation (Weinreich et al. 2005). A locus exhibits sign
epistasis when a new mutation exhibits higher-than-
average fitness on some genetic backgrounds defined
by other loci but lower-than-average fitness on other
genetic backgrounds. The sign of the fitness value 
is therefore a function of the other loci that make up
the genetic background of the allele. (This is in con-
trast to a more general definition of epistasis where 
a new mutation might always be deleterious, but it 
is more or less deleterious depending on the genetic
background.) An example of sign epistasis in the
context of a haploid system would be if the mean
fitness of a new mutation at the B locus was positive if
it was paired with an A allele and negative if it was
paired with an a allele. This leads to an alternative
view of how to define and test for epistasis that is
amenable to empirical study.

Weinreich et al. (2006) examined five single-
nucleotide mutations in the β-lactamase gene of 
bacteria. Four of these mutations result in mis-
sense versions of the β-lactamase gene, so that they
are deleterious individually and selected against 
in antibiotic environments. The fifth mutation is a
non-coding change 5′ to the gene. However, when all 
five mutations occur simultaneously they lead to a
version of the β-lactamase gene that confers resist-
ance to β-lactam antibiotic drugs such as penicillin.
When each mutation occurs on a genetic background
with the other four mutations present its fitness is
positive since the five-mutation version of the gene
has high fitness in antibiotic environments. This 
situation constitutes an example of sign epistasis.

Even with these various objections and complica-
tions, the shifting balance theory has had an enduring
impact on the imaginations of population geneticists
The basic problem that motivated Wright to propose
the shifting balance theory – that natural selection
cannot lead to decreases in mean fitness – remains 
a difficulty that continues to attract attention and
motivate researchers many decades later.

··
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Chapter 11 review

• The synthesis of Darwin’s concept of natural
selection with Mendelian particulate inheritance
that forms that basis of population genetics is
called neo-Darwinism.

• The classical hypothesis predicted that directional
natural selection was the dominant process. 
This led to a prediction that genetic variation 
was limited at most loci. What genetic variation
that existed was thought to be caused mostly by
deleterious mutations, along with some neutral
mutations and very few beneficial mutations.

• The balance hypothesis predicted that balancing
natural selection caused by overdominance for
fitness was the dominant process. This led to the
prediction that levels of genetic variation should
be high for many loci since balancing selection
maintains alleles at intermediate frequencies
indefinitely. The balance hypothesis also predicted
selection would cause gametic disequilibrum over
large regions of the genome, producing super-
genes or coadapted gene complexes.

• Genetic load results from the selective deaths
(either reproductive or actual) that must occur 
as frequencies of mutations or genotypes change
under natural selection. In principle, the amount
of natural selection is limited by the genetic load a
population can tolerate. Genetic load arguments
were used to estimate the upper limit on the rate
of substitution in mammals and to argue for the
neutral theory of molecular evolution.

• The novel technique of allozyme electrophoresis
first used in the mid-1960s revealed that about
30% of the loci in Drosophila were heterozygous.
This observation set off a long-running debate
over how to best explain levels of genetic poly-
morphism in natural populations.

• The proposal of the neutral theory of molecu-
lar evolution sparked a controversy between 
neutralists and those who favored selection-
based explanations of rates of divergence and 
levels of polymorphism. This debate lead to many
innovations in the theory of both genetic drift 
and natural selection. Explanations such as the
nearly neutral theory that combine the relative
contributions of drift and selection and place
them on a continuum are now common in 
population genetics.

• Wright’s metaphor of the adaptive landscape 
is a heuristic device designed to articulate how
the process of natural selection alone is con-

strained since it can only increase population
mean fitness.

• Sewall Wright’s shifting balance theory was
designed as a hypothesis about how the simul-
taneous action of natural selection, genetic drift,
mutation, and population subdivision might 
lead to the exploration of a larger portion of the
adaptive landscape than would be possible under
selection alone.

• While shifting balance theory and its key assump-
tion of statistical epistasis remains controversial,
adaptive landscapes are an enduring metaphor
in population genetics.

Further reading

For a history of early population genetics beginning
with Darwin and Mendel and ending with Fisher,
Haldane, and Wright, see:

Provine WB. 1971. The Origins of Theoretical Population
Genetics. University of Chicago Press, Chicago, IL
(this book was originally published in 1971 while the
2001 edition has an afterword by Provine).

For a wide-ranging consideration and critique of
aspects of the classical/balance hypothesis debate
written in the midst of the allozyme era in population
genetics, see:

Lewontin RC. 1974. The Genetic Basis of Evolutionary
Change. Columbia University Press, New York.

For Kimura’s view on why the classical and balance
hypotheses failed to explain patterns of genetic vari-
ation see the following (especially the first chapter):

Kimura M. 1983. The Neutral Theory of Molecular Evolu-
tion. Cambridge University Press, Cambridge (Kimura
also reviews the manifold arguments in support of
the neutral and nearly neutral theories).

An illuminating history of the development of the
neutral and nearly neutral theories is provided in:

Ohta T and Gillespie JH. 1996. Development of neutral
and nearly neutral theories. Theoretical Population
Biology 49: 128–42.

For a review of elements of the selectionism/
neutralism debates see:

Nei M. 2005. Selectionism and neutralism in molecu-
lar evolution. Molecular Biology and Evolution 22:
2318–42.
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A highly readable review of the selectionist/neutral-
ist debate written shortly after the proposal of the
neutral theory can be found in:

Crow JF. 1972. Darwinian and non-Darwinian 
evolution. Proceedings of the Sixth Berkeley Symposium
on Mathematical Statistics and Probability, vol. V, 
pp. 1–22. University of California Press, Berkeley, CA.

For background and explanation of the original fit-
ness surface along with some response to criticisms,
see:

Wright S. 1988. Surfaces of selective value revisited.
American Naturalist 131: 115–23.

··
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Statistical uncertainty

• Quantities in population genetics are estimated
with error.

• Parameters and parameter estimates.
• Introduction to variance, standard deviation,

and standard error.

Statistical concepts arise in this book in several
places. Chapter 1 points out the distinction between
idealized parameters, which are exact values, and
parameter estimates that have uncertainty obtained
through sampling from populations. Both the vari-
ance and the covariance are important concepts 
that appear in a number of chapters, especially in
Chapters 9 and 10 that cover quantitative genetics.
This Appendix is meant to provide a basic introduc-
tion to statistical concepts relevant to these topics for
readers without much prior background.

Imagine drawing a random sample of objects, say a
handful of jelly beans from a candy dish, and weighing
each one. The weights will not be identical, but there
will be some value that occurs most often and some
range of values. Plotting these values on a graph such
as that in Fig. A.1 would show how often each one
occurs between the lowest and highest values, or
their frequency distribution (often truncated to just
“distribution” in conversation). We often use the
average (mean and average are used synonymously
here) or the mode (the most frequently occurring
value) to describe the central tendency or middle of a
frequency distribution.

Let’s examine a hypothetical case that will show
the distinction between a parameter and a parame-
ter estimate as well as illustrate a common means to
quantify uncertainty caused by sampling variance.
Imagine we would like to estimate the frequency of
the A allele (for a locus with two alleles) in a popula-
tion of mice. These mice inhabit barns in an area
where there are many isolated farms, each with a
suitable barn. Therefore, the mice are found in many
discrete populations that make up a larger total 

population. An example of this type of population is
diagrammed in Fig. A.2.

We would like to estimate the frequency of the A
allele in the entire population, which we will call F.
The entire population has an exact allele frequency,
the parameter p, which we could only know if 
we determined the genotype of every mouse in the 
population. Since it would be very difficult to sample
every mouse, we take samples from a number of dis-
tinct, independent populations to estimate the allele
frequency within each population. The average of
allele frequencies in sampled populations will be our
estimate of the parameter p. Call the estimate of allele
frequency for each barn Fi, where the subscript i is
just an index of which barn the value came from. For
simplicity, we assume in this illustration that each
value of Fi within a barn is known without error.

A common quantitative tool to measure and
express the range of values within a sample is called
the variance (symbolized by σ2 or a lower-case
“sigma” squared). In plain language, the variance is
a standardized measure of the range of observed 
values relative to the average. It is simple to obtain the
average allele frequency among all of the sampled

Appendix
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Figure A.1 The frequency distribution of hypothetical
weights for 200 jelly beans. The mean is 5.06 and the
variance is 1.06.
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populations by adding up all of the Fi observations
and dividing by the total number of observations. 
In notation, the mean or average allele frequency
among the populations sampled would be

(A.1)

where the bar over H (pronounced “p bar”) indicates 

an average and the means summing each of the 

Fi observations starting with the first (there are a
total of n, as indicated above the summation symbol,
which is an upper-case “sigma”), and n is the sample
size. The variance is an average of the square of how
much each observation differs from the mean. The
variance is taken by summing the squared differ-
ences between each estimate and the average and
then dividing by one less than the sample size:

(A.2)

The square in the numerator comes about because
(Fi − H) for observations less than the mean will be

   
var( ) ( )

( )

F F
F H

= =
−

−
=
∑

σ2

2

1

1

i
i

n

n

i

n

=
∑

1

   
H

F
= =

∑ i
i

n

n
1

negative for observations less than the mean but
positive for observations greater than the mean.
Squaring will make all differences positive so that
positive and negative differences will not cancel
each other out when summed. Figure A.3 shows two
example distributions with variances that differ by
more than 10-fold. You should also note that distribu-
tions with larger means will have larger variances
even if the spread of observations is identical in the
two distributions. This makes comparing variance
values difficult without reference to the mean.

··

p̂3 = 0.531

p̂4 = 0.460

p̂1 = 0.483 

p̂2 = 0.521

p̂5 = 0.464

p̂6 = 0.514

p̂7 = 0.490

p̂8 = 0.517

The total population allele frequency = p

Figure A.2 An abstract representation of 16 mouse
populations. The total population (the entire rectangle) is
composed of a series of smaller, discrete populations (the
individual ellipses), sometimes called subpopulations. Each
subpopulation has its own frequency of the A allele, indicated
by Fi. The entire population also has an exact value for the
frequency of the A allele, which can be estimated by sampling
some subpopulations and then taking the average and
variance of the Fi values. Here eight subpopulations are sampled
to estimate the allele frequency in the total population as 
H = 0.4976, the standard deviation (SD) = 0.0272, and the
standard error (SE) of the mean = 0.0096.
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Figure A.3 Two frequency distributions of 100 data points
each with nearly identical means (0.498 on the left and
0.506 on the right) but different degrees of variance among
the observations (the variance is 0.0293 on the left and
0.0025 on the right). The lines at the top indicate the position
of the mean (vertical line) and two standard deviations on
either side of the mean (horizontal dashed line) and two
standard errors on either side of the mean (horizontal solid
line). Like allele frequencies, each distribution is on the
interval of 0 to 1.

Variance (σσ2) The sum of the squared
deviations from the mean divided by one less
than the sample size.
Standard deviation (σσ) The square root of
the variance; the average deviation from the
mean for a single observation. Quantifies the
range of values around the mean seen in a
sample.
Standard error of an average (SE) The
product of the standard deviation and the
square root of the sample size divided by the
sample size; how far the true population
average (a parameter) may be from the
sample average (a parameter estimate) by
chance.
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The variance estimator shown in equation A.2 is
sometimes called the sampling variance and it is 
an unbiased estimator of the variance in a very 
large population (unbiased means that the expected
value of the variance is equal to the true value of 
the variance). An alternative form of the variance
exists where the sums of squares are divided by n
rather than n − 1. Dividing by n estimates what is
sometimes called the parametric variance, or a 
variance for a finite population of size n where all n
individuals have been used to compute the variance.
The parametric variance is employed in idealized 
situations where every individual in a population
can be measured or sampled. In practice, this dis-
tinction makes little difference for large n.

If we are willing to assume that our average is drawn
from a frequency distribution called the normal dis-
tribution (which Interact box A.1 suggests is not
unreasonable), then we can use the variance in equa-
tion A2 as a measure of uncertainty in our estimate of
the average allele frequency. The standard deviation
is symbolized by σ (a lower-case “sigma”) or SD and
is simply the square root of the variance (taking the
square root returns the variance back to the original
units of measurement). The SD measures the aver-
age deviation from the mean for a single observation.
Figure A.3 illustrates the standard  deviations that
arise from the variances of two different frequency
distributions. Normal distributions are very useful
because the standard deviation corresponds to the
probability that an observation is some distance from
the average. For an ideal normal distribution, about
68% of the observations fall within plus or minus one
SD of the mean, about 95% of the observations fall
within two SDs of the mean, and about 99% of the
observations fall within three SDs of the mean.

The standard deviation of a single observation can
also be used to quantify uncertainty in the average 
of all observations. The standard error, or SE, for the
sum of all observations (the denominator in equa-
tion A.1) is multiplied by the SD. Since
the SD measures the average spread of an observa-
tion from the mean, then the SE of the sum adds
these individual deviations up. The square root of the
sample size is the multiplier because the SE grows
more slowly than the sample size itself as observa-
tions are added to the sum. The SE of the sum can be
related to the average by taking the average of the SE
of the sum, or

(A.3)SE of average = =
( )n SD

n
SD

n

 
sample size

(the term in the numerator of the middle equa-
tion cancels because n = in the denominator).
Notice that as the sample size increases, the SE of the
mean decreases. Like the SD, the SE of the average
defines a probability range around the mean due 
to chance events in the sample. The probability
intervals defined by the SE serve to establish what 
are called confidence intervals. By convention, 95%
confidence intervals are frequently used to quantify
the chances that the parameter estimate (H) plus 
or minus 2 SEs covers the true parameter value 
in the population (p). Again, Fig. A.3 illustrates the
standard errors of the means for two frequency 
distributions.

To return to our mouse population example dia-
grammed in Fig. A.2, H = 0.4976, the variance is
0.00074, and the standard deviation is 0.0272. 
The standard error of the sum is ( )(0.0272)
= 0.0769 and the standard error of the average is
(( )(0.0272))/8 = 0.0096. Therefore, the 95% con-
fidence interval for the mean is 0.4976 − (2 × 0.0096)
to 0.4976 + (2 × 0.0096) or 0.4784 to 0.5168.
Thus, we would expect 95 times out of 100 that 
the range of allele frequencies between 0.4784 and
0.5168 would include the actual allele frequency 
of the population, p. You will be reassured to note
that the values in Fig. A.2 are random numbers 
generated by computer using a distribution with 
a mean of 0.50, equivalent to the true parameter
value. The value of H is very close to this parameter
value and the parameter value also falls inside the
95% confidence interval for H defined by plus or
minus 2 SEs of the average.

 8

 8

  n2
 n

Refer to Fig. A.2 and replace the values in
the figure for the allele frequency within
each population with 0.6333, 0.5074,
0.4880, 0.3960, 0.5368, 0.3330, 0.5893,
and 0.7029. What is the estimate of allele
frequency in the entire population and
what is the 95% confidence interval? How
does the variance in this case compare with
the variance for the original values given 
in Fig. A.2? How does the range of allele
frequencies that include the true population
parameter compare to the original values 
in Fig. A.2?

Problem box A.1
Estimating the variance
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The central limit theorem predicts that the distribution of means will approach a normal
distribution regardless of the shape of the distribution of the original data sampled to compute the
mean. The central limit theorem is the justification for using the standard deviation as an estimate
of the confidence in a mean such as the average allele frequency (see main text). The central limit
theorem also demonstrates that certainty in parameter estimates is directly proportional to the size
of samples used to make such estimates. Instead of accepting the central limit theorem as a given,
let’s use simulation to explore it as a prediction that can be tested.

Step 1 On the textbook web page under the heading Appendix, click on the link for Central limit
theorem simulation.

Step 2 A web page titled Sampling Distributions will open. After a moment to load, a Begin
button will appear at the top left of the window. Press the button and a new simulation
window will open. Once the Java code for the window loads, you will see four sets of axes
with some buttons and pop-out menus down the right side of the window. The top set 
of axes will contain a normal distribution with the mean, median and standard deviation
(“sd”) given in three colors to the left of the distribution and their positions also indicated 
in those same colors below the x axis. Please read the Instructions text and refer to the
simulation window so that you understand the controls.

Step 3 This simulation samples individual data points from the distribution at the top. Pressing 
the Animated button on the right will show the sampling process with five data points at 
a time on the axes labeled Sample Data. Press the button and watch as five bars drop to
indicate the five data points. Once the sample is complete a single data point, the mean 
of five individual data points, will appear on the axes labeled Distribution of Means. Press
the Animated button a few times to get a sense of how the two middle windows display
the data. Be sure you can distinguish between the sample size (the N == menu right of the
axes) and the number of samples (tabulated as Reps == left of the axes).

Step 4 Set N = 25 (the lower three graphs will clear) and press the Animated button five times
(notice how Reps == increases by one each time). Now press the 5 button once. This is like
sampling five more samples of 25 without the animation. Notice how reps is now 10 since
the repetitions add up. Click on the Fit normal check box to compare the histogram in the
distribution of means to an ideal normal distribution. Ideal normal distributions have skew
and kurtosis (measures of asymmetry about the mean) values of zero, like the normal
distribution at the top.

Step 5 How do the sample size and the number of samples influence the distribution of means? 
To find out, simulate a range of values of one variable while holding the other variable
constant (try N = 2 and 20 with 20, 50, 100, and 1000 reps). Look at the histograms 
and write down the skew and kurtosis values for each combination of the sample size 
and number of samples. Do larger samples improve the approach to normality of the
distribution of means?

Step 6 Is the distribution of means still a normal distribution even if the parent population (the
top-most distribution) is not a normal distribution? Compare the skew and kurtosis values
from samples taken from three different parent populations (changed with the pop-out
menu to the right of the top-most axes) for a range of identical sample sizes and numbers 
of samples (try N = 5 with 20, 50, 100, and 1000 reps).

Step 7 Feel free to explore the topic further by clicking on the Exercises link below the Begin
button.

If at any point you would like to obtain a new simulation window with default starting values, 
just close the simulation window and then open a new one with the Begin button.

Interact box A.1 The central limit theorem

9781405132770_5_end1.qxd  1/19/09  2:32 PM  Page 379



380 APPENDIX

··

Note that in this example the allele frequencies for
each population (Fi) can take on any value between
zero and one, and are therefore a continuous vari-
able. The estimate of allele frequency within each
individual population is based on counting up alleles
that can take only one of two forms, a and A, called a
binomial variable.

Covariance and correlation

• Quantifying the relationship between two 
variables.

• Introduction to covariance and correlation.
• The role of covariance in regression analysis.

In population genetics and in all of biology, there are
many situations where our goal is understand the
relationship between two variables. To extend the
jelly bean example used above, imagine that each
jelly bean was weighed and its length was also meas-
ured. Each individual jelly bean then has two values
for the two variables that describe it. One question
we might ask is whether the length and mass of jelly
beans are related or whether jelly beans of any mass
can exhibit any length. These questions about jelly
bean mass and length can be answered by determin-
ing the covariance and correlation between two
variables.

The spread or scatter of two variables, call them 
x and y, viewed simultaneously is their joint dis-
tribution. Figure A.4 illustrates three different 
joint distributions of x and y values. The degree to
which the values of two variables tend to vary in the 
same direction is measured by the covariance. The
covariance is

(A.4)

where the deviations of each observation from the
mean for each variable are multiplied, these pro-
ducts are summed over all observations, and then
the sum is divided by the number of observations 
to achieve an average. Notice that the deviations
from the mean are not squared as they are for the
variance. This means that the covariance measures
the direction of the deviations from the mean as well
as their magnitude.

The joint distributions in Fig. A.4 illustrate a
range of covariance values even though the vari-
ance of the x variable is constant. In Fig. A.4a, the 
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U V
x and y values have zero covariance and the two
variables are therefore independent. When a covari-
ance is zero then the scatter of each variable can be
described by its variance alone without reference 
to the other variable. In both Figs A.4b and A.4c 
the values of x and y are not independent but rather 
tend to vary together. A positive covariance between
x and y is shown in Fig. A.4b, telling us that higher
values of one variable tend to be associated with
higher values of the other variable. Figure A.4c shows
negative covariance between x and y, telling us that
higher values of one variable tend to be associated
with lower values of the other variable and vice versa.
Using the jelly bean analogy, a zero covariance says
that length and weight are independent of each
other, a positive covariance says that heavier jelly
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cov = 0.0 ρ = 0.00 b = 0.0

cov = 0.0518 ρ = 0.76 b = 0.568

cov = −0.0410 ρ = −0.59 b = −0.450

Figure A.4 Examples of joint distributions between two
variables, x and y. The covariance between x and y is zero in
(a), positive in (b), and negative in (c). In all three panels the
variance of x remains constant at 0.0912. Trends between
the variables can be expressed as correlation coefficients (ρ) 
or as the slopes of the least-squares regression of y on x (b).
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beans tend to be longer, and a negative covariance
says that heavier jelly beans tend to be shorter.

The covariance forms the basis of the correlation
coefficient, a summary measure of the strength
and direction of the linear relationship between two
variables. The Pearson product-moment correla-
tion, symbolized by ρ (pronounced “roe”), is given by

(A.5)

where the is really the same thing as the
standard deviation of x. The correlation is a dimen-
sionless quantity that takes on values between −1 and
+1. A perfect positive linear relationship between 
x and y gives a correlation of +1, a perfect negative
linear relationship between x and y gives a cor-
relation of −1, and a correlation of zero indicates
independence of x and y. The correlation coefficients
are also given for the joint distributions in Fig. A.4. 
A number of other non-parametric correlation meas-
ures exist that are appropriate for data that are not
normally distributed, such as Spearman’s rank-
order correlation.

It is important to recognize that the correlation
coefficient measures only associations between 
variables but does not provide any information on
how that association came into being. Unfortunately,
correlations between variables are commonly mis-
interpreted as indicating a cause-and-effect relation-
ship between variables. A hypothetical example might
be a positive correlation between sales of lemonade
and sales of baseballs. Consumption of lemonade
does not cause people to also buy a baseball. Rather
both events are tied to the weather in a cause-and-
effect relationship; in warm weather people drink
more lemonade and also play baseball. A classic
demonstration of the weakness of the correlation as
summary measure was made by Anscombe (1973),
who concocted four data sets with identical means,
standard deviations and correlation coefficients.
These four data sets illustrate how non-normality,
non-linearity, and outliers in data can produce high
correlations but very poor summaries of the relation-
ship between two variables.

The covariance also plays a fundamental role in
regression analysis, which is used to estimate the
resemblance between parents and offspring as described
in Chapter 9. Assume that y is a response or depend-
ent variable and x is an independent variable. The
slope (a) and intercept (b) of a regression line for the
variables x and y is represented by the equation

  
var( )x

-x y

x y

x y
,

cov( , )

var( )var( )
=

y = a + bx (A.6)

This equation can be rewritten using the average
values of x and y

V = a + bU (A.7)

The difference between any individual observation y
and the average of y is then

y − V = a + bx − a − bU (A.8)

which simplifies to

y − V = b(x − U) (A.9)

Multiplying both sides of equation A.9 by (x − U) gives

(y − V)(x − U) = b(x − U)2 (A.10)

Notice that the left-hand side looks a lot like the
covariance in equation A.4 and the right-hand side
looks a lot like the variance in equation A.2. If we
sum the quantities on both sides of equation A.10
then divide the sums by 1/n to make them averages
then A.10 becomes

(A.11)

which is the same as

cov(x, y) = b var(x) (A.12)

Solving for the slope of the regression line gives

(A.13)

Therefore, we see that the slope of a regression line 
is the covariance between x and y divided by the
variance in x.

The regression line slopes for the joint dis-
tributions in Fig. A.4 can be computed from the
covariances of x and y along with the variance in 
x. In all three panels of Fig. A.4 var(x) = 0.0912. 
In the top panel, cov(x, y) = 0 so that the slope of 
the regression line is also zero. In the middle 
panel cov(x, y) = 0.0518 so that b = 0.0518/0.0912
= 0.568. In the bottom panel cov(x, y) = −0.0410 so
that b = −0.0410/0.0912 = −0.450.
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Further reading

One approachable beginning statistics text is:

Freedman, D, Pisani R, and Purves R. 1997. Statistics,
3rd edn. Norton, New York.

Two classic biologically oriented statistics texts are:

Sokal RR and Rohlf FJ. 1995. Biometry: the Principles
and Practice of Statistics in Biological Research, 3rd edn.
W. H. Freeman & Company, New York.

Zar JH. 1999. Biostatistical Analysis, 4th edn. Prentice
Hall, Upper Saddle River, NJ.

For a humorous take on how basic graphs and 
statistics can lead to miscommunication and a book
that will improve your own presentation of statist-
ical information see:

Huff D. 1954. How to Lie with Statistics. W. W. Norton,
New York.

Problem box A.1 answer

Using the new values produces a mean 
of 0.5233, a variance of 0.0147, and a
standard deviation of 0.1212. The SE 
of the sum is (√8)(0.1212) = 0.3428 
and the standard error of the average is
((√8)(0.0272))/8 = 0.0429. Therefore, 
the 95% confidence interval for the mean 
is 0.5233 − (2 × 0.0429) to 0.5233 +
(2 × 0.0429) or 0.4375 to 0.6091. Thus, we
would expect 95 times out of 100 that the
range of allele frequency between 0.4375
and 0.6091 would include the actual allele
frequency of the population, p. The
confidence interval about F is much larger
in this case since the variance is larger: all
caused by the observations being more
spread out around the mean. In this case,
the allele frequency parameter is estimated
with more uncertainty since the underlying
observations used for the estimate have a
much greater range of values.

Problem box answers
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Hardy–Weinberg model 13
inbreeding effects 33–4
Markov chain model 63–5
mean phenotypic value and 336
mutations and 173–6
under natural selection 193, 194,

195–200
population size effects 53–4
random walk (for new mutations)

163, 236
spatial structuring 107, 108–9, 110
VA and VD in relation to 349–51
variability due to genetic drift 60–1
variance in change see Δp

allelomorph combinations 366
allozygous genotype 34, 37

finite population 78–9
allozymes

causes of polymorphism 358–9, 365
electrophoresis 32, 32
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rate of change in allele frequency and
201–3

sexual reproduction 191–3
three-allele model of natural selection

210, 211
two-locus model of natural selection

214
average pairwise differences 248,

249–50
see also nucleotide diversity

backcross
impact on heterozygosity 35
mating design, QTL mapping 324

background selection 278, 278
bacteria, mutations 157, 160
balance hypothesis 356, 356–8, 359,

365
balanced polymorphism 200
balancing selection 198, 202

balance hypothesis 357–8
genealogies and 230–2
genetic hitch-hiking due to 278
genetic load concept 361, 362, 363
multi-allelic 232
natural selection–genetic drift balance

223
nonsynonymous mutations 268,

269
polymorphism under 237, 238, 278
see also heterozygote advantage

Bar locus 223, 224
bass

striped see Morone saxatilis
white 32

Bateson, W 42
Beavis effect 326
beetle, flour 372–3
behavioral traits 298, 307
beneficial mutations 158

estimating frequency 159, 160
fixation by natural selection 164–6
loss due to Mendelian segregation

162
micromutationalism concept 164
time to loss 237, 238
see also advantageous mutations

Bernoulli (binomial) random variable
58–9, 60

variance 60, 62
Bernstein, Felix 26
β-lactamase gene 373
bi-directional (reversible) mutation

model 174, 175–6, 177
binomial probability distribution

58–61
binomial random variable see Bernoulli

random variable
binomial variable 380
biometric school 284
biparental inbreeding 28, 30

effect on heterozygosity 34
blending inheritance, model of 9
blood groups 26–8, 358
blood pressure 297–8

bluebonnets, Texas 87
body size of dogs 320–1, 326, 327

genotypic values 334, 335
mean phenotypic value 336–7
see also IGF1 gene

bottlenecks, genetic 74, 75, 75
coalescent genealogies and 98– 9
heritability changes after 315

Boveri, Theodor 12, 41
Brazil nut trees 111–15, 261
breeder’s equation 300, 304

extension for correlated traits 305
longer time periods 307
single QTL 327–8

breeding effective population size (Ne
b)

85–7, 87
breeding sex ratio

coalescent model 97–8
effective population size and 75, 77

breeding value 341–8
dominance deviation and 345–8
of an individual 342
mean, of all genotypes 345
under non-random mating 345
under random mating 342–5
variance 348–9

bugs-in-a-box metaphor 88
bugs-in-multiple-boxes metaphor 142
bulked segregant analyses 325

candidate loci 316, 316
candidate parents 111, 116

example 112, 113–15, 116–17
exclusion 113, 116
exclusion probability 116, 116, 117
inclusion 113–15
outcomes of parentage analysis

117–18
carrying capacity (K) 220–1

density-dependent selection 221–2
cause-and-effect relationships 2, 381
census population size (N) 73, 73, 75–6

effective population size and 85
centimorgan (cM) 325
central limit theorem 379
character 283
Chi-squared (χ2) test 24–5, 26

degrees of freedom (df ) 25
gametic disequilibrium and 44
Tajima’s 1D test 261

chloroplast genomes 46, 87
chromosome theory of heredity 12, 41
chromosomes 41–2

crossing-over 42
genetic marker locus position 324,

325
rearrangements 155
sex determination 16, 46

classical hypothesis 356, 356–8, 359
clonal reproduction 45

natural selection with 185–9
population growth 185–6
see also haploid populations

coadapted gene complexes 357–8
coalescent event (coalescence) 88, 89

combining migration events with
143–4, 145

haploid and diploid populations
89–90

probabilities 90–1, 93
times to see coalescent waiting times

coalescent genealogies (trees) 87–96
average coalescent times 91–2
balancing selection and 230–2
building your own 94–5, 97, 181
directional selection and 227–30,

231
growing and shrinking populations

99–101
height 95, 96
with migration 144–9
mismatch distributions 272–4
with mutations 180–2
population bottlenecks and 98–9
structured populations with gene flow

142–9
Tajima’s D test 269–70
total branch length 95–6
variation 91

coalescent model
adding natural selection 227–32
effective population size in 96–101
gene genealogies 87–96
with mutation 178–82
number of segregating sites 248–9

coalescent theory 88
coalescent waiting times 89, 91–4

average 91–2
balancing selection 231–2
directional selection 229, 230
expressing population structure 149
growing and shrinking populations

99–101
solving two equations with two

unknowns 148
structured populations with gene flow

146–9
variance in 91

codominance 13, 197
marker loci for QTL mapping 317
phenotypic distribution 285

codon bias 366
coefficient of variation (CV) 287
colonization 141–2
colorectal adenoma 294
common environmental variance (VEc)

287, 295–6
composite interval QTL mapping 325
computer simulation 6–7
consanguineous mating 28–9, 30,

33–41
fixation index and 31
heritability changes after 315
humans 38
impact on heterozygosity 33–4, 35
inbreeding coefficient and

autozygosity 34–7
natural selection–mutation balance

225–6
phenotypic consequences 37–40

··
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population mean phenotypic value
337

see also inbreeding
continent-island model 131, 131–4

irreversible mutation and 175
simulation 134

continuing branch 227, 229
continuous quantitative traits 283–6
continuous variable 380
controversies, historical 356–66
corn (maize)

apparent overdominance 359
divergence time 254
heterosis 38
kernel phenotypes 28, 28, Plate 2.10
long-term selection experiment

310–11, 329
correlation 380–1
correlation coefficient (ρ) 380, 381

squared (ρ2) 43
Corythophora alta 111–15, 116–17
covariance 296, 380–1

disequilibrium 296–7
genotype and environment (covGE)

296
genotypic values between relatives

351–3
mid-parent and offspring values 303,

353
VA and VD (covAD) 350

cows, dairy 295, 329, 330
Crow, James 169, 235, 351, 365
cytochrome c, rate of evolution 251–2
cytochrome c oxidase subunit II gene

243

d (genotypic value) 334, 335
D see diffusion coefficient; gametic

disequilibrium parameter; genetic
distance

Darwin, Charles 9, 185
Darwinian fitness see relative fitness
De Finetti diagram 13, 14, 15

fitness surface 208
fundamental theorem of natural

selection 205
deductive reasoning 3–4, 4
degree of relatedness 34
degrees of freedom (df) 25
deleterious mutations 158

background selection and 278
classical hypothesis 357
estimating frequency 159, 160
fixation 166–8
time to loss 237, 238

deleterious recessive alleles 38, 39–40
natural selection–mutation balance

225–6
deletion 154
Δp 82, 83, 84–5
Δ7 305
deme 87, 87
Denny, MW 68, 76
density-dependent natural selection

219–22

desert snow (Linanthus parryae) 106–7,
Plate 4.2

deterministic processes 195
Dickerson, Richard 251–2
diffusion 68–70
diffusion approximation of genetic drift

67–73, Plate 3.13
diffusion coefficient (D) 68, 69–70, 71
diffusion equation see diffusion

approximation of genetic drift
dinosaurs 254
dioecious individuals 31
diploid populations

coalescence 89–90
effective population size 96–7
natural selection 189–93, 205–6

directional selection
average fitness under 201–2
classical hypothesis 357, 358
coalescent genealogies 227–30, 231
polymorphism under 237, 238
quantitative traits 299, 300–2

disassortative mating 28, 29
disequilibrium covariance 296–7
dispersal, gamete 86, 87
dispersion

index of 257, 259–60, 262
QTL mapping 324

disruptive selection 198, 299–300
mean fitness and 202
see also heterozygote disadvantage

distance, genetic (D) 170–1
distribution, frequency 376
divergence 236, 236

dating with molecular clock 252–5
gametic disequilibrium and 278–9
measures 241–7
nearly neutral theory prediction 241
neutral theory prediction 237–40
recombination rate and 277–8
selectionist/neutralist debate 364,

365, 366
testing neutral theory predictions

265–7
see also DNA sequence divergence

DNA polymorphism 248–50
ancestral 257–60
nucleotide diversity (π) 248, 249–50,

251
number of segregating sites (S)

248–9, 251
DNA profiling 19–22, 23

allele frequencies in loci used 20, 21
population structure adjustments

129–31
DNA sequence divergence

ancestral polymorphism and 257–60
dating 252–5
measures 241–7
molecular clock and 250–5
nearly neutral theory prediction 241
neutral theory prediction 237–40
nucleotide-substitution models 244–7
saturation and 243–4
between species 242–3

DNA sequences
alignment 242
insertions and deletions 154
molecular evolution 235
multiple alignment 248
mutation models 172–3
mutations see mutation(s)
testing neutral theory 265–74

DNA sequencing 242, 242
Dobzhansky, T 356, 357, 358
Dobzhansky–Muller model 358
dogs

body size see body size of dogs
coat color 290, 291
fixation indices 31

dominance 13
average effect of an allele and

339–40
breeding value and 343–4
complete 13, 197, 291–2
effects on fitness surfaces 215, 

367–8
general 193, 197–8, 360
genotypic scale of measurement 335
Mendel’s studies 10–11
parent–offspring regression 302, 303
partial or incomplete 13
phenotypic effects of inbreeding and

37
population mean phenotype and

336, 337
QTL mapping 319, 320, 321, 322
QTLs 327
see also codominance

dominance coefficient (h) 197
dominance deviation 342, 345, 345–8

IGF1 locus in dogs 344, 346–7
mean, of all genotypes 347
under random mating 347
variance 348, 349

dominance genetic variance (VD) 287,
288–90, 290, 334

allele frequencies/genotypic values
and 349–51

covariance between relatives 352
derivation 348–9
heritability and 297–9
inheritance 291–2
neutral quantitative traits 315

dominance hypothesis, inbreeding
depression 38–9

dominant phenotype, selection against
193, 196–7

Drosophila
genetic drift studies 66–7
genetic load 361–3

Drosophila melanogaster 3
effective population size 77–8
hsp70 313
mutation-accumulation experiments

159
natural selection–genetic drift balance

223, 224
polymorphism and recombination

rate 277–8
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QTL effect sizes 329
testing neutral theory 266–8, 365

Drosophila pseudoobscura 358–9
Drosophila sechellia 266–7
Drosophila simulans 270, 277
drug resistance, HIV 188–9
dwell time, new mutations 236, 237,

238
dynamics 6

E see environmental deviation
ecological genetics 358
effect size, QTL 321, 327–8

distribution 329–30
effective inbreeding coefficient (Fe) 81
effective migration rate (Nem) 137–8,

139–41
analogy to Nes 223–5
estimation 140–1

effective population size (Ne) 73, 73–8
breeding (Ne

b) 85–7, 87
breeding sex ratio and 75, 77
coalescent model 96–101
different genomes 87
estimation 77, 80–7
family size variation and 76–7
fate of new mutations and 163
gametic disequilibrium and 48–9, 50
haplotype frequency distributions and

273–4
inbreeding (Ne

i ) see inbreeding
effective population size

mismatch distributions and 272–3,
274

neutral evolution of quantitative traits
and 314–15

QTL response to selection and 327,
328

rate of molecular evolution and 264
shifting balance model 370, 371
types 82–5
variance (Ne

v) 82, 82–5
effective population size:census

population size ratio (Ne/N) 85
effective population size–selection

coefficient product (Nes) 222–5,
240

electropherogram, DNA sequence 242,
242

empirical evidence 2
ensemble population 62
environmental deviation (E) 335, 335,

336
environmental influences

inbreeding depression 40
phenotype 285–6, 304

environmental variation (VE) 286,
287–8

defining heritability 297–8
VG × E and 293–5
see also common environmental

variance
enzyme polymorphisms see allozymes
epistasis (VI) 287, 290, 290–1

antagonistic 291

effects on fitness surfaces 215, 367–8
heritability and 297–8
inheritance 291–2
neutral quantitative traits 315
physiological (functional;

mechanistic) 373
population-level meaning 288–9
QTLs 327
sign 373
single-locus model 334, 342
statistical 373
synergistic 290–1

equations, mathematical 6
equilibrium allele frequency 195

additive gene action 197
irreversible mutation model 174–5
monomorphic 199
natural selection–genetic drift

combined 223
natural selection–mutation balance

225–6
with overdominance 199, 200, 361
polymorphic 199
reversible mutation model 175, 176
shifting balance theory 368–9
two-island model 134–5
unstable 198

Escherichia coli 160
estimates, parameter 2–3, 3

notation 2
uncertainty in 376–80

evolution
modern synthesis 4, 185
molecular 235–82
quantitative traits 297–315

evolutionary variance 271
exclusion, candidate parents 113, 116
exclusion probability 116, 116, 117
expectations 1, 1–4

comparison with observation 5–6
exponential distribution 93
extinction, metapopulation models

141, 142

f see inbreeding coefficient
F see fixation index
F1 generation 317, 322
F2 design for QTL mapping 317
F2 population 317–19, 322
family size 76–7, 161
fecundity 190

additive 217–18
average (mean) 217, 218
selection 216–18, 363

Felsenstein 81 (F81) nucleotide
substitution model 247

fibrinopeptides, rate of evolution 251–2
finite island model 138–9
finite rate of increase (λ) 185, 186
finite sites model 172, 173, 173
first principles 2
FIS 121, 124, 125
Fisher, Sir Ronald A 74, 204, 356

continuously distributed phenotypes
284

fundamental theorem of natural
selection 203–6

geometric model of mutation 164–6,
329–30

model of fate of a new mutation
160–2

FIT 121, 124, 125
Fitch, WM 262
fitness

absolute 185–6, 188
average see average (mean) fitness
density-dependent 219–22
frequency-dependent 218–19
marginal see marginal fitness
maximum (wmax) 360, 363
relative see relative fitness
spectrum for mutations see mutation

fitness spectrum
fitness surfaces 201, 208–9

critique and controversy 372
genotype version 372
multiple peaks 215, 367–8
one locus with three alleles 209–11
shifting balance model 368, 369–72
two diallelic loci 214–15
Wright’s original concept 366–8

fixation index (F) 28–32, 30
estimation 31, 122, 124, 140
finite island model 138–9
finite population 78–9
inbreeding coefficient and 35, 36–7
individual species 31
infinite island model 136–8
metapopulation model 142
multiple subpopulations 118–24,

125
stepping-stone model 141
see also FIS; FIT; FST

fixation/loss 54
binomial probability distribution

60–1
coalescent model 88
diffusion approximation 72–3, Plate

3.13
Drosophila studies 66–7
initial allele frequency and 57, 61
mutation fitness and 158–9
nearly neutral theory 240
neutral theory 236–7, 238
new mutations in a population

160–8
over multiple generations 56
subpopulations 107

fixation processes 258
flanking-marker QTL analysis 322–5
flux ( Jx) 68, 70–1, 71
Ford, Edmund B 358
forensic DNA profiling see DNA profiling
founder effect 75
founder event 74
frequency dependence, negative

218–19
frequency-dependent natural selection

218–19, 220, 220
frequency distribution 376
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fruit fly see Drosophila
fruit machine analogy 338
FST 121, 123

divergent subpopulations 122, 123
estimation 124, 140
finite island model 138–9
infinite alleles model 171, 172
infinite island model 136, 137, 138,

139
metapopulation model 142
stepping-stone model 141
subdivided population 125
variation 124, 126

full siblings
covariance between 351, 352
degree of relatedness 34
impact of mating on heterozygosity

35
maternal effects 295–6

G matrix 304–5, 305, 313
Gaines SD 68, 76
Galton, Francis 284
gametes 55

coupling 42–3
dispersal 86, 87
repulsion 42–3

gametic compatibility 190
gametic disequilibrium 41–9, 44

chance effects 48–9, 50
classical/balance hypotheses 357–8
decay over time 44–5
divergence rates and 278–9
estimating 49
estimators 43–4
genotypic variance due to 296–7
influence on polymorphism 275–8
long-term response to selection and

311–13
mating system effects 48
mutation effects 47
natural selection effects 46–7
physical linkage effects 45–6
population admixture effects 47
two-locus natural selection 212,

213, 216
gametic disequilibrium parameter (D)

43–5
long-term response to selection and

311–13
terminology 45

gametic equilibrium 43
gel electrophoresis, allozyme 32, 32
gene 12

diversity 31–2
major 320, 321, 335

gene conversion 42, 154–5
gene copy 89
gene duplication 154
gene flow 105, 107

cryptic 116, 116
direct estimates 111–18, 141
distinction from migration 111
impact on genealogies 142–9
indirect estimates 140–1

migrant-pool 141–2
models 131–42
off-plot 118
propagule-pool 141–2
reduced, subdividing populations

105, 106
shifting balance theory 368–9
subdivided population 123–4, 125

gene transfer, lateral or horizontal 155
genealogies, gene 87–96, 89

accounting for mutation 178–82
natural selection on 226–32
prospective or time-forward model

88
retrospective or time-backward model

88
simulation 94–5, 97
structured populations with gene flow

142–9
see also coalescent genealogies

Genepop on the Web 49
general dominance model of natural

selection 193, 197–8, 360
general time reversible (GTR) nucleotide

substitution model 247
generation time effects, nearly neutral

theory 264
generation-time hypothesis 263, 263
genetic additive variance/covariance

matrix see G matrix
genetic architecture 316, 316
genetic bottlenecks see bottlenecks,

genetic
genetic correlation 304, 304, 306
genetic distance (D) 170–1
genetic draft 276
genetic drift 54–5, 54–7

binomial probability distribution
58–61

decline in heterozygosity due to
79–80

diffusion approximation 67–73
Drosophila studies 66–7
fate of new mutations and 163–4,

166, 168
heritability changes after 315
influence of mutations on

autozygosity and 177–8
initial allele frequency and 57, 61
Markov chain model 62–7
models 58–73
natural selection and 222–5, 366
nearly neutral theory 240–1
neutral quantitative traits 313–14,

315
neutral theory 236
over multiple generations 56–7
parallelism with inbreeding 78–80,

81
QTLs 329
shifting balance model 368–9, 370,

371
simulation 58, 65
strength relative to natural selection

241

subdivided population 123–4, 125
Wright–Fisher model see

Wright–Fisher model
genetic hitch-hiking see hitch-hiking,

genetic
genetic load see load, genetic
genetic markers

DNA profiling 22
estimating fixation indices 124, 140
mutation rates 157
parentage analysis 111–18
QTL mapping 316–17, 322

genetic neighborhood 86–7, 87
genetic variation

additive see additive genetic variance
classical/balance hypotheses 357–8
defining population size 73
loss due to genetic drift 64, 66
multilocus 357–8
mutations as source 154, 157–8

genic variance 205
additive (Va) 311–12

genotype 12
counting method to estimate allele

frequency 30
resemblance between relatives

351–3
genotype-by-environment interaction

(VG ×E) 287, 292–5, 293
genotype frequencies

breeding values/dominance deviation
and 347–8

change over time 187–8
DNA profiles 21
genetic drift effects 54, 56–7
Hardy–Weinberg expected see

Hardy–Weinberg expected
genotype frequencies

inbreeding and 33–4
mean phenotypic value from 336–7
under natural selection 195–200
non-random mating effects 29–30
spatial structuring 107, 108–9

genotypic disequilibrium
covariance 296–7
estimating 49

genotypic values 335, 335
components 342
mean phenotypic values from 336–7
population mean see mean genotypic

value, population
scale of measurement 334–5
VA and VD in relation to 349–51

genotypic variation (total) (VG) 286,
287–8

allele frequencies/genotypic values
and 349–51

components 287, 288–91, 296–7,
348–51

defining heritability 297, 298–9
derivation 348–9, 350
inheritance 291–2
neutral quantitative traits 315
use of term 291
VG ×E and 293–5
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geometric model of mutation 164–6,
329–30

Gillespie, JH 258, 262, 276
group selection 372–3
GST 124, 138–9
guinea pigs 74

h2 see heritability
Haldane, JBS 74, 356, 360–1, 363
half siblings

covariance between 351, 352
maternal effects 295–6

haplo-diploid organisms 16
haploid populations

coalescence 89, 90
effective population size 97
natural selection 185–9, 204–5

haplotypes (haploid genotypes)
expected frequency 367
frequency distributions 272, 

273–4
gamete 41, 42
paternal 113–15

hard selection 216, 363
Hardy, Godfrey H 13
Hardy–Weinberg equation 13
Hardy–Weinberg equilibrium 14
Hardy–Weinberg expected genotype

frequencies 13–17
applications 16–17, 19–28
assumptions 14–15, 17
comparing two models of inheritance

26–8
fixation index and heterozygosity

28–32
forensic DNA profiling 19–22
graphical representation 13, 15
in haplo-diploid systems 16
more than two alleles 19
as null model 15
population size assumption 14, 53,

54
proof 17–19
simulation 14
testing for deviations 22–5

harmonic mean 74–5
Hasegawa–Kishino–Yano (HKY)

nucleotide substitution model
247

hemoglobin
β genotypes 209–12
protein, rate of evolution 251–2

heritability (h2) 297–9
breeder’s equation 300
broad-sense 297–8
long-term response to selection and

307, 311, 312
narrow-sense 297–8
neutral evolution of quantitative traits

and 314–15
parent–offspring regression for

estimating 302–3
realized 300–1

hermaphrodites 31
heterosis 38, 38

heterozygosity
allozyme estimates 358–9
decline due to genetic drift 79–80
deficits 31
effective population size estimation

from 83, 84, 85
equilibrium (Hequilibrium) 177–8, 237,

361
excess 31
expected (He) 30, 31–2
fixation index and 28–32, 78–9
genetic load concept 361–3
inbreeding effects 33–4, 35, 37
individual (HI) 119, 124–6
island and mainland populations

80, 81
mutation effects 177–8
observed (Ho) 32
subdivided populations 119–22, 

125
subpopulation see HS
total see HT
Wahlund effect 124–8

heterozygote advantage
(overdominance for fitness) 193,
199–200

apparent, decline over time 359
balance hypothesis 357
equilibrium allele frequency with

199, 200
inbreeding depression and 38, 39
mean fitness and 202–3
natural selection–genetic drift balance

223
see also advantageous mutations;

balancing selection
heterozygote disadvantage

(underdominance for fitness) 193,
198

mean fitness and 202–3
see also disruptive selection

heterozygotes
breeding value 344
frequencies see genotype frequencies
genotypic value 334, 335

HI 119, 124–6
historical controversies 356–66
hitch-hiking, genetic 275–6, 276, 

365
due to background or balancing

selection 278
recombination rate and 277–8

HIV see human immunodeficiency virus
HKA test 265–7
Hla genes 268, 269
homoplasy 169, 169
homozygote frequencies see genotype

frequencies
horizontal gene transfer 155
HS 119

divergent subpopulations 122, 
123

infinite island model 136
Wahlund effect 125–7

hsp70 313

HT 119, 120
divergent subpopulations 122, 123
infinite island model 136
Wahlund effect 125–6

Hubby, JL 358–9, 363
Hudson–Kreitman–Aguadé (HKA) test

265–7
human immunodeficiency virus (HIV)

date of origin 254–5
evolution of drug resistance 188–9

human leukocyte antigen (Hla) B gene
268, 269

humans
chromosomes 41
date of origin 254
diseases caused by recessive alleles

128
inbreeding depression 38
mutation rates 157
polymorphism and divergence 278

Hunt, Thomas Morgan 42
Hutterite population 298, 353
Huxley, JS 356
hybrid vigor (heterosis) 38, 38
hybridization, sunflowers 218
hypotheses, alternative 4–5

identity by descent (IBD) 37
finite population 78
infinite alleles model 169
pedigree 34–7
probability, in a population 82
resemblance between relatives and

351–2
identity in state 169
IGF1 gene 320–1

average effect of an allele 339–40,
341

breeding values 343–4
dominance deviation 344, 346–7
genotypic values 334, 335
mean phenotypic value 336–7

Illinois Long-Term Selection experiment
310–11, 329

inbreeding 33–41
biparental see biparental inbreeding
deleterious consequences 37–8
genotype and allele frequencies after

33–4
impact on heterozygosity 33–4, 35,

37
multiple meanings 40–1
parallelism with genetic drift 78–80,

81
phenotypic consequences 37–40
shifting balance model 370, 371
see also consanguineous mating

inbreeding coefficient ( f ) 34–7, 37
effective (Fe) 81
fixation index and 35, 36–7
genotypic resemblance between

relatives 351–2
pedigree 34–7
population mean phenotype and 337
Populus simulations 81
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inbreeding depression 31, 37–40, 38
dominance and overdominance

hypotheses 38–9
environmental effects on expression

40
humans 38
model research organisms 39–40

inbreeding effective population size (Ne
i )

82, 82–5
coalescent model 96–8
estimation from change in

heterozygosity 83, 84
inclusion, candidate parents 113–15
incoming branch 227, 229
indels 154
index of dispersion 257, 259–60, 262
inductive reasoning 3–4, 4
industrial melanism 358
infer(ence) 5, 5–6
infinite alleles model 169, 169, 170–1

autozygosity and 177–8
coalescent genealogies 180–2
estimating population subdivision

171, 172
infinite island model 132, 135, 135–41

estimating number of migrants
140–1

levels of fixation 136–8
infinite sites model 172–3, 173

coalescent genealogies 182
infinitesimal model 307, 307, 328
influenza A virus, NS gene 251, 252
insertion 154
insulin-like growth factor 1 gene 

see IGF1 gene
interaction genetic variance (VI) 

see epistasis
interdemic selection 371
interval QTL mapping 322–5

composite 325
inversion, chromosomal 155
irreversible mutation (model) 174,

174–5, 177
island model of gene flow see infinite

island model
island populations

continent-island model 131–4
heterozygosity 80, 81
infinite island model 135–41
two-island model 134–5

isolate breaking 128–9
isolation by distance 87, 107

among subpopulations 141
breeding effective population size 86
generating population structure

106–7, 108–9
Moran’s l 110, 110

joint distribution 380
Jukes–Cantor nucleotide substitution

model 244–7
Jx see flux

K see carrying capacity
k alleles model 169, 169

Kettlewell, Bernard 358
Kimura, Motoo 235

diffusion approximation of genetic
drift 68, 72

genetic load 363
geometric model of mutation 166,

329
infinite alleles model 169
molecular clock rate heterogeneity

261–2
natural selection–genetic drift balance

223
nearly neutral theory 240
neutral theory of molecular evolution

235–6, 363–5
stepping-stone model 151

Kimura 80 (K80) nucleotide substitution
model 247

Labrador retriever dogs, coat color 290,
291

Lamarck, Jean-Baptiste 9
λ 185, 186
Landsteiner, Karl 26
Langley, CH 258, 262
lateral gene transfer 155
lethal mutations 158
Lewontin, RC 358–9, 363, 365
liability traits 283
life cycle, reproductive 190, 216
life-history traits 298, 315, 328–9
Linanthus parryae 106–7, Plate 4.2
lineage 89
lineage branching 87–96
lineage effect, molecular clock 262, 

262
linkage 41–2, 44, 45–6

mapping 316
phenotypic correlation and 304

linkage disequilibrium parameter see
gametic disequilibrium parameter

load, genetic (L) 359–63
purging 39, 40
segregational 359–60, 361, 361–3
substitutional 359, 360, 361, 363

local races, shifting balance model 370,
371

locus 12
log of odds (LOD) score 324, 325
logistic population growth 220–1
loss, allele see fixation/loss
Lupinus texensis 87

m see migration rate; relative fitness
M see mean phenotypic value,

population
maize see corn
major gene 320, 321, 335
major histocompatibility complex (MHC)

loci 29, 269, 358
malaria 209–10, 358
Malthusian fitness see relative fitness
mammals

evolution 254
maternal effects 295–6

marginal fitness 191, 193
three-allele model of natural selection

210, 211
two-locus model of natural selection

213–14
mark–recapture method 141
Markov chains 62–7, 66
Markov property 65, 66
maternal effects 295–6
maternity analysis 111
mating

among relatives see consanguineous
mating

designs, QTL mapping 317, 324
mixed 34, 35
non-random see non-random mating
random see random mating
success 190

mating systems 31
effective population size and 75
fixation index and 31
gametic disequilibrium effects 48

Matlab 306
McDonald–Kreitman (MK) test

267–9
mean 376

harmonic 74–5
mean fitness see average (mean) fitness
mean genotypic value, population

336–7
breeding value and 342–5
components 342
dominance deviation and 345–8

mean phenotypic value, population (M)
336–7

breeding value and 342–5
components 335
under non-random mating 337
under random mating 336–7

meiotic drive 190, 216
melanism, industrial 358
Mendel, Gregor 9
Mendelian genetics 9–12

continuous phenotypic distributions
284–6

gametic disequilibrium and 41, 42
loss of new mutations 160–2
quantitative trait variation

334–55
Mendel’s first law 10–11, 11
Mendel’s second law 12, 12
meristic traits 283
metabolic rate hypothesis 263–4
metapopulation models 141–2
metric traits see quantitative trait(s)
MHC loci see major histocompatibility

complex (MHC) loci
mice

inbreeding depression 40
long-term selection experiment 311,

312
mutation rates 155–6, 157

micro-centrifuge tubes, sampling
experiment 53–4, 58–9, 
Plate 3.1
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micromutationalism 164, 164
microsatellite loci

DNA profiling 22
estimating genotypic disequilibrium

49
mutation models 170
mutation rates 157
parentage analysis 112, 113, 114

mid-parent value 302, 303
migrant-pool gene flow 141–2
migration 111

average length of a genealogy with
144–9

coalescence combined with 143–4,
145

different lineages 142, 143
distinction from gene flow 111
shifting balance model 369, 370

migration rate (m) 111
average time to coalescence and

147, 149
continent-island model 131, 133,

134
different lineages 143
effective (Nem) see effective migration

rate
infinite island model 135–7
two-island model 134–5

Mirounga leonina 75
mismatch distributions 272, 272–4
missense mutations see nonsynonymous

mutations
mitochondrial genomes 46, 87, 276
mixed mating 34, 35
MK test 267–9
MN blood group genotypes 22–5
mode 376
model organisms 3

inbreeding depression 39–40
models, population genetic 4
modern synthesis 4, 185
molecular clock 250–65

dating of events 252–5
examples 251, 252
hypothesis 250–2, 251
overdispersed 257, 257, 365, 366
Poisson process model see Poisson

process molecular clock
testing and rate variation 255–65

molecular evolution 235–82
nearly neutral theory 240–1
neutral theory see neutral theory of

molecular evolution
non-independent loci 274–9
null model 235
rate heterogeneity see rate

heterogeneity, molecular evolution
rate homogeneity 255

monomorphic equilibrium 199
Moran’s l 110, 110
Morone saxatilis (striped bass) 32, 49,

284, 287
morphological traits 298, 307, 315,

328–9
mosquito pupal mass 284, 287

most recent common ancestor (MRCA)
88, 89

ancestral selection graph 229, 230
distribution of times to 95, 96
predicting time to see coalescent

genealogies
moths, spotted (peppered) 358
MRCA see most recent common ancestor
Muller’s Ratchet 166–8
multifactorial traits 283
multigene families 154
multiple hit mutations 173
multiple hit substitutions 243
multiple sequence alignment 248
multipoint QTL mapping 325
mutation(s) 154–83

advantageous see advantageous
mutations

allele frequency and autozygosity
effects 173–8

ancestral selection graph 228–30
beneficial see beneficial mutations
coalescent model with 178–82
detrimental see deleterious mutations
dwell time of new 236, 237, 238
fate of new 160–8
finite population 162–4
fixation by natural selection 164–6
forward 156
frameshift 154
gametic disequilibrium and 47
infinite population 162
irreversible 174, 174–5, 177
lethal 158
loss due to Mendelian segregation

160–2
multiple hit 173
natural selection acting with 225–6
nearly neutral 158
neutral see neutral mutations
neutral quantitative traits 313–14,

315
nonsynonymous (missense) 

see nonsynonymous mutations
point 154
replication-dependent causes 263,

263
replication-independent causes 262,

262
reverse 156
reversible or bi-directional 174,

175–6, 177
as source of genetic variation 154,

157–8
sublethal 158
synonymous (silent) see synonymous

mutations
types 154–5

mutation-accumulation experiments
159–60

mutation fitness spectrum 158, 158–9,
160

pan-neutralist/pan-selectionist view
364

mutation frequency 155

mutation models 168–73
coalescent genealogies 180 –2
discrete alleles 169–71
DNA sequences 172–3
irreversible 174–5
QTL effect size distributions and

329–30
mutation pressure 174, 174
mutation rates 155–7

coalescent model 179
equivalence to substitution rates 239,

250–1, 253
estimation 155–7
observed examples 156–7
scaled (4Neμ) see θ
shifting balance model 368, 370, 371
synonymous vs nonsynonymous

mutations 268
variability 262–3

N see census population size
natural selection 185–207

adaptive landscape metaphor 368
alternative models 216–22
average fitness effects 200–6
balancing see balancing selection
classical/balance hypotheses 356–7
with clonal reproduction 185–9
combined with other processes

222–6
on correlated traits 304–7
deaths due to 359–60, 363
density-dependent 219–22
directional see directional selection
disruptive see disruptive selection
against dominant phenotype 193,

196–7
Fisher’s fundamental theorem

203–6
frequency-dependent 218–19, 220,

220
gametic disequilibrium and 46–7
genealogical branching models

226–32
general dominance model 193,

197–8, 360
genetic drift and 222–5, 366
geometric model of mutations fixed by

164–6
hard 216, 363
Hardy–Weinberg model and 15
inbreeding depression and 39
interdemic 371
loss of new mutations and 162
Muller’s Ratchet and 168
mutation acting with 225–6
negative see negative selection
one diallelic locus 189–200, 203
one locus with three alleles 209–12
positive see positive selection
purifying 268–9
on QTLs 327–9
on quantitative traits 299–302
against recessive phenotype 193,

195–6

··
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restatement of Darwin’s ideas 185
with sexual reproduction 189–93
shifting balance model 368–72
soft 216, 363
strength 199–200
strength relative to genetic drift 241
two diallelic loci 212–16
via different levels of fecundity

216–18
Ne see effective population size
nearly neutral mutations 158, 240,

365–6
nearly neutral theory 240–1, 365–6

rate heterogeneity and 264–5
negative frequency dependence

218–19
negative selection

nearly neutral theory 240
polymorphism under 237, 238

Nei, M 31–2, 170
neighborhood, genetic 86–7, 87
neo-classical theory 359
neo-Darwinian (modern) synthesis 4,

185
neo-Darwinism 356
net neutral mutations 240
neutral evolution, quantitative traits

313–15
neutral mutations 158, 235

divergence due to 239–40
fate in a finite population 162–4
loss due to Mendelian segregation

160–2
polymorphism 236–7
time to loss/fixation 237, 238

neutral reference locus, HKA test 265,
266, 267

neutral theory of molecular evolution
164, 235–40, 363

compared to nearly neutral theory
240

divergence 237–40
historical debate 363–6
molecular clock hypothesis and

250–1, 252
polymorphism 236–7, 238
rate heterogeneity and 262–4
testing 265–74

Newton, Isaac 3
non-random mating 28

breeding values under 345
fixation indices accounting for

120–2
genotype frequencies and 29–30
impact on genotype and allele

frequencies 33–4
population mean phenotypic value

337
see also assortative mating;

consanguineous mating
nonsynonymous mutations 154

MK test 267–9
nearly neutral theory testing

264–5
normal distribution 378, 379

nucleotide diversity (π) 248, 249–50
estimating 251
observed 250
Tajima’s D test 269

nucleotide polymorphisms 242
nucleotide site 241–2
nucleotide-substitution models

244–7
hierarchy of complexity 247
relative rate tests incorporating

261
null model 15, 15
number of segregating sites see

segregating sites, number of

odds ratio 21, 21
off-plot gene flow 118
Ohta, T 240, 261–2, 263, 264–5,

365–6
origination processes 258
Orr, HA 166, 329–30
outcrossing 34
overdispersed molecular clock 257,

257, 365, 366
overdominance for fitness see

heterozygote advantage
overdominance hypothesis, inbreeding

depression 38–9

p distance 242, 242–3
P matrix 304–5, 305
P1 generation 317
pairwise differences, distributions of see

mismatch distributions
pan-neutralism 364
pan-selectionism 364
panmixia 105, 107

vs isolation by distance 107, 108
parameters 2–3, 3

estimates see estimates, parameter
statistical concepts 376–80

parametric variance 378
parentage analysis 111–18, 297–8

applications 118
cryptic gene flow 116
example 111–15, 116–17
four general outcomes 117–18

parent–offspring regression 302–3, 
353

parent–offspring resemblance 291,
292, 302–3

see also resemblance between relatives
parents, candidate see candidate parents
particulate genetics 4

Hardy–Weinberg model 13–17
Mendel’s model 9–12
quantitative trait variation and

334–55
Pasteur, Louis 5
paternity analysis 111
Pauling, L 255
pea plants, Mendel’s experiments

9–12
Pearson product-moment correlation (ρ)

380, 381

pedigrees
ancestor–descendant relationships

88
inbreeding coefficient and

autozygosity 34–7, 35
Phaseolus vulgaris 321
phenotype(s) 13

continuously distributed 283–6
environmental influences 285–6,

304
impact of inbreeding 37–40
quantitative genetics 283
resemblance between relatives 291,

292, 301–2, 352
phenotypic correlation 304, 304, 306
phenotypic mean (w) 305, 305
phenotypic value 283, 335, 335

components 335
natural selection on 299–302
population mean see mean phenotypic

value, population
phenotypic variance/covariance matrix

see P matrix
phenotypic variation (total) (VP) 286–7

components 286–97
defining heritability 297–9
P matrix 304–5

ϕ 142
ϕST 124
Phlox cuspidata 122
phosphoglucomutase (PGM) 32
phosphoglucomutase-2 gene (Pgm-2)

122
phosphoglucose isomerase-1 (Pgi-1) 87
physiological traits 298, 307
π see nucleotide diversity
pigs 306–7, 329
pines, Ponderosa 31
pioneer species 141
plants

gene flow 111
monocot–dicot divergence 254

Plasmodium falciparum malaria 209–10
plastid genomes see chloroplast

genomes; mitochondrial genomes
pleiotropy 304

antagonistic 313
point mutations 154
Poisson distribution 76

fate of new mutations and 161
variance effective population size and

76, 77
Poisson process molecular clock 256–7

ancestral polymorphism and 257–60
patterns and causes of rate

heterogeneity 261–5
substitutions over time 256–7
see also molecular clock

poker machine analogy 338
polygenic variation 284–5
polymorphic equilibrium 199
polymorphism 236

ancestral 257–60
balanced 200
cause of allozyme 358–9
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under directional selection 237, 238
DNA see DNA polymorphism
gametic disequilibrium and 275–8
genetic hitch-hiking 275–6
impact of background and balancing

selection 278
marker loci for QTL mapping 317
measures 248–50
nearly neutral theory prediction 241
neutral theory prediction 236–7
nucleotide 242
recombination rate and 277–8
selectionist/neutralist debate 364,

365, 366
selective sweeps 275, 276–8
testing neutral theory predictions

265–74
PopGene.S2 14
population(s)

actual 5–6
defining genetic 73
ensemble 62
finite nature 53
genetic 105–11
geographic barriers 105, 106
ideal 5–6
isolation by distance 106–7
mixing of diverged (admixture) 47

population growth
genotypes with clonal reproduction

185–7, 188
logistic 220–1
simple model (unbounded) 185

population size 73–8
allele frequencies and 53–4
census (N) see census population size
coalescent genealogies with changing

99–101
density-dependent selection and

221–2
diffusion of allele frequency and 70
effective see effective population size
exponential growth or shrinkage 100
fluctuations over time 73–5
genetic drift effects and 66
Hardy–Weinberg assumption 14, 53,

54
probability of coalescence and 91, 94

population structure (subdivision)
105–11, 107

balancing selection and 231
causes 105–7, 108–9
DNA profiling and 129–31
expressed in coalescent waiting times

149
fixation indices measuring 118–24
HKA testing and 267
impact on genealogical branching

142–9
implications 107–11
models 131–42
mutation models for estimating 171,

172
shifting balance model 370, 371–2
Wahlund effect 124–31

Populus 58
positive selection

nearly neutral theory 240
polymorphism under 237, 238
selective sweep 275, 276

predator/prey dynamics 73
probability density 71–2, Plate 3.13
probability of identity 21
product rule 21, 21
propagule-pool gene flow 141–2
prosecutor’s fallacy 21
prospective model 88
protein locus genotyping 32
proteins, rates of evolution 251–2
pseudogene 154
Punnett, RC 42
Punnett square 9

Hardy–Weinberg principle 16, 18
Mendel’s experiments 11

purging of genetic load 39, 40
purifying selection 268–9

QTLs see quantitative trait loci
quantitative trait(s) 283–97, 284

continuously distributed 283–6
evolutionary change 297–315
long-term response to selection

307–13
meristic 283
natural selection on 299–302
neutral evolution 313–15
selection on correlated 304–7
threshold or liability 283

quantitative trait loci (QTLs) 315–30,
316

candidate 316, 316
effect size 321, 327–8, 329–30
flanking-marker analysis 322–5
major genes 320, 321, 335

quantitative trait locus (QTL) mapping
316–30

biological significance 326–30
composite interval 325
experimental mating designs 317,

324
interval 322–5
limitations 325–6
multiple marker loci 322–5
multipoint 325
single marker loci 316–22

quantitative trait region (QTR) 326
quantitative trait variation (V) 286–8

environmental influences 285–6
Mendelian basis 334–55
notation 286–8
summary statistics 287

r see recombination fraction
r coefficient (in relatedness of relatives)

351
random mating

breeding values under 342–5
dominance deviation under 347
Hardy–Weinberg assumption 15,

17–18

population mean phenotypic value
336–7

population subdivision and 105
rate heterogeneity, molecular evolution

255, 255–7
generation-time hypothesis 263
lineage effects 262
metabolic rate hypothesis 263–4
patterns and causes 261–5
relative rate tests 260–1
residual effects 262

rate homogeneity, molecular evolution
255

realized heritability (h2) 300–1
recessive allele/phenotype 13

deleterious see deleterious recessive
alleles

isolate breaking 128
Mendel’s studies 10–11
selection against 193, 195–6

recombinant inbred line design 317
recombination 41–2, 43

mismatch distributions and 274
natural selection acting with 46–7
physical linkage and 45–6
polymorphism and divergence and

277–8
two-locus natural selection 212–13,

214–15, 216
recombination fraction (r) 42–3, 44

chance effects 48–9, 50
mating system effects 48
QTL mapping 320, 321–2
two-locus natural selection 213,

214–15
Red Queen model 371
regression analysis 381
relatedness 37

degree of 34
relative fitness (w or m) 188

average 188
clonal reproduction 186–8
drug-resistant HIV 189
selection coefficients from 193–5
sexual reproduction 191, 192
three-allele model of natural selection

209, 211
two-locus model of natural selection

212, 213
relative rate tests, molecular clock 260–1
relatives

mating among see consanguineous
mating

resemblance between see resemblance
between relatives

replication-dependent causes of
mutation 263, 263

replication-independent causes of
mutation 262, 262

reproduction
genetic drift and 55
life cycle 190, 216
survival trade off 313
see also clonal reproduction; 

sexual reproduction

··
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resemblance between relatives
genotypic 351–3
phenotypic 291, 292, 301–2, 352

residual effects, molecular evolution
262, 262

restriction fragment length
polymorphisms (RFLPs) 317

retrospective model 88
retroviruses, mutation rates 157
reversible (bi-directional) mutation

model 174, 175–6, 177
ρ 380, 381
ρ2 43
ρST see RST
RNA viruses, mutations 157, 160
rose pink 40
RST 124, 171, 172
runt locus 271

s see selection coefficients; selection
differential

s 304, 305, 305
S see segregating sites, number of
Sabatia angularis (rose pink) 40
salmon 77
sample configurations, lineages and

demes 145, 146
sample size

binomial probability distribution
59, 60

genetic drift and 56
simple experiment 54

sampling 3, 53–8
simple experiment 53–4
Wright–Fisher model see

Wright–Fisher model
sampling error 54, 54–7

over multiple generations 56–7
sampling variance 271, 377, 378
Sanger method, DNA sequencing 242
saturation 243–4
seals, elephant 75
segregating sites, number of (S) 248–9,

251
Tajima’s D test 269, 271

segregational load 359–60, 361,
361–3

selection
artificial 300, 306–7, 342
on correlated traits 304–7
“for” and “of” distinction 306
long-term response 307–13
see also natural selection

selection coefficients (s and t) 193–5,
199–200

frequency-dependent selection 219,
220

genetic load 360, 361–3
molecular clock 255
natural selection–genetic drift balance

222, 223
natural selection–mutation balance

225
nearly neutral theory 240
shifting balance model 368, 370

selection differential (s) 300–1, 302
QTLs 327–8
as a vector (s) 304, 305, 305

selection plateau 311, 312
selection threshold (truncation point)

300, 301, 302, 363
selectionist/neutralist debates 363–6
selective neutrality 235, 359
selective sweeps 275, 276, 276–8
self-fertilization (selfing) 28–9, 30, 31

complete 33–4, 35
gametic disequilibrium and 48
parentage analysis 116–17
partial (mixed mating) 34, 35
two-locus natural selection and 216

semi-dominance see codominance
sex determination, chromosomal

16, 46
sex-linked traits 16
sex ratio, breeding see breeding sex ratio
sexual autogamy 28–9, 30

see also self-fertilization
sexual reproduction

natural selection with 189–93
segregational load 359–60
see also diploid populations

shifting balance process 366
shifting balance theory, Wright’s

366–73
allele-frequency distributions

368–9
critique and controversy 372–3
evolutionary scenarios 369–72

siblings see full siblings; half siblings
sickle cell anemia 209
σ see standard deviation
σ2 see variance
sign epistasis 373
Silene alba 142
silent mutations see synonymous

mutations
simple sequence repeats (SSR) see

microsatellite loci
simple tandem repeats (STR) see

microsatellite loci
simulation 6–7
single nucleotide polymorphisms (SNPs)

242, 317
slot machine analogy 338
soft selection 216, 363
species divergence 242–3, 258, 260
spontaneous generation 5
stabilizing selection 299–300
standard deviation (σ; SD) 377, 378
standard error of mean (SE) 377, 378
stepping-stone models 132, 141–2
stepwise mutation model 169, 170

estimating population subdivision
171, 172

stochastic process 55
sublethal mutations 158
subpopulations 105, 107

generation 105–7, 108–9
genetic characteristics 107–11
see also population structure

substitution rate
absolute 253, 253
equivalence to mutation rate 239,

250–1, 253
Haldane’s estimate 360–1
heterogeneity see rate heterogeneity,

molecular evolution
nearly neutral mutations 366
observed 263
prediction 239–40, 241
testing relative 260–1
variation over time 255–7

substitutional load 359, 360, 361, 363
substitutions 239

multiple hit 243
nearly neutral theory 241
neutral theory 237–40
see also nucleotide-substitution models

sunflowers, hybridization 218
supergenes 357–8
survival, reproduction trade off 313
Sutton, Walter 12, 41
symmetrical (SYM) nucleotide

substitution model 247
synergistic epistasis 290–1
synonymous mutations 154

codon bias 366
MK test 267–9
nearly neutral theory testing 264–5

Tajima’s 1D test 260–1
Tajima’s D test 269–72
terminology, genetics 12–13
theory 4–6, 5
θ (4Neμ) 177–8, 249

ancestral polymorphism 258, 259
estimated from number of segregating

sites 248, 249
nearly neutral theory 240
Tajima’s D test 269, 271

θST 124
threshold traits 283
time-backward model 88
time-forward model 88
tomato 327, 329
Toxoplasma gondii 45
trait 283
transition probability 62–4

matrix construction 66
transitions, nucleotide 154
translocations 155
transposable elements 155
transversions, nucleotide 154
TreeToy 274
Tribolium castaneum 372–3
truncation point (selection threshold)

300, 301, 302, 363
two-island model 134–5

bi-directional mutation and 175
two-way mutation model see reversible

mutation model

u coefficient (in relatedness of relatives)
351, 353

UGT1A6 genotypes 294
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uncertainty, statistical 376–80
underdominance for fitness 

see heterozygote disadvantage
uniparental inheritance 87
unstable equilibrium 198

V see quantitative trait variation
Va (additive genic variance) 311–12
VA see additive genetic variance
value 283, 284
Van Valen, L 371
variance (σ2) 376, 377

change in allele frequencies see Δp
estimation 376–8
parametric 378
sampling 271, 378
summing two 296

variance effective population size (Ne
v)

82, 82–5
VD see dominance genetic variance
VE see environmental variation

VEc see common environmental variance
VG see genotypic variation
VG ×E see genotype-by-environment

interaction
VI see epistasis
viability 190
viability selection 190–1, 191

alternative models 216
genetic load and 360, 363
relative fitness values 193–5
three alleles or two loci 208–16

vicariance events 105
VP see phenotypic variation

w see relative fitness
Wahlund, Sten GW 126
Wahlund effect 124–31, 126

applied to DNA profiling 129–31
isolate breaking 128–9

waiting times, coalescent see coalescent
waiting times

Watterson, GA 248–9, 258
Weinberg, Wilhelm 13
wheat 254
Wright, Sewall 73, 74, 356

fitness surface concept 366–8
heritability (h2) 297
infinite island model 135
isolation by distance 106–7
natural selection–genetic drift

combined 222, 223, 224
shifting balance theory 366–73

Wright–Fisher model 55, 55–7
adding natural selection 227
binomial probability distribution and

59, 60–1

X-linked traits 16

w 305, 305
Zuckerkandl, E 255
zygotes 55, 190
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